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Abstract: We present a non-parametric regression method for denoising 3D im-
age sequences acquired in fluorescence microscopy. The proposed method exploits
3D+time information to improve the signal-to-noise ratio of images corrupted by
mixed Poisson-Gaussian noise. A variance stabilization transform is first applied
to the image-data to introduce independence between the mean and variance. This
pre-processing requires the knowledge of parameters related to the acquisition sys-
tem, also estimated in our approach. In a second step, we propose an original sta-
tistical patch-based framework for noise reduction and preservation of space-time
discontinuities. In our study, discontinuities are related to small moving spots with
high velocity observed in fluorescence video-microscopy. The idea is to minimize
an objective nonlocal energy functional involving spatio-temporal image patches.
The minimizer has a simple form and is defined as the weighted average of input
data taken in spatially-varying neighborhoods. The size of each neighborhood is
optimized to improve the performance of the pointwise estimator. The performance
of the algorithm which requires no motion estimation, is then demonstrated on both
synthetic and real image sequences using qualitative and quantitative criteria.
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Régression non-paramétrique et
représentation des images par motifs locaux

pour le débruitage de séquences de vidéo-microscopie de
fluorescence

Résumé : Nous présentons une méthode de régression non-paramétrique pour le
débruitage de séquences d’images volumiques acquises en microscopie de fluo-
rescence. La méthode proposée utilise l’information spatio-temporelle en vue de
l’amélioration du rapport signal-à-bruit des images perturbée par un bruit Poisson-
Gaussien. Une stabilisation de la variance est préalablement appliquée aux don-
nées images afin de rendre la variance du bruit indépendante de l’intensité locale.
Dans une deuxième étape, nous proposons un cadre original pour la réduction du
niveau de bruit et la préservation des discontinuités spatio-temporelles. Dans notre
étude, ces discontinuités sont introduites par de petits objets ayant des vitesse éle-
vées. Notre approche repose sur la minimisation d’une fonctionnelle d’énergie
impliquant des motifs contenus dans les séquences d’images. Le minimiseur pos-
sède une forme simple et est défini comme une moyenne pondérée de données
collectées dans un voisinage spatio-temporel. La taille de chaque voisinage est lo-
calement optimisée afin d’améliorer les performances de l’estimateur. Au final, les
performances globales de l’algorithme, qui ne requière pas d’estimation du mou-
vement, sont illustrées à l’aide de séquences d’images synthétiques mais aussi à
l’aide de données réelles en utilisant des critères qualitatifs et quantitatifs.

Mots-clés : Vidéo-microscopie, fluorescence, image sequence denoising, patch-
based approach, bruit de Poisson, stabilisation de la variance, estimation adaptative
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1 Introduction

Fluorescence video-microscopy is an investigation tool used for dynamics analysis
at sub-cellular levels in biology. Combined with fluorescent tags such as genet-
ically engineered fluorescent chimeric proteins (e.g. Green Fluorescence Protein
GFP), both confocal microscopy and wide-field microscopy allows 3D live protein
imaging. Mainly used to analyze isolated cells, confocal microscopy can also be
used in vivo if combined with endomicroscopy. Unfortunately, when cell viability
needs to be preserved and photobleaching avoided, light exposure time must be
limited, resulting in low signal-to-noise ratios.

While improving the signal-to-noise ratio, denoising may allow us to reduce
exposure time and therefore to open new opportunities in live cell imaging. More-
over, frame rates can be then increased without increasing radition dose, which
could be relevant to capture fast events at sub-cellular levels. Finally, if the ob-
jective’s point spread function is not affected by denoising, images may still be
compatible with a deconvolution process, significantly increasing the performance
of restoration algorithms images with low signal-to-noise ratios. As a consequence,
performances of object detection and tracking algorithms are improved as well.

Currently, denoising is a widely studied but still an open problem in image
processing. Many methods have been described in the literature, and a recent out-
standing review can be found in [1]. Methods based on the full knowledge of
noise statistics are probably the more efficient. In fluorescence video-microscopy,
it is established that the low level of fluorescence is related to a limited number
of photons that can be modeled as a Poisson process. Besides, additive electronic
noise is usually present even if a cooling system is used on the detector. The
resulting images are then assumed to be contaminated by a combination of Pois-
son and Gaussian noise. Several approaches have been introduced to deal with a
signal-dependent noise. In [2], the authors proposed a Maximum Likelihood esti-
mator for Poisson noise removal in very low count situations. The problem is more
challenging for Poisson-Gaussian noise and another line of work consists in stabi-
lizing the noise variance using ad-hoc transforms. The more common transform is
the so-called Anscombe transform [3] designed for Poisson noise. This transform
was further generalized to Poisson-Gaussian noise, with satisfying results if the
number of counts is large enough [4] and more recently for "clipped" (under- and
over-exposure) raw-data [5]. In the case of very low count situations (≤ 1 photons
in average), the more sophisticated Fisz transform allows one to better stabilize
Poisson noise [6, 7]. Finally, local estimation of image-dependent noise statistics
(assumed to be locally Gaussian) has been investigated, especially in the case of
adaptive Wiener filtering [8–10].

Denoising image in temporal sequences is even more complex since there are
currently no satisfying methods for processing fluorescence videomicroscopy 3D
image sequences contaminated by Poisson-Gaussian noise. Most of them only
restore every frame separately without using the temporal redundancy of image se-
ries. When temporal coherence is exploited, it is usually recommended to consider

INRIA
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a motion estimation/compensation stage as proposed for video denoising [11–14]
and, for instance, for low-dose fluoroscopy image sequence filtering [10]. This is
especially true for real-time imaging applications. Thus, Kuznetsov et al. recently
proposed to use a temporal Kalman-Bucy filter to improve the quality of video-
microscopy image sequences [15]. The main difficulty in video-microscopy is to
estimate the motion of small and similar objects moving with high velocity in the
image sequence. To overcome this problem, sophisticated methods (see [1]) but
designed for still images have been adapted to videos. Wavelet shrinkage [16, 17],
Wiener filtering [18] or PDE-based methods [19] are typical examples of such
methods. Recently, an extension of the non-local means filter [1] also related to
the universal denoising (DUDE) algorithm [20] and the entropy-based UINTA fil-
ter [21], has been proposed to process image sequences. It assumes that image
sequence contains repeated patterns [22]. Noise can then be reduced by averaging
data associated to the more similar patches in the image sequence. Patch-based
approaches are now very popular in texture synthesis [23], inpainting [24], video
completion [25] ; they have also been explored for image restoration [26].

Nevertheless, searching similar examples in the whole image for denoising
with the non-local means filter, is untractable in practice in 2D, and unrealistic
for video sequences. As a consequence, a variant of this filter has been recently
proposed in [27] ; the authors use a pre-classification of pixels in the sequence
in order to speed up the denoising procedure. Another improvement introduced
in [28] consists in collecting similar patches to build 3D arrays. A unitary transform
and a hard-thresholding are then applied to remove noise.

A general modeling framework based on signal and information theory has
been proposed by Elad et al. for image and video sequence analysis. The authors
assume that the images can be approximated by a sparse representation and dic-
tionaries of forms, like DCT coefficients or libraries of patches [29]. The approx-
imation problem is then equivalent to the global minimization (using a a K-SVD
algorithm) of an energy functional involving a data term and a penalty term that
encodes sparsity [30]. This method is able to produce impressive image denois-
ing results, including video image sequences, but requires intensive minimization
procedures and the adjustment of several parameters.

Unlike the previous patch-based approaches [22, 27, 31, 32], we present in this
paper an original space-time patch-based adaptive statistical method for 3D+time
video-microscopy image sequence restoration. As already mentioned, patch-based
methods have been proposed for denoising image sequences, but, to our knowl-
edge, only anisotropic diffusion and wavelet shrinkage have been applied to 2D+time
fluorescence video-microscopy [33, 34]. In our approach, we propose first a vari-
ance stabilization step to be applied to the data in order to obtain independence
between the mean and the variance. Second, we consider spatio-temporal neigh-
borhoods to restore series of 3D images as already proposed in [32] in a discrete
setting. Our method is based on the minimization of an energy functional while ex-
ploiting image patches. The minimizer of this energy functional has a simple form
and corresponds to a weighted average of intensity values taken in spatially (and

RR n° 6651
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temporally) varying neighborhoods. The neighborhood size is adapted on-line to
improve the performance (in the sense of L2 risk) of the pointwise estimator. No
learning step or wavelet decomposition is required. Also, no motion estimation is
involved as orignally described in [32]. Finally, the designed algorithm comprises
only few parameters which are easily calibrated.

The remainder of this paper is organized as follows. In Section 2, we introduce
the denoising problem in fluorescence video-microscopy. In Section 3, the main
contributions are presented in detail. In Section 4, we demonstrate the performance
of the algorithm (controlled by a small number of parameters) on both synthetic and
real video-microscopy image sequences.

2 Problem statement

In this section, we present a general framework for image sequence analysis in
wide-field or confocal microscopy. Our study is limited to the restoration of arti-
facts due to noise. We do not consider the issue of correcting the signal distortions
due to diffraction (e.g. deconvolution problem). We will later show the compati-
bility of the proposed method with further deconvolution.

Acquired images correspond to stacks of 10 to 60 slices with an axial resolution
(depth) lower than the lateral one. Anisotropy in 3D microscopy can be an issue
for 3D wavelet methods, especially for processing stacks with a limited number
of slices (boundary effects). The processed images depict tagged proteins appear-
ing as bright particles of size 3 to 10 pixels moving with speeds ranging from 1
to 10 pixels per frame. The small amount of light collected by sensors and ther-
mal agitation in electronic components induce a mixed Poisson-Gaussian noise.
Accordingly, we assume the following linear model:

Z(x) = g0N(x) + ε(x), (1)

where Z(x) is the observation at the space-time location x ∈ R4 and g0 repre-
sents the gain of the overall electronic system. The number N(x) of collected
photo-electrons is a random variable assumed to follow a Poisson distribution of
parameter θ(x): p(N(x)) = θ(x)N(x)e−θ(x)

N(x)! . Finally, the dark current is modeled by
a Gaussian white noise of variance Var[ε(x)] = σ2

ε and expectation E[ε(x)] = m.
Finally, let’s note f(x) = g0θ(x) + m.

In this paper, we consider the problem of estimating f(x) at each point x from
noisy data Z(x) taken in a space-time neighborhood of x. We propose the follow-
ing contributions:

• First, we assume that the lowest number of detected photo-electrons is large
enough (> 30) and we adopt the generalized Anscombe transform to sta-
bilize the noise variance. We need the prior knowledge of the following
quantities: g0, m and σ2

ε . In Section 3.1, we present a robust data-driven
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method to estimate these parameters. Once, the noise variance is stabilized,
a more convenient additive Gaussian noise model is considered.

• Second, we minimize an energy functional based on image patches, able to
capture local geometries and spatial interactions. Unlike previous methods,
we compute a distance between spatio-temporal patches for detecting sim-
ilarities and redundancies in the 3D+time domain. Furthermore, we show
that the fixed-point solution has a simple form: the minimizer involves the
weighted average of input data taken in a varying space-time neighborhood.
The set of nearby patches can be then interpreted as a variable dictionary of
patches which length is related to the size of the neighborhood.

• Third, we adapt locally the number of elements of this dictionary. We pro-
gressively increase the number of patches participating to the weighted aver-
age by increasing the space-time neighborhood size. The optimal dictionary
size is defined as the one that minimizes the local L2 risk. Following the
Lepskii’s approach [35,36], it amounts to balancing the bias and variance of
the estimator by adapting locally the size of the neighborhood.

In the next section, we address these three issues in detail.

3 Proposed method

3.1 Stabilization of noise variance

The Anscombe transform is the more commonly-used transform for stabilizing the
variance of Poisson noise [3]. In [37], the authors used this transform to denoise
confocal images, since the number of photons is large enough. Earlier, Murtargh
et al. considered a more general Anscombe transform of the form [38]:

TGA(Z(x)) =
2

g0

√
g0Z(x) +

3

8
g2
0 + σ2

ε − g0m. (2)

In contrast to the usual parameter-free Anscombe transform, the Generalized Anscombe
transform requires the setting (or the estimation) of a small set of parameters, g0,
σ2

ε and m, related to the acquisition system. Starck et al. proposed an iterative al-
gorithm to estimate the gain g0 and the dark current parameters from images [39].
Their method stabilizes the variance of the transformed data by testing several pa-
rameters according to a dichotomy process. Instead, we have defined an approach
based on a linear regression in the 2D-space (E[Z(x)], Var[Z(x)]). This method
has been previoulsy skeched in [40] and we provide here more details. Note that a
similar approach has also been recently used in [34]. From (1), we have

{
E[Z(x)] = g0θ(x) + m,
Var[Z(x)] = g2

0θ(x) + σ2
ε .

(3)
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which yields
Var[Z(x)] = g0E[Z(x)] + σ2

ε − g0m. (4)

It follows that a linear regression in the 2D-space (E[Z(x)], Var[Z(x)]) provides
an estimation of the two parameters g0 and eDC = σ2

ε −g0m. Accordingly, (2) can
be written as

TGA(Z(x)) =
2

g0

√
g0Z(x) +

3

8
g2
0 + eDC . (5)

Now, we robustly estimate the local mean and the local variance. In order to
get independent samples and to save computation time, it is crucial to partition the
space-time volume into non-overlapping blocks. The size of these blocks results
from a compromise between the estimator variances and the number of resulting
measure points in (Ê[Z(x)], ̂Var[Z(x)]). For each block, we get a measurement
point of coordinates (Ê[Z(x)], ̂Var[Z(x)]). The mean Ê[Z(x)] is estimated using a
robust M-estimator. The noise variance ̂Var[Z(x)] is robustly estimated using the
“Least Median of Squares” (LMedS) estimator defined as

̂Var[Z(x)] = 1.4826 medx (|r(x) − medy |r(y)||) , (6)

where the pseudo-residuals r(x) are computed at each spatial position x ∈ R4 (in
the 3D+time case) as [41]:

r(x) =
1√

l2 + l
∆Y (x). (7)

Here ∆Y (x) denotes the space-time Laplacian operator involving l surrounding
pixels.

Given empirical estimates of the mean and the variance, a simple linear regres-
sion is applied to obtain the values of parameters g0 and eDC . The Generalized
Anscombe Transform is then applied to the input data Z to produce new input data
Y with Gaussian statistics.

3.2 Patch-based energy functional

Once the noise variance has been stabilized, we consider the following image se-
quence model:

Y (x) = u(x) + η(x), (8)

where x ∈ Ω denotes the pixel location in the space-time volume Ω ⊂ R4
+.

The regression function u(x) is the ideal image to be recovered from observa-
tions Y (x) := TGA(Z(x)). The errors η(x) are now assumed to be independent
zero-mean Gaussian variables with variance σ2

η theoretically equal to 1. Because
of errors and non-stationarities, stabilization is not ideal and the variance needs to
be estimated from data Y . The inverse generalized Anscombe transform is applied
to the estimate û(x) afterwards to recover f(x), at each spatial position x ∈ Ω.

INRIA
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To solve the restoration problem, that is to recover the true image function u
from noisy data Y , we propose to minimize an original energy functional J(u, Y )
able to capture image spatio-temporal redundancy from image patches. Several
approaches have been recently proposed in this line of work [42–44], yielding iter-
ative variants of the non-local means filter for 2D still images. In our framework,
we propose an energy functional but, unlike [42–44], the determination of involved
parameters is data-driven.

Let define J(u, Y ) the energy functional as

J(u, Y ) =

∫

Ω×Ω
φ (dQ(u(x), ũ(y))) K

(‖x − y‖
h(x)

)
dy dx, (9)

where K is an appropriate spatial kernel (‖ · ‖ denotes the usual euclidean norm)
with a spatially-varying bandwidth h(x) acting as a space-time neighborhood,
u(x) := (u(x′))‖x−x′‖≤ρ corresponds to a small image patch (size is parametrized
by ρ) for image sequences and φ : R+ → R is a differentiable function which can
be convex or not. In (9), we consider the usual Mahalanobis distance to compare
patches:

dQ(u(x), ũ(y)) = (u(x) − ũ(y))T Q−1(x, y)(u(x) − ũ(y)) (10)

where Q(x, y) is a covariance function discussed later. In the definition of ũ(y),
Y (y) is substituted to u(x) and, accordingly, the minimization of J(u, Y ) does not
lead to a constant image. More formally, ũ(y) is componentwise defined at point
y as :

ũ(y − z) =





Y (y) z = 0,

u(y − z) if 0 < ‖y − z‖ ≤ ρ,
0 otherwise.

(11)

In what follows, we assume that the patch size is fixed for every point and parametrized
by ρ. Finally, we choose K as a cut-off function:

K(z) =

{
1 if |z| ≤ 1,
0 otherwise.

(12)

and we take φ(z) = 1 − e−z as also suggested in [45].
J(u, Y ) is a non-local energy functional and is improved here by introducing

image patches in the definition. Intuitively, minimizing J(u, Y ) amounts to esti-
mating an image for which neighboring patches are similar and, at the same time,
the estimated value at the central position in the reference patch u(x) must be as
close as possible to the input data Y (y) observed at the central positions in the
neighboring patches {u(y)}. The non-local and complex interactions in spatially
varying neighborhoods are thus taken into account in the framework. According to

RR n° 6651
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the variation calculus method, we have

J(u + δu, Y ) − J(u, Y ) =
∫

Ω×Ω
φ [dQ(u(x) + δu(x), ũ(y) + δũ(y))

−φ
(
dQ(u(x), ũ(y))

)]
K

(‖x − y‖
h(x)

)
dy dx, (13)

with the abbreviation δu(x) := (δu(x′))‖x−x′‖≤ρ. The components of δũ(y) are
defined as

δũ(x − z) =

{
u(x − z) if 0 < ‖x − z‖ ≤ ρ,
0 otherwise.

(14)

A first-order Taylor expansion leads to

J(u + δu, Y ) − J(u, Y ) ≈

2

∫

Ω×Ω
(δu(x) − δũ(y))T Q−1(x, y)(u(x) − ũ(y))

φ′
(
dQ(u(x), ũ(y))

)
K

(‖x − y‖
h(x)

)
dy dx. (15)

Since we are only interested in the local variation at point x, we set δu(y) =
0,∀y 6= x. In addition, if y and x are mutually neighbors, it follows that

J(u + δu, Y ) − J(u, Y )

δu(x)
≈ Q−1(x, x)

×
∫

Ω
(u(x) − Y (y))φ′

(
dQ(u(x), ũ(y))

)
K

(‖x − y‖
h(x)

)
dy. (16)

If u is a stationary point of J(u, Y ), the first-order term vanishes and the fixed-
point solution is given by

û(x) =

∫

Ω
φ′
(
dQ(u(x), ũ(y))

)
K

(‖x − y‖
h(x)

)
Y (y) dy

∫

Ω
φ′
(
dQ(u(x), ũ(y))

)
K

(‖x − y‖
h(x)

)
dy

. (17)

We can rewrite this expression as the weighted sum of the original data Y (y) as

û(x) =

∫

Ω
w(x, y)Y (y) dy (18)

where the weights w(x, y) are defined as

w(x, y) =

φ′
(
dQ(u(x), ũ(y))

)
K

(‖x − y‖
h(x)

)

∫

Ω
φ′
(
dQ(u(x), ũ(z))

)
K

(‖x − z‖
h(x)

)
dz

. (19)

INRIA
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The solution (17) yields the estimator û(x) for each point x given the original
data Y (y). However, the bandwidth h(x) is also unknown. In the next section,
we address the issue of estimating the optimal bandwidth controlling the spatial
neighborhood. A computational solution will be derived.

3.3 Neighborhood size selection

The estimator (17) is based on the approximation of the central patch by a set of
nearby patches. The performance of the estimator is related to the bandwidth h of
this neighborhood and can vary at each point of the image sequence according to
the image content.

In order to optimally estimate the bandwidth, we analyze the performance of
the estimator and consider the usual local L2 risk defined as

R(û(x), u(x)) = E
[
(û(x) − u(x))2

]
, (20)

where u(x) is the unknown function at point x. The local risk R(û(x), u(x)) is
defined at each point x and then differs from usual performance measures that
integrate errors on the whole image. A local adaptation of the bandwidth is more
appropriate to improve the estimator in the vicinity of discontinuities. In what
follows, we aim at estimating the bandwidth h(x) by minimizing R(û(x), u(x)).

First, it is established that (20) can be decomposed into two terms: squared bias
b2(x) and variance υ2(x) as

R(û(x), u(x)) = (E[û(x) − u(x)])2︸ ︷︷ ︸
b2(x)

+ E[(û(x) − E[û(x)])2]︸ ︷︷ ︸
υ2(x)

. (21)

A usual form for the considered estimator variance is

υ̂2
h(x) = σ2

η

∫

Ω
(w(x, y))2 dy. (22)

The bias term b(x) depends on the unknown function u(x) and is thus unobserv-
able. However, assuming minimal properties about the unknown function u, we
can propose an upper bound for the squared bias term. First, we assume that the
function u is continuous Lipschitz (in Rd), that is

∃ C1 ∈ R+∗ : |u(x) − u(y)| < C1‖x − y‖. (23)

and assume

∃ h(x) ∈ R+∗ : w(x, y) = 0 if ‖x − y‖ > h(x). (24)

RR n° 6651



12 J. Boulanger, C. Kervrann, J. Salamero, J.-B. Sibarita, P. Bouthemy

From (23) and (24), it comes

|bh(x)| =

∣∣∣∣
∫

Ω
w(x, y)E[Y (y)] dy − u(x)

∣∣∣∣

≤
∫

Ω
w(x, y) |u(y) − u(x)| dy

≤ C1

∫

Ω
w(x, y) |y − x| dy

≤ C1h(x). (25)

Other more accurate upper bounds can be obtained for this term [46, 47]. More
generally, we can consider the general upper bound of the form b2

h(x) ≤ C2
1h2(x)

[46–48]. Similarly, the variance is usually bounded as: υ2
h(x) ≤ σ2

ηh
−d(x)/C2

with C2 a strictly positive constant. From (21), it follows that

R(û(x), u(x)) ≤ C2
1h2(x) +

σ2
η

C2
h−d(x). (26)

Our goal is to determine h(x) so that the bound for the risk is minimized. The
optimal value of h(x) can be easily obtained:

h∗(x) =

(
dσ2

η

2C2C2
1

) 1
d+2

. (27)

Unfortunately, this expression of h∗(x) still depends on unknown constants, C1

and C2. From (27), the expressions of the bias and variance for the ideal value
h∗(x) are

b2
h∗(x) ≈ C2

1

(
dσ2

η

2C2C2
1

) 2
d+2

, (28)

υ2
h∗(x) ≈

σ2
η

C2

(
dσ2

η

2C2C
2
1

)− d

d+2

. (29)

Finally, we point out that the ratio of the squared bias and the variance has a simple
expression for the ideal value h∗(x):

b2
h∗(x)

υ2
h∗(x)

=
d

2

4
= γ2 (30)

and does not depend on C1 (image regularity) and further is image-dependent [48].
Following the Lepskii’s principle [35], we exploit this property to minimize the
L2 risk R(û(x), u(x)). The idea is to design a sequence of increasing bandwidth
: H = {hn(x), n ∈ [0, N [: hn−1(x) ≤ hn(x)}. Assuming that the variance
υ2

n(x) is a decreasing function of n, the number of samples taken into account
is progressively increased to reduce the estimator variance while controlling the

INRIA



Patch-based fluorescence microscopy image sequence denoising 13

t
x

y

Figure 1: Example of growing space-time neighborhoods in the case of a 2D image se-
quence. In this representation, each cube represents a pixel in the space-time domain.
The proposed mechanism allows us to consider space and time directions as independent
components.

estimator bias. Formally, the so-called “bias-variance trade-off” corresponds to the
following inequality :

h∗(x) = sup
hn(x)∈H

{|bhn
(x)| ≤ γυhn

(x)}. (31)

This stepwise procedure will allow us to select, among a predefined set of band-
widths {hn(x), n ∈ [0, N [}, the bandwidth that minimizes the local quadratic risk.
Since bhn

(x) is unknown, we consider instead a weaker “oracle” to detect the op-
timal window for smoothing:

h∗(x) = sup
hn(x)∈H

{n′ < n : |ûn(x) − ûn′(x)| ≤ %υn′(x)}. (32)

where % is a positive constant. We refer the reader to the appendix for the proof.
We can notice that this expression involves the comparison between the current
estimate and all the previous estimates. Finally, this simple stopping rule allows us
to control the risk of the estimator by selecting the optimal bandwidth.

The design of a sequence of increasing bandwidths is now required for esti-
mation. However, when processing an image sequence, the relationship between
the temporal and spatial dimensions is related to the object size and movement,
which are both unknown. Accordingly, the space and time extents of neighbor-
hoods should be considered independently. For this reason, we decide to increase
the size of the neighborhood in an alternate way in space and time, using two
distinct bandwidths. We note respectively hs and ht the spatial and temporal band-
widths for space and time, and Fig. 1 illustrates the increase of the bandwidths. It is
worth noting that, unlike [49], the sequence of bandwidths is not known in advance
since we consider two parameters hs and ht ; the growing process can be different
from one point to another. In our experiments, we use a dyadic scale in space and
a linear scale in time.

Finally, given the proposed growth mechanism, the estimator is computed as
follows. In (19), the weights depend on the unknown function u at position y.
At the initialization, we set û0(x) = Y (x) since only the noisy data Y (y) are
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available. For the next iterations, n ≥ 1, a new estimate of u can be computed
from the previous estimate ûn−1(x). Accordingly, the weights are now defined as

w(x, y) ≈
φ′
(
d
Q̂n−1

(ûn−1(x), ûn−1(y))
)

∫

Ω
φ′
(
d
Q̂n−1

(ûn−1(x), ûn−1(y))
)

K

(‖x − y‖
hn(x)

)
dy

(33)

and the estimator is defined as

ûn(x) =

∫

Ω
w(x, y)Y (y) dy. (34)

Besides, the covariance Q̂n−1(x, y) is a diagonal matrix which components Q̂n−1(x, y)
are defined as

Q̂n−1(x, y) = λ2υ̂2
n−1(x) δ(x, y)

where δ(x, y) = 1 if x = y and 0 otherwise (Kronecker symbol). Once nor-
malized, the distance d

Q̂n−1
(ûn−1(x), ûn−1(y)) follows a χ2

1−α distribution with
|Bρ(x)| − 1 degrees of freedom and level 1 − α where |Bρ(x)| denotes the patch
size. The parameter λ is a α-quantile of the χ2 distribution. The iteration is stopped
at point x if the rule (32) is satisfied. In other words, the estimated spatial or tem-
poral window is defined as

ĥr(x) = sup
hr

n(x)∈Hr

{n′ < n : |ûn(x) − ûn′(x)| ≤ %υn′(x)}, (35)

where % is chosen in the range [2, 3] and the superscript r denotes s or t.
We have now completely described the proposed image sequence restoration

method. We can notice that the only free parameter is the patch size, related to the
scale of textures and patterns in image sequences. In video-microscopy, the objects
are small spots of size ranging from 2 pixels to 4 pixels. Therefore, for the sake
of simplicity, 3 × 3 × 3 and 5 × 5 × 5 cubic patches will be considered in our
experiments.

4 Experiments

4.1 Synthetic image sequence

In order to test the proposed method, we have generated synthetic image sequences
representing moving tagged vesicles. Using this procedure, we aim at analyzing the
influence of the generalized Anscombe transform on the final result and to demon-
strate that the proposed space-time adaptive method outperforms the corresponding
denoising methods used for still images described in [49].

First, we have created a synthetic image sequence showing moving objects
superimposed on a static background. The true image sequence is then composed
of 50-16bits 3D volumes of 256 × 256 × 10 voxels. The background is generated
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(a) (b)

Figure 2: Volume of 256×256×10 voxels exacted from a simulate image sequence (slice
#5 and time t = 25), (a) ground truth (b) noisy image sequence (logarithmic scale).

using two or three Gaussian profile of radius 20 pixels with random locations.
The background is an essential component of the photometric dynamic of images
and thus can alter the stabilization transform process. Typically, the background
may be associated to autofluoresence within the cell as well as the non specific
accumulation of fluorescent tags on organelles. The flux of photo-electrons related
to this component ranges from 10 to 2000 photo-electrons per pixel. Then, 256
spots are drawn as 3D Gaussian functions of radius 2 pixels and of intensity 200
photo-electrons. Their movements are assumed to be described by a Gaussian
random walk of standard deviation of 3 pixels. A Poisson noise is generated from
this image of flux. Then a gain g0 = 0.4 is applied and finally the dark current
is simulated with a Gaussian noise of mean m = 100 and a standard deviation
σ2

ε = 4. These values have been obtained by statistical analysis of photometric
properties observed in real image sequences. The synthetic image sequence is
composed of small spots with intensities of 70 gray levels above the background
level, and of 4 large blobs with a maximal intensity of about 900. The slice #5
extracted from a volume at time t = 25 of the simulated noise free ground truth
and the corresponding noisy slice are shown respectively in Fig. 2(a) and (b).

A scatter plot of the estimated mean and noise variance is shown in Fig. 3(a).
The regression line for the first image of the sequence is estimated as ̂Var[Y (x)] =

0.407 Ê[Y (x)]−24.44, while the theoretical equation is Var[Y (x)] = 0.36 E[Y (x)]−
24.0. We can analyze the accuracy of the estimation by considering the next vol-
umes of the sequence. We found that the mean of g0 is 0.408 and the standard
deviation is 6.79 · 10−3. For the parameter eDC , the mean is −24.31 and the stan-
dard deviation 0.879. Accordingly, we can conclude that, for this simulation, the
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Lp norm
L∞ supx∈Ω ‖f(x) − v̂(x)‖
L1

∫
x∈Ω ‖f(x) − v̂(x)‖ dx

L2
∫
x∈Ω ‖f(x) − v̂(x)‖2dx

Table 1: Definitions of Lp norms used for evaluation.

parameters of the generalized Anscombe transform has been well estimated. In
addition, Fig. 3(b) shows that the variance of the noise has been well stabilized:
the noise variance is now 1.001. The width of the cloud of points is related to the
errors to the estimation of the mean and noise variance. However, the global trend
is well estimated and the noise variance is reliably stabilized.

Our approach is thus quite effective at stabilizing the noise variance in the case
of a mixed Poisson-Gaussian noise. It is fully automatic and fast (the computation
time of an unoptimized C++ implementation is about 100ms for a single 2D 512×
512 image on a 1.8Ghz PC).

To demonstrate the performance of both the variance stabilization procedure
and the 3D+time denoising procedure, we consider three experiments: In exper-
iments A and B, we assume respectively a Poisson-Gaussian noise model and a
Gaussian noise model. In experiment C, we assume a Poisson-Gaussian noise
model but each volume of the sequence is denoised independently. In these three
experiments, we used 5×5×5 patches and the algorithm parameters are unchanged.

As reconstruction error, we measured the L∞, L1 and L2 norms (see Table 1)
between the original sequence f and the reconstructed image sequence f̂ to com-
pare the different methods and noise models. The results are reported in Table 4.1
and Fig. 4. We can first notice that the L∞ norm has a high standard deviation. Ac-
cordingly, experiments A and C equally supply a better result than C based on the
L∞ norm. This criterion clearly demonstrates that the proposed adaptive modeling
is relevant. The use of L1 and L2 norms also indicates that the proposed algorithm
corresponding to experiment A outperforms the two other techniques (respectively
B and C).

Finally, with the peak value of the spots, we consider the peak signal-to-noise
ratio PSNR = 10 log10(Var[f ]/‖f̂(x) − f(x)‖2). We obtain the following results
: PSNR = 24.0dB, PSNR = 33.04dB, PSNR = 31.06dB and PSNR =
32.55dB respectively for denoised image sequences corresponding to experiments
A, B and C.

Besides, the visualization of the result of the restored sequence volume by vol-
ume makes clearly appear a flickering artifact due to the lack of coherence between
consecutive volumes. In Fig. 6 we can notice the differences between experiments
A and B. Flickering artifacts are visible in Fig. 6(b) corresponding to experiment
B while in Fig. 6(a) the temporal coherence is reinforced. We can also remark
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Figure 3: Noise variance stabilization for a synthetic image sequence. Robust estima-
tion of the local mean E[Y (x)] and noise variance Var[Y (x)] (a) before stabilization and
(b) after stabilization. Each dot (there is a total of 5408 dots) corresponds to a couple
(Ê[Y (x)], ̂Var[Y (x)]) estimated on 5 × 5 × 5 non-overlapping blocks. The dashed line
represents the fit of the theoretical model Var[Y (x)] = g0E[Y (x)] + eDC . After stabi-
lization of the variance, the estimated parameters show no more dependency between the
noise variance and the intensity.

RR n° 6651



18 J. Boulanger, C. Kervrann, J. Salamero, J.-B. Sibarita, P. Bouthemy

Sequences
L∞ L1 L2

te
mean std mean std mean std

Noisy 62.67 4.21 4.39 6 · 10−3 35.0 12 · 10−3

A 38.35 2.87 1.56 16 · 10−3 2.94 28 · 10−3 65 min

B 53.10 5.83 1.96 17 · 10−3 3.78 25 · 10−3 55 min

C 37.98 2.44 1.65 14 · 10−3 3.01 24 · 10−3 28 min

Table 2: Influence of the variance stabilization transform and of the adjacent temporal
volumes on the error. Three norms are used to measure the performance of the denoising
method. The mean and standard deviation with respect to time are reported. The computa-
tion times te for each experiment is also given for the noisy sequence; 3D+time - Gaussian
and Poisson noise (A) ; 3D+time - Gaussian noise (B) ; 3D - Poisson and Gaussian noise
(C).

that temporal discontinuities are well preserved. As expected, these experiments
confirm that considering the whole image sequence provides better results than
processing the sequence, volume by volume.

4.2 Spatial denoising of real samples using various exposure times

In this section, we consider several spinning disk acquisitions of the same fixed
HeLa cell expressing a GFP tagged Rab6 proteins. For these experiments, the ex-
posure time varies from 30ms to 500ms. Acquired 3D stacks are denoised using
a 5 × 5 median filter and using the proposed method. In this case only 3D in-
formation and the Poisson and Gaussian noise modeling is considered since cell
are fixed. Results, shown in Fig. 7 reveal that median filtering is not able to both
preserve discontinuities and reduce the noise level.

In order to better quantify the potential gain on this real data set, we propose
to align the histogram of each 3D image from Fig. 7 onto the histogram of the
original raw image obtained with a 500ms exposure time. The alignment is per-
formed by assuming that the relationship between the intensity of an image with
the given reference is a linear model and by minimizing the squared errors using
a linear regression. This operation does not compensate possible motion between
images. However, in this experiment, excepted for t = 50ms, the images are
aligned. Moreover, motion compensation would imply interpolating of noisy data
and could therefore introduce potential artifacts. Figure 8 shows that the L2 error
distance between the reference and the denoised images is lower if the proposed
method is applied. For example, the image quality of a 50ms exposure time image
processed using the proposed method is approximately the same than for a 200ms
exposure time raw acquisition and similar to a 100ms exposure time processed with
the median filter. Nevertheless, we should point out that these performances highly
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Figure 4: Influence of the variance stabilization transform and the adjacent temporal vol-
umes on the signal-to-noise ratios. (See text)

RR n° 6651



20 J. Boulanger, C. Kervrann, J. Salamero, J.-B. Sibarita, P. Bouthemy

(a) (b) (c)

Figure 5: XY slices #5 at time t = 25 of the denoised synthetic image sequence corre-
sponding to experiments A , B and C, respectively in (a), (b) and (c) (logarithmic scale).

(a) 3D+t denoising

(b) 3D denoising

Figure 6: YT slice #5 at x = 250 of the denoised synthetic image sequence corresponding
to experiments A and C, respectively in (a) and (b) after histogram equalization. More
flickering effects are visible when the volumes are independently processed.

depend on the image content. Finally, as previously shown in Section 4.2, the per-
formance of the proposed method would be improved using temporal information.

4.3 Real 3D+time image sequence

We propose now to test the proposed denoising method on a real 3D+time image
sequence composed of 50 volumes of 696×520×6 voxels. The slice #3 extracted
at time t = 20 is displayed in Fig. 10(a). This sequence has been acquired using
a “fast” 4D wide-field microscope. The biological sample is a chimeric protein
construct between GFP and Rab6A (GFP-RAB6A) a member of the Rab-GTPases
proteins reversibly bounded to specific membranes within the living cell. At the
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Figure 7: Experiment on a fixed HeLa cell tagged with GFP-Rab6 acquired in spinning
disk microscopy. The first column contains 2D slice of original 3D images taken with
exposure times ranging from 30ms to 500ms. The second and third columns represent the
denoising results obtained respectively with a median filter and the proposed method.
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Figure 8: Square root of the mean squared error is plotted against exposure times showing
the improvement of the filtering in the case of a fixed sample (see Fig. 7).

steady state, this protein is associated to the Golgi apparatus as well as to rapidly
moving transport intermediates and present in the cytosol. Cellular dynamics of
Rab6A is influenced by at least three distinct phenomena: i) lateral diffusion dic-
tated by lipid movement within a continuum of membranes ; ii) continuous ex-
change between cytosolic and membrane bound pools ; iii) directional motion on
membrane transport intermediates. In the sequence, the Rab6A proteins appear as
bright spots when associated to small moving vesicles inside the living cell. The
large bright stable structure corresponds to the Golgi apparatus and the background
of the cell reveals its presence into the cytosol.

The estimation of the parameters of the generalized Anscombe transform is
illustrated in Fig. 9. The regression lines has been estimated to ̂Var[Y (x)] =

0.359 Ê[Y (x)] − 23.36. As shown in Fig. 9(b), once stabilized, the noise vari-
ance is 1.008. The results obtained with our denoising method (using 5 × 5 × 5
patches) are reported in Fig. 10(b). Again, we can notice that the noise has been
strongly reduced and that fine details like fluorescent particles are well preserved.
The computation time for the whole volume sequence is about 80min using a stan-
dard C++ implementation. Experiments on numerous volume sequences confirm
the ability of the proposed method to preserve space-time discontinuities.

4.4 Denoising and deconvolution

Wide-field deconvolution microscopy has been widely used this last twenty years
in cell biology [50, 51] as a regular tool for monitoring the living cell activity at
high spatial and temporal resolution. Compared to confocal like microscopy, it has
the advantage to be faster, because of the wide-field illumination, and more effi-
cient thanks to the absence of pinhole to reject photons and the highest quantum
efficiency of detectors. Out-of-focus information is used and computationally reas-
signed to its original place, therefore increasing contrast and signal-to-noise ratio.

INRIA



Patch-based fluorescence microscopy image sequence denoising 23

0

50

100

150

200

250

300

350

400

450

100 200 300 400 500 600 700 800

V
ar

[Y
]

E[Y ]

(a)

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

20 30 40 50 60 70 80 90

V
ar

[Y
]

E[Y ]

(b)

Figure 9: Noise variance stabilization for the real image sequence shown in Fig. 4.3.
Estimation of the local mean E[Y (x)] and local variance Var[Y (x)] (a) before stabilization
and (b) after stabilization.

It is known that the two main limitations of photonic microscopy are i) spatial res-
olution due to diffraction limit of optics and ii) the number of photons reaching
the detector to statistically form the diffraction limited image. In modern living
cell microscopy, the number of photons is decreased as much as possible in order
to reduce the radiation dose on the sample to keep the cell alive and to increase
the acquisition frame rate. The strongest limitation quickly resides in the limited
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(a)

(b)

Figure 10: Denoising of a wide-field microscopy image sequence of 50 volumes of size
696 × 520 × 6 voxels. The slice #3 of the original volume at time t = 20 is displayed in
(a) and the corresponding denoised volume is shown in (b) (logarithmic scale).

number of emitted photons reaching the detector to form an image that can later be
described. In addition, deconvolution algorithm efficiency is sensitive to the image
signal-to-noise ratio (SNR). The smaller the SNR is the less the algorithms are ca-
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Figure 11: A fixed Hela cell is acquired with five increasing exposure times. The first
row contains the maximum intensity projection along z direction of the 200 × 200 × 36
original images. The two last rows correspond respectively to results obtained with the
Gold-Meinel deconvolution algorithm [52] and its combination with the proposed patch-
based denoising.

pable to restore the relevant signal from the noise, up to not being able to make the
difference between noise and signal, resulting in artifacts.

In this section, we propose to combine the proposed denoising approach with
an iterative constrained Gold-Meinel deconvolution method [52] using a fixed bi-
ological sample. In the same fashion than in Section 4.2, we propose to compare
stacks acquired with several exposure times ranging from 10ms to 100ms to a ref-
erence image acquired with an exposure time of 200ms. Figure 11 shows the max-
imum intensity projection of the results. The intensity of original image shown
in the first raw ranges from 96 − 260 gray levels for the image acquired at 10ms
of exposure time to 124 − 3315 gray levels for the image acquired at 200ms of
exposure time. Figure 12 shows a zoomed area of an optical section and intensity
profiles along a microtubule. It illustrates that fine details are better preserved and
that the noise level is strongly reduced. Finally, mean squared errors, computed
on normalized images and displayed in Fig. 13, confirm that the deconvolution is
improved if the denoising is applied beforehand.
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Figure 12: Zoom of a single optical section extracted from data shown in Fig. 11 corre-
sponding to the two extreme exposure times. The colums correspond respectively to the
maximum intensity of the raw image, the results obtained with the Gold-Meinel deconvo-
lution algorithm [52] and its combination with the proposed patch-based denoising. Plots
show intensity profiles along a single microtubule for each image.
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Figure 13: The square root of the mean squared errors is plotted against exposure times
in the case of a fixed sample shown in Fig. 11. In one case the Gold-Meinel deconvolution
algorithm is applied directly to the original data while on the other case the proposed
denoising method is applied.

5 Conclusion

In this paper, we have first tackled the issue of modeling a 3D+time video-microscopy
image sequence. We have then proposed to use the generalized Anscombe trans-
form to stabilize the variance of the Poisson and Gaussian noise and we have
designed a fast and automatic method to estimate the involved parameters. We
have introduced a patch-based functional and we have shown that the fixed-point
solution yields an estimator involving image patches taken in a spatially-varying
neighborhood. The analysis of the bias-variance of this estimator enabled to prop-
erly select, for each point of the space-time domain, the optimal bandwidth within
a sequence of increasing bandwidths. Spatial and temporal dimensions are ad-
equately handled. The overall method involves a limited number of parameters
so that we do not have to tune them in practice. We have demonstrated that the
proposed method outperforms methods based on a Gaussian noise model or pro-
cessing the sequence volume by volume. Moreover, experiments on real image
sequences show that space-time discontinuities are well preserved without optical
flow computing. Finally, we have used the capability of the proposed algorithm to
efficiently denoise 3D images in order to use it as a preprocessing step prior decon-
volution. We have illustrated the efficiency of such a combination to restore low
signal-to-noise ratio images. This opens interesting perspectives for monitoring
biological samples at high temporal and spatial resolution, without increasing the
radiation dose. To conclude, we point out that the proposed method is not restricted
to video-microscopy, but could deal with other 2D+time as well as 3D+time noisy
image modalities, providing that an appropriate noise modeling is adopted. In
this respect, this “breaking sensitivity barrier” approach advantageously complete
“breaking resolution barrier” new optics [53].
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Appendix

The estimator ûi,n is usually decomposed as

ûn(x) = u(x) + bn(x) + νn(x), (36)

where the stochastic term ν(x) is assumed to be a Gaussian random variable with
variance υ2

n(x). The following inequality holds with a high probability if κ is large
enough

∃κ ∈]0,∞[ : |û(x) − u(x)| ≤ |bn(x)| + κυn(x). (37)

Furthermore, as soon as |bn(x)| ≤ γυn(x), we have

∃κ ∈]0,∞[ : |û(x) − u(x)| ≤ γυn(x) + κυn(x). (38)

The optimal bandwidth h∗(x) is such that

h∗(x) = sup
hn(x)∈H

{hn(x) : |ûn(x) − u(x)| ≤ (γ + κ)υn(x)}. (39)

This new inequality is weaker but still explicitly depends on the unknown function.
In order to define a practical stopping rule, we consider the following pairwise
comparison of successive estimates:

ûn(x) − ûn′(x) = (u(x) + bn(x) + νn(x))

−(u(x) + bn′(x) + νn′(x))

= bn(x) − bn′(x) + νn(x) − νn′(x).

It follows that the random variable ûn(x) − ûn′(x) is Gaussian distributed with
mean bn(x) − bn′(x) and variance Var[ûn(x) − ûn′(x)]. Moreover, we can prove
that Var[ûn(x) − ûn′(x)] ≤ υ2

n′(x) knowing that two estimates ûn(x) and ûn′(x)
and not independent. Hence,

|ûn′(x)−ûn(x)|≤ |bn′(x)−bn(x)+κ(Var[ûn′(x)−ûn(x)])1/2|
≤ |bn′(x)−bn(x)| + κυn′(x)

≤ |bn′(x)| + |bn(x)| + κυn′(x) .

While |bn(x)| ≤ γυn(x), we have

|ûn′(x) − ûn(x)| ≤ γυn′(x) + γυn(x) + κυn′(x)

≤ (2γ + κ)υn′(x).

because υn′(x) > υn(x) for all n′ < n. From this inequality, we can get the
following rule:

h∗(x) = sup
hn(x)∈H

{n′ < n : |ûn(x) − ûn′(x)| ≤ (2γ + κ)υn′(x)}. (40)
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This practical rule can be computed since it depends on successive estimates and
variances. Finally, we note that % = 2γ + κ and we get

h∗(x) = sup
hn(x)∈H

{n′ < n : |ûn(x) − ûn′(x)| ≤ %υn′(x)}. (41)

We can further prove that the risk of the estimator (see [54]) is proportional to the
risk of the optimal estimator:

E
[
(û(x) − u(x))2

]
1h∗(x)≤h(x) ≤

(
2γ + κ√
1 + γ2

+ 1

)2

R(u∗(x), u(x)).
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