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ABSTRACT
GFP-tagging and time-lapse fluorescence microscopy can be
considered as investigation tools to observe molecular dy-
namics and interactions in live cells at both the microscopic
and nanoscopic scales. Consequently, it is imperative to de-
velop novel image analysis techniques able to quantify dy-
namics of biological processes observed in such image se-
quences. This motivates our present research effort which
is to develop novel methods to extract information from nD
data. In trafficking analysis, object tracking using conven-
tional techniques can be very hard or impossible, especially
when more than one hundred small and poorly distinguishable
objects interact. However, determining the full trajectories of
all the objects are not needed to monitor the cell activity. In-
deed, estimating origin and destination regions of the objects
of interest may be more relevant. In this paper, we propose an
original approach to recover the origin and destination pairs
from traffic information. Thus, we propose to consider the
membrane trafficking as a road trafficking, and for the first
time we exploit the recent advances in Network Tomography
(NT) commonly used in network communication for biologi-
cal trafficking analysis. This idea is demonstrated on realistic
artificial image sequences for the Rab6 protein, a GTPase in-
volved in the regulation of intracellular membrane trafficking.

Index Terms— Tracking, fluorescence, biomedical mi-
croscopy, biomedical signal analysis, traffic control (trans-
portation).

1. INTRODUCTION

The Rab protein family (small GTPases - more than 60 in hu-
man cells) plays multiple roles through their association to
internal membranes. Each of the members of this Rab pro-
tein family exists under different dynamic states in the cell.
They exchange continuously between the cytosol and the tar-
get membrane, and are associated to transport intermediates
which are routed along the cytoskeleton network. Finally,
they may associate, most probably transitory, to the mem-
brane of destination, that is the acceptor compartment. Study-
ing the role of Rab proteins inside multiprotein complexes is
then fundamental to deeply understand the molecular mecha-
nisms responsible for membrane transport and for the main-

tenance of the integrity and global architecture of the cell, in
space and time.

As a biological model, we will focus on the particular
Rab6 protein involved in the regulation of different steps in
membrane trafficking. Typically, cells expressing GFP-Rab6
show vesicles heterogeneously moving along the microtubule
network, using molecular motors, from the Golgi Apparatus
to the Endoplasmic Reticulum. In general, the proteins are
embedded into vesicles which movements are assumed to be
dependent on microtubules. Quantifying membrane traffick-
ing that involves the movement of small transport vesicles
moving along polymers (microtubules-microfilaments) from
donor to acceptor compartments within the living cell is also
challenging for image analysis techniques.

Actually, no existing method can be easily adapted for
simultaneously and reliably tracking several hundred small
similar objects with variable velocities, and for generating in-
formation on partial or complete trajectories. Stochastic tem-
poral filtering methods that estimate trajectories of objects as
they move over time [1, 2] encounter difficulties when the
number of objects and clutter increases, as it is the case in
trafficking analysis observed in video-microscopy. Typically,
measurements from clutter and multiple objects puzzle track-
ing methods. It is then necessary to associate measurements
with the correct object, i.e., to solve the difficult data asso-
ciation problem [1]. So far, data association even combined
with sophisticated particle filtering techniques [2], connex-
ionist strategies [3] or network-theory based methods [4, 5]
are problematic to track several hundreds of similar objects.

A deterministic approach has also been investigated which
exploits the fact that vesicles are moving along the micro-
tubule network and thus follow the same paths [4]. The local-
ization of paths is given by the Maximum Intensity Projection
(MIP) map in the direction of time axis. The analysis of the
time intensity profile on the extracted paths is achieved by
using the so-called kymograms. The main drawback of the
kymogram-based method is that it cannot provide a global
analysis. Indeed, each path is independently supervised.

In this paper, we propose to partially solve the tracking
problem which is known to be complex in trafficking analy-
sis and biological applications. The idea is to construct and
use a network that mimics membrane trafficking and aims at



estimating the origin and destination vertices of the network.
This can be accomplished by only measuring the activity on
the graph edges corresponding to the paths, according to the
Network Tomography (NT) approach [6]. The NT-based ap-
proach, already applied in video surveillance [7, 8], would
simplify the tracking process because it only requires detec-
tion of an object as it moves from one region to another, and
avoids the difficult data association problem. Unlike [4, 5]
where objects are tracked over time using graph matching,
our idea is then to adapt the NT concept to the simulation and
to the estimation of trajectories of vesicles. It just requires to
count the number of vesicles that pass through each transition
of the network. We will demonstrate that this method is ap-
propriate to the investigation of membrane trafficking, in the
case of vesicles moving along a filamentous network.

2. NETWORK TOMOGRAPHY

In our application, the dynamic scene is formed by vesicles
moving along a dense microtubule set, that is a network of
interconnecting regions of interest (see Fig. 1). This network
can be described as a graph G (E, V ) composed of n vertices
and r edges, where E denotes the set of edges, and V the
set of vertices. A connection between two vertices is called a
path, and each path consists of one or more unidirectional or
bidirectional edges. In the NT-based approach, the measure-
ments are the number of objects detected as going from one
vertex to another vertex in the network. Based on these mea-
surements, the goal is to estimate how many vesicles coming
from an origin vertex go to a destination vertex along a path,
in the set of all possible origin-destination (OD) pairs in the
network, that is c = n(n− 1) OD pairs. This problem is then
similar to determine the source-destination trafficking based
on link measurements in computer networks [6]. In this ap-
proach, it is not necessary to track an object through a dy-
namic scene, but just to determine when an object reaches a
vertex, which is generally easier than estimating a continuous
trajectory.

More formally, let xj,t, j = 1, · · · , c be the number of
“transmitted” vesicles on the OD pair j at time t. The mea-
surements yt = (y1,t, . . . , yr,t)T are the number of vesi-
cles that pass from one vertex to another vertex at time t.
The inherent randomness of the measurements motivates the
adoption of a statistical approach. Typically, we reasonably
assume that the traffic is temporally distributed as a Pois-
son process, xj,t ∼ Poisson(λj). In this traffic flow prob-
lem, we then assume the following model yt = Axt, where
xt = (x1,t, . . . , xc,t)T , and A denotes a r × c routing matrix
which binary elements aij = 1 if edge i is in the path for the
OD pair j, and 0 otherwise.

Numerically, the number c is greater than r, and the prob-
lem is then ill-posed. Additional constraints are necessary for
solving the inverse problem. Vardi [6] proposed to introduce
constraints related to the assumption that the traffic is tem-

porally Poisson distributed. The NT method amounts then to
estimating the values λj given the additional set of equations
corresponding to temporal averages:

yi =
c∑

k=1

ai,kλk, i = 1, . . . , r,

cov (yi, yi′) =
c∑

k=1

ai,kai′,kλk, 1 ≤ i ≤ i′ ≤ r.

This set of equations gives a system of r (r + 3) /2 linear
equations that forms an over-constrained problem that can be
better solved with the conditions λi ≥ 0. Moreover, in this
application, the aim is not to obtain the number of vesicles
that utilize each path, but to estimate the proportions of vesi-
cles on each path. Hence, unlike previous methods [6, 7, 8],
we impose the condition

∑c
i=1 λi = 1 as an additional con-

straint, that will greatly improve the results. The previous
system can be written more compactly as(

y
s

)
=

(
A
B

)
Λ, (1)

where Λ = (λ1, . . . , λc)T contains the mean of the traf-
fic flow, s = {cov(yi, yi′)} is the sample covariance ma-
trix rewritten as a vector of length r (r + 1) /2, and B is an
(r (r + 1) /2) ×c matrix with the (i, i′)th row of B being the
element-wise product of row i and row i′ of the matrix A.

The system can be solved using the estimation-maximiza-
tion (EM) method [6, 7] or the convex-projection algorithms
[8]. In our case, we adapt a non negative mean square esti-
mation which also provides a simple and reliable way to esti-
mate the origin-destination traffic Λ̂. In the implementation,
our method is then based on the lsqnonlin function from the
Matlab Optimization toolbox. Note that a review of existing
methods is also proposed in [9].

In order to demonstrate the performance of this approach,
we have designed realistic simulations. In the next section,
we describe the “generator” used for these simulations of flu-
orescence image sequences based on the NT framework.

3. NETWORK TOMOGRAPHY-BASED IMAGE
SEQUENCE MODELING

For the applicability and performance evaluation of the NT-
based approach for trafficking analysis, we designed a gener-
ator able to mimic dynamics related to the GFP-Rab6 expres-
sion [10, 11]. Typically, the moving tagged vesicles observed
with fast 4D deconvolution microscopy (wide-field) [4] look
like small bright blobs in real image sequences. The vesicle
diameters (from 60 nm to 150 nm) are often below the reso-
lution of the microscope (about 130× 130× 300 nm). How-
ever, the point spread function of the video-microscope makes
them appear as larger structures even if a deconvolution pro-
cess [12] is applied. Furthermore, when the object density
increases, vesicles gather together and constitute small rods.



The vesicles move along microtubules propelled by two
classes of molecular motors (dynein and kinein proteins), as-
sociated to microtubules. It has been shown that the concen-
tration of these molecular motors influences the structure and
the dynamics of the microtubule network. In stable condi-
tions, the regime of these motors is assumed to be constant.
This explains why the observed velocity of vesicles seems
constant if they move along the same microtubule. The gen-
erator we propose is based on this description and on the NT
concept explained in the previous section.

3.1. Models for geometry and appearance
In 2D image sequences expressing GFP-Rab6, the vesicles
can be represented by 2D anisotropic Gaussian blobs with
variances related to the blob size ranging from 60 nm to 150
nm, that is close to the pixel size. The major axis of the ellipse
is aligned with the direction of the movement of vesicles, also
given by the spatial orientation of microtubules. We impose
that the anisotropy is higher for vesicles with high velocities.
This modeling based on oriented anisotropic Gaussian blobs
is able to describe the main dynamical components seen in
real images, included small rods with variable lengths cor-
responding to “trains” of nearby vesicles moving along the
same microtubule, and probably with the same velocity.

3.2. NT-based model for dynamics
Network modeling In order to generate synthetic but realis-
tic microtubule networks, we exploit real fluorescence image
sequences showing only moving tagged vesicles. In general,
direct GFP-tagged microtubule networks are very complex
for image analysis methods and experts, and individual mi-
crotubules cannot be easily extracted. However, a set of sig-
nificant microtubules in the network can be computed from
a maximum intensity projection (MIP) map in the direction
of time axis. Fig. 1 contains the MIP map obtained from a
sequence of 300 images. The bright paths are generated by
tagged vesicles from frame to frame, and give an insight of
the microtubule network under concern.

However, as shown in Fig. 1, all the paths are not com-
pletely defined in the MIP maps, especially if the sequence
duration is too short. In our application, the gaps are manu-
ally completed by using a “painting” software. Furthermore,
the locations of the selected curves are estimated using the un-
biased line detection algorithm [13] applied to the MIP map,
and are called roads. Finally, each road is defined by a list
of points, and each point of this list is parameterized by the
width of the road, and its orientation (see Fig. 1). From the set
of roads, the intersections are easily found and defined as ver-
tices. Furthermore, each road given by the line detection algo-
rithm is associated to a couple of edges and the bi-directional
graph G(E, V ) is then fully defined.

Selection of origin/destination vertices In the proposed sim-
ulation, once the network has been computed, the biologist
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Fig. 1. Representation of a reasonable synthetic network from the MIP map. Left:
MIP map computed from an image sequence. The paths used by the vesicles appear as
bright filaments; right: the network after manual simplifications, is composed of 146
vertices and 160 bi-directional roads, which correspond to 320 directional edges in the
graph associated to the network. The origin vertices are labeled in green, while the
destination vertices are labeled in red.

has to specify the origin (e.g., donor organelle) and destina-
tion (e.g., acceptor organelle) vertices on the network, that
corresponds to the OD pairs Λ in Section 2. The other ver-
tices represent the intersection points of the network and are
only used for the routing. These labels are assumed to be
biologically motivated locations, like the Golgi Apparatus or
some endpoints in the case of the Rab6 analysis [14].

In Fig. 1, the origin vertices corresponding to the mem-
brane of the Golgi apparatus are manually selected and la-
beled in green, while the destination vertices labeled in red
correspond to endpoints. In this example, vesicles are im-
posed only to go from the Golgi to the endpoints located at
the periphery of the cell.

In our approach, we assume that the paths are defined as
the minimal paths between the origin and the destination ver-
tices. They are computed using the Dijkstra [15] algorithm
on the graph G(E, V ), that yields the routing matrix A. In
that case, the weight associated to each edge of E can be de-
fined as a function of the length of the corresponding road, but
other features (e.g., velocity, congestion in trafficking) could
be also used. During the simulation, an OD pair is selected
for each vesicle according to a multinomial law of parameters
Λ.

Finally, the obtained simulation show vesicles moving along
the estimated roads with a distance proportional to the ve-
locity associated to the roads, following the shortest path be-
tween origins and destinations.

4. EXPERIMENTAL RESULTS

We propose two experiments to analyze the NT estimation
method. They are reported in Fig. 2. In the first row, we
have displayed the networks with the origin vertices labeled
in green and the destination vertices labeled in red. The sec-
ond row shows a frame of the corresponding simulated image
sequences where we can distinguish the vesicles appearing
as white blobs. Finally, in the last row, the blue circles cor-
respond to the results of the estimation procedure obtained
with the lsqnonlin function, while the red crosses represent
the ground truth Λ.

In the first experiment, we have considered a simple star-
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Fig. 2. Experiments. Fisrt column: star-shaped network with n = 10 vertices,
p = 90 OD pairs. Simulation of 1000 images containing 10 moving vesicles. Second
column: network that mimics real data with n = 23 vertices, p = 506 OD pairs.
Simulation of 1000 images containing 75 moving vesicles. First row: networks with
origin vertices in green, and destination vertices in red. Second row: frames of the
corresponding simulated image sequences. Third row: estimation of the traffic flow
with the NT-based approach (blue circles), and ground truth (red crosses).

shaped network with n = 10 vertices, and 4 OD pairs were
selected among the p = 90 possible OD pairs. A sequence of
1000 images 126× 100 pixels containing 10 moving vesicles
was simulated. We can see on the right column in Fig. 2 that
the estimation Λ̂ is close to the ground truth (MSE = E[(Λ−
Λ̂)2] ' 10−6).

The second experiment is more complex, and the network
is composed of n = 23 vertices. In this experiment, a se-
quence of 1000 images 360 × 455 pixels containing 75 vesi-
cles was simulated, and 16 origin-destination pairs were se-
lected among p = 506. In that case, it has to be noted that
the estimated OD pairs correspond to the OD pairs effectively
followed by the vesicles, even if the proportions of vesicles on
each path are not accurately estimated (MSE ' 6.2× 10−7).

5. CONCLUSION

We have demonstrated the potential of Network Tomogra-
phy for trafficking simulation and analysis in fluorescence mi-
croscopy imaging. The applicability of NT-based approach is
two-fold: i) the concept has been used to generate dynamics
in fluorescence image sequences that mimic real data where
particles are moving along microtubule networks. If well de-
signed, the NT-based simulation is also a way to define a com-

putational model that can explain trafficking; ii) the estima-
tion scheme allows us to infer information about the global
status of the traffic from local count measurements. The data
association problem which is too difficult to be solved by
tracking algorithms is then potentially alleviated. The advan-
tage of testing the NT-based approach on simulations is that a
certain number of features can be controlled like the number
of vesicles moving on the microtubule network, their veloci-
ties, or the graph topology. It is worth noting that this frame-
work can be used to evaluate the performance of already de-
velopped object detection techniques as usually used in video-
microscopy. For future research, it will be necessary to find
a fully automatic technique to extract the network from real
sequences for high-throughput experiments, and to evaluate
the robustness of the NT estimation method with respect to
object detection errors when applied to real image sequences.
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