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Abstract

This thesis puts forth graphical models for visual tracking in low and higher

dimensional state spaces. For low dimensional tracking problems, such as

object position tracking, a novel message switching/combination idea is in-

troduced. Based on this concept and a new pseudo simulation viewpoint

of point trackers a novel randomized feature point filter is developed. The

message switching/combination ideas are then extended to construct multi-

cue fusion based tracking with a set of simulation based filters. Employing

pseudo simulation based point trackers and color based particle filters as

their elementary filters these multi-cue fusion schemes track general objects

in complex scenarios.

Moving to higher dimensions, general multi-part tracking schemes are in-

troduced. A network of local patch trackers are put to play in a stochastic

simulation framework to track the position and other attributes of arbitrary

objects. The difficult task of updating the process prior online is also per-

formed under this simulation framework. Dealing with online update of the

process prior enlarges the scope of application of the multi-part tracking

model. A simple interactive multi-part tracking scheme is also discussed in

this context.

To the extent permitted by practicality, the contributions are evaluated

quantitatively and/or qualitatively to convince the reader of their novelty,

improvements and/or robustness. Detailed discussions of the highlights and

drawbacks of the models are presented. Prospective extensions of the mod-

els based on empirical arguments and reflections on design are included.
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1

General Introduction

1.1 Visual Tracking

Visual tracking is the problem of exploiting space-time consistencies of object motion

and evolution to continuously determine the ”state” of an object with additional aid

from measurements extracted from a sequence of images capturing the object. The

state could be the position with respect to some reference, size changes with respect to

some initial known size, its three dimensional (3D) position or even a precise delineation

of its contours. Wading through the vast literature on visual tracking, one cannot help

but question the relevance and state of the art of this problem. From a system point

of view, it is often argued that visual tracking is not a necessary part of a vision based

system for video analysis. For instance, in a motion capture system, it can be argued

that a tracking module may, in principle, be eliminated and replaced by a successive

body pose detector module supported by a large computational power. Saying this, it

would be an enormous waste to let go very useful kinematical cues of general objects

for the very same task, which if benefitted from, can save a lot of computational power.

So a visual tracker could intervene and save on the expensive task of independent suc-

cessive analysis.

From a methodical or algorithmic point of view the developments in visual tracking

frameworks have had considerable impact on several other problems in computational

vision, notably the resurgence of Sequential Monte Carlo methods, which are now per-

vasive in problems like image and video segmentation. Active contours are another

striking example. Likewise visual tracking has also borrowed considerably from de-

velopments in other vision related research or external fields and amalgamated them

1



2 1. GENERAL INTRODUCTION

to help serve the need for a sophisticated unobtrusive visual analysis tool. It is be-

coming increasingly common to employ visual tracking as an indispensable low level

visual analysis tool for digital cinema post production tasks like color correction, Hu-

man Computer Interfaces for video game control, determining human body poses from

video sequences for augmented virtual reality applications and to create graphic rein-

carnations (avatars), all at a small cost. Its implications in the area of security and

surveillance are obvious. Therefore, to make a statement, visual tracking is now ubiq-

uitous and its relevance in computational vision cannot be over emphasized.

The state of the art in visual tracking methods and systems is difficult to summarize

over a few words. Over the years, beginning from the problem of point tracking it has

diversified into several distinct paths of research. In the current day visual tracking

includes problems like tracking positions of regions or objects, three dimensional poses

of objects and humans, precise delineation of contours of deformable objects and spe-

cial motion fields created by atmospheric flow or fluids. Each of these problems present

a considerable challenge for research and even though there have been numerous at-

tempts to meet these challenges, there remain several shortcomings which are driving

current research. A more detailed overview of literature in these directions is presented

in chapter 2 to give the reader a flavour of the problems involved and the outstanding

frameworks which have been developed to tackle them.

1.2 Context and Contributions

The context in which this work was carried out was partly industrial and partly aca-

demic. At conception, the idea was to manouevre the research towards serving the

needs of the digital cinema post production industry, the television broadcast produc-

tion industry and for applications in retail networks. On hindsight, the contributions

from this thesis can be justly regarded as serving the broad needs of the applications

in these domains and even extending beyond the expected borders. The contributions

from this thesis to visual tracking is briefly enumerated below.

1. Probabilistic fusion of point trackers

The correlation based point tracking technique is presented as a pseudo simulation

filter with a view to incorporate it in a Bayesian framework. Based on this

model of point tracking, a message switching/combination scheme is introduced

for probabilistic inference. Then on, a graphical model for the fusion of multiple
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point trackers using message switching is presented and a novel tracker, termed

the randomized feature point tracker, is derived from it. This tracker, constructed

from a set of point trackers behaves like a simulation filter propagating abitrary

filtering distributions.

2. Probabilistic graphical models for message switching

A probabilistic graphical model is put forth for multi-cue fusion based tracking.

On this model, the filtering distribution of the tracked state is approximated by

choosing between incoming messages from one of several tracking nodes. The

choice of which message is appropriate for arriving at the filtering distribution

can be controlled by external parameters. More generally this model can also be

used to linearly combine messages from multiple tracking nodes, with the combi-

nation weights determined a posteriori.

To demonstrate the benefits of such a model, a novel multi-cue tracker is de-

veloped, which is capable of tracking generic objects like faces and vehicles in

unconstrained environments. Specifically, a color based particle filter and a set of

randomized feature point trackers are the elements used to make the probabilistic

machinery work. The superiority of this tracker is adjudged by a test with several

standard trackers in literature.

3. Probabilistic graphical model for multi-part object tracking

Moving into a higher state space dimension, a Gaussian Markov Random Field

(GMRF) model is utilised for tracking an arbitrary shaped spatial layout imposed

on an object with multiple local patch trackers. The motivation for such tracking

is to digress from rectangular box, ellipse or standard geometrical shape tracking

and track moderately deformable layouts which can be used to deliver rough cut-

outs of objects or produce a seed for batch based video segmentation. Another

aspect in favour of multi-part layout tracking is that some parts can be updated

or replaced online to act as an adaptation of the appearance model of the whole

target.

In numerous applications involving visual tracking some small user aid goes a

long way in creating useful tracks. The proposed multi-part layout tracking is

now leveraged in an interactive setup. The user is allowed to control the prior

on the MRF model, which in intuitive terms simply determines how much the

layout structure is allowed to change. It is quite difficult to establish priors

on generic objects and layouts especially in the presence of strong motions in
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three dimensions and scaling. Therefore, banking on a reasonable and intuitive

interactive effort for adapting the prior is shown to be particularly efficient.

1.3 Organization of the manuscript

A taxonomic overview of the state of the art is provided in chapter 2. Under each genre,

leading methods and frameworks, which have influenced numerous other methods are

briefly discussed along with references to very recent propositions. Next, Chapter 3 pro-

vides an introduction to the probabilistic inference problem with detailed discussions

on the elementary components. Readers unfamiliar with probabilistic inference con-

cepts are advised to read through this introduction before moving on to other chapters.

Chapter 4 is dedicated to probabilistic models for point tracking, in particular, models

for single point tracking and concerted tracking with multiple points. Probabilistic

graphical models for message switching/combination is then introduced. Subsequently,

the novel randomized feature point tracker (RFT-filter) is derived and experimented

with. The construction of a novel multi-cue fusion tracker based on the message switch-

ing/combination model is dealt with in detail in chapter 5. Results of qualitative and

quantitative experiments are presented along with discussions on the pros and cons of

the propositions. Multi-part geometric layout based tracking is introduced in chapter

6 with relevant probabilistic models and accompanying vision based elements used to

put the probabilistic machinery to work. Sample results and detailed discussions of

the advantages and drawbacks of the proposed algorithm are discussed. The case for

interactive multi-part tracking with local patches and color models is then presented.

The elements of user interaction are introduced. The results of interactive tracking are

displayed and prospects arising from this technique is then discussed. General conclu-

sions of the thesis are drawn in Chapter 7. Some prospective extensions of the graphical

models are discussed in Chapter 8.

At the beginning of each chapter a focussed literature review pertinent to the contents

of that chapter is presented. A recapitulative summary of the salient points discussed

in the chapter and, where appropriate, motivation for the future chapters are also pro-

vided. To avoid frequent digression from the essence of the discussion appendices are

provided to revise standard results and elucidate tangential points.



2

Overview of the literature

2.1 The nature of tracking algorithms

The key point which springs to mind about visual tracking algorithms is their non-

universality, that is to say, there is no one tracking method which is currently able

to track in high dimensional spaces (contours or articulated bodies for instance) very

accurately over very long durations in unconstrained environments. It is becoming

increasingly clear that a method capable of achieving this goal would be a technique

incorporating several heterogeneous noisy measurements and multiple kinematic priors

to deliver accurate tracks over long durations. In the process such a technique would

ideally overcome difficult challenges like, dealing with noisy measurements, appearance

changes of the target, partial and complete occlusions. This is indeed a difficult goal,

nevertheless, the entire corpus of research in visual tracking is marching along in search

of this goal. Meanwhile the vast body of existing literature ramifies into several tech-

niques depending on the capabilities of the techniques, their view point of the tracking

problem, the nature of their measurements and the characteristics of the application

scenario for which they are designed. In tune with this fact, the review of the state

of art is based on a taxonomical classification of the existing techniques. It is insisted

beforehand that such a classification, although describing several important genres un-

der which tracking algorithms can be classified, is by no means all encompassing. It

would not be entirely incorrect to say the taxonomy is based on the subjective view

of its author. Finally, this chapter provides only an overview of salient techniques in

literature. The reader is provided with a more detailed review of salient techniques at

relevant points in the forthcoming chapters.

5
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2.2 Taxonomy of visual tracking

Visual tracking techniques may be broadly classified under one of the following genres.

2.2.1 Dimensionality of the state space

1. Point tracking

Point tracking is a misnomer, it is usually a small patch of image around a spec-

ified point which is tracked. Nevertheless, overlooking the terminology, tracking

the position of a point in a video sequence is one of the most fundamental low di-

mensional state space tracking problems. This is sometimes referred to as feature

or feature point tracking. The early Kanade-Lucas-Tomasi (KLT) point tracker

of [Tomasi and Kanade, 1991] is now a classic. The authors [J.Shi and C.Tomasi,

1994] propose not only a method for feature point tracking but in addition, tech-

niques to select ”good” features to track and monitor the quality of feature point

tracking. Tracking is posed as an optimization problem to derive optimal motion

model parameters. The cost J(A, d) as a function of the affine motion parameters

A and displacement d of a feature is taken as follows.

J (A, d) =
∫ ∫

x∈W

[
In+1 (Ax+ d)− In (x)

]2
w (x) dx, (2.2.1)

where In, In+1 are consecutive images and w (x) is a weighting function used

to emphasize the central area inside the feature window W . d = [dx, dy]. A is

defined below.

A =
[
dxx dxy

dyx dyy

]
(2.2.2)

The task now is to minimize the above cost function to retrieve the optimal motion

model parameters A, d. Using a first order Taylor expansion around point x of

In+1 (Ax+ d), the optimization problem is reduced to solving a linear equation,

Tz = a, (2.2.3)

with z = [dxx, dyx, dxy, dyy, dx, dy] collecting the elements of the affine model and

displacement vector. T and a turn out to be functions of the local image gradients.

This equation is used as a basis to define what are optimal or good features to

track. By construction, good features are defined as those for which the above

equation can be reliably solved, which in turn implies the 2×2 matrix T must be

non-singular (non-zero eigen values) and well-conditioned (the eigen values do not
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differ greatly in magnitude). Thus the condition for a feature to qualify as a good

feature is that the minimum of the two eigen values must exceed a predefined

threshold. The cumulative cost
∑

i=0:n Ji (A, d) is shown to be useful to monitor

the quality of track of a feature. If the increase in cumulative cost is not drastic

then the track (and thereby the feature) is good. Experiments indicate that a

displacement model alone is useful to track features from one frame to the next,

but when the quality of track (feature) needs to be measured then an affine model

is seen to be more useful (matching feature points between distant frames). The

other standard feature point tracking method is the normalized cross-correlation

[J.P.Lewis, 1995], closely related to sum of squared differences (SSD) [Nickels and

Hutchinson, 2002] based approach. The idea follows from the following sum of

squared differences equation.

d2 (u, v) =
∑
x,y

[
f (x, y)− t (x− u, y − v)

]2
. (2.2.4)

=
∑
x,y

f (x, y)2 +
∑
x,y

t (x− u, y − v)2 − 2
∑
x,y

f (x, y) t (x− u, y − v) ,

(2.2.5)

where in the above, the feature point template t is moved to a position u, v on the

image grid and the summation is done over the support of this template window

positioned at u, v. The energy of the template is constant and if the energy of

the image
∑

x,y f (x, y)2 is assumed to be constant, then the cross-correlation

term
∑

x,y f (x, y) t (x− u, y − v) can be used as a measure of similarity between

the feature template and test templates in the image. But in reality, the image

energy varies over position, therefore, normalized cross correlation is necessary.

The normalized cross-correlation coefficient, as a measure of similarity, is defined

as shown below.

γu,v =

∑
x,y

[
f (x, y)− f̄ (u, v)

][
t (x− u, y − v)− t̄

]√∑
x,y

[
f (x, y)− f̄ (u, v)

]2[
t (x− u, y − v)− t̄ (u, v)

]2 , (2.2.6)

where f̄ (u, v) is the mean of the image region under the template positioned at

u, v and t̄ is the mean of the feature template. It is the general view that using this

coefficient is robust to illumination variations due to the zero-meaning operation.

However, it is affected by affine or more general motion transformations. Recent

work on feature point tracking include batch based point tracking by combining

local search guided by a global motion prior of [Buchanan and Fitzgibbon, 2007].
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A set of feature N points are selected and tracked over M frames. Each feature

point track is a vector of 2M position elements. These vectors are arranged

columwise to produce a 2M ×N motion matrix. It is assumed that this matrix

has a rank R. Using a RANSAC procedure [Buchanan and Fitzgibbon, 2007],

the best basis for this matrix (with rank R) is constructed. This basis is used

to define an order M Markov chain motion prior with a Gaussian transition

distribution. Given frame M+1, a Gaussian predictive distribution is constructed

as in a Kalman Filter. This predictive distribution is multiplied with a Gaussian

likelihood (defined using template SSD differences) to arrive at the posterior of

the feature point. When all the feature point tracks reach frame M+1 the motion

matrix is recomputed using the frame M+1 and the preceeding M−1 frames and

the whole process repeated again. The highlight of their work lies in exploiting

a global motion model constructed using tracks of distributed feature points to

constrain the search for the new location of feature points. This decreases errors

in the tracks due to clutter. Other recent and related work include tracking

a bunch [Rosenberg and Werman, 1997; Badrinarayanan et al., 2007a; Grabner

et al., 2007] or flock of feature points [Kolsch and Turk, 2004] to track larger

and semantically significant objects. More discussions and analysis follow in the

forthcoming chapter 4 dealing with probabilistic interpretations of point tracking.

2. Region tracking

Tracking the position, scale and orientation of a region or a semantic object in

a video sequence is by far the most common tracking problem of all. Although

the state space is of low dimension, in the order of two to four dimensions, the

problem is far from easy and to this day remains an active research problem.

Looking back over the years, several approaches have been proposed to tackle

this problem. These follow one of the two frameworks described below.

(a) Simulation based methods

Renowed among them is the CONDENSATION framework of [Isard and

Blake, 1996], which casts the tracking problem in a Bayesian filtering frame-

work [Doucet et al., 2001]. Without delving too deep into the details of their

method (as forthcoming chapters discuss them in fair amount of detail), the

main goal of Bayesian filtering is to evaluate the posterior density of the n

dimensional state x0:n (trajectory) given a set of measurements y1:n. Invok-

ing the Bayes theorem [Papoulis and Pillai, 2002], this posterior distribution
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can be expressed as follows.

p
(
x0:n|y1:n

)
= p
(
y1:n|x0:n

)
p
(
x0:n

)
. (2.2.7)

Given a state space model, for instance,

xn = xn−1 + σ2N (0, I2×2) , (2.2.8)

yn = f (xn) + η(.), (2.2.9)

where the hidden states x1:n follow a first order Markov Chain model with

parameter A, corrupted by Gaussian noise of variance magnitude σ2. The

measurement yn is a non-linear function of the corresponding hidden state

xn, corrupted by noise process η(.) whose statistics are generally unknown.

The aim then is to compute the posterior distribution given the measure-

ments. Under simplifying assumptions that measurements are conditionally

independent of each other given the state process, one arrives at the following

from Eqn. 2.2.7.

p
(
x0:n|y1:n

)
=

p
(
yn|xn

)
p
(
xn|xn−1

)
p
(
x0:n−1|y1:n−1

)∫
p
(
yn|xn

)
p
(
xn|xn−1

)
p
(
x0:n−1|y1:n−1

)
dx0:n

. (2.2.10)

In general it is difficult to analytically evaluate the integral in the denom-

inator as the conditional distribution of the measurements cannot be ex-

pressed in a convenient closed form due to the non-linearities governing the

measurement process. Therefore, recourse is taken to statistical sampling

methods like factored or importance sampling, Gibbs sampling or Markov

Chain Monte Carlo sampling [Doucet et al., 2001] for estimating the pos-

terior distribution. [Isard and Blake, 1996] choose importance sampling.

To this end, one looks for an importance sampling distribution or proposal

q
(
x0:n|y1:n

)
from which sample trajectories xi

0:n, i = 1 : N can be easily

drawn and assigned weights in such a way that the weighted sample set can

approximate the posterior distribution. Ideally this distribution must be

close to the posterior and have a support covering the support of the pos-

terior [Arulampalam et al., 2002]. Say, at instant n − 1 a weighted sample

set
{
xi

0:n−1, w
i
n−1

}
, i = 1 : N approximating the posterior at that instant is

available. If the proposal is factorized as shown below,

q
(
x0:n|y1:n

)
= q
(
xn|xn−1, yn

)
q
(
x0:n−1|y1:n−1

)
, (2.2.11)



10 2. OVERVIEW OF THE LITERATURE

then the sample trajectories can be augmented with samples of the state at

instant n as xi
n ∼ q

(
xn|xi

n−1, yn

)
. Following which, the importance weights

can be recursively updated as shown below [Arulampalam et al., 2002] (also

see Chapter 3).

wi
n = wi

n−1

p
(
yn|xi

n

)
p
(
xi

n|xi
n−1

)
q
(
xi

n|xi
n−1, yn

) , i = 1 : N. (2.2.12)

From the theory of importance sampling, the new sample set approximates

the posterior at instant n as:

p
(
x0:n|y1:n

)
=

1∑
i=1:N wi

n

∑
i=1:N

wi
nδxi

0:n

(
x0:n

)
. (2.2.13)

A convenient, sub optimal, but ubiquitous choice for the proposal is the prior

distibution p
(
x0:n

)
itself.

In filtering literature, the preceeding description is known popularly as the

condensation filter or particle filter [Doucet et al., 2000; 2001]. This frame-

work has spawned several key advancements over the years including the

mixed-state condensation tracker of [Isard and Blake, 1998] for tracking

objects displaying sudden and drastic motion, the auxiliary particle fil-

ters of [Pitt and Shephard, 1999], the unscented auxiliary particle filters

of [van der Merwe et al., 2000], color based particle filters of [Perez et al.,

2002; K.Nummiaro et al., 2003], a multi-modal approach fusing color and

stereo sound/motion of [Perez et al., 2004], to the more recent approaches

of tracking in low frame rate video by [Li et al., 2007] and the multi-cue

tracking proposed in this thesis [Badrinarayanan et al., 2007b].

Although superior to the classical Kalman Filter [Kalman, 1960; Welch and

Bishop, 2001], its variants including the Extended Kalman Filter (EKF)

based on linearization of the state space models [Julier and Uhlmann, 1997]

and the Unscented Kalman Filter (UKF) based on propagating second or-

der statistics of the posterior using sigma-points [Wan and van der Menve,

2000], in view of its ability to propagate non-Gaussian and multi-modal den-

sities, the particle filtering approach is not completely free from ailments.

This density propagation scheme relies on importance sampling to result

in a weighted sample based approximation of the posterior density. When

a finite number of samples are used, in order to restrict the computational

complexity, the density propagation is highly dependent on the quality of the
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importance sampling distribution. In that reagrd, the optimal choice of im-

portance density is difficult to obtain [Arulampalam et al., 2002]. Therefore,

adhoc choices dictated by, the computational power in hand, the expected

nature, and range of motion of the targets are adhered to. Therefore, any

misjudgement in the choice of the importance sampling density can lead to

undesirable results. As remarked earlier, the general tendency is to choose

any prior on the target motion as the importance sampling density for ease of

implemenation. Unfortunately such a choice is far too simplified to accomo-

date all sorts of realistic scenarios. In summary, the general particle filtering

approach is burdened by these practicalities, but nevertheless remains an

important one.

(b) Kernel based methods

The principle among this branch of methods is to employ smoothly varying

kernel functions, possessing properties of convexity and differentiability, for

density gradient estimation. For example, if
{
x1, . . . , xn

}
are data points in

a d dimensional Euclidean space Rd, the kernel density estimate at point x

with a kernel K
(
x
)

of window radius h is given as follows.

f̂
(
x
)

=
1
nhd

∑
i=1:n

K

(
x− xi

h

)
. (2.2.14)

Now, if the kernel is so chosen that it is differentiable, then,

5̂f
(
x
)
≡ 5f̂

(
x
)

=
1
nhd

∑
i=1:n

5K

(
x− xi

h

)
, (2.2.15)

which implies the estimate of the gradient of the density function can be

derived from the gradient of the kernel density estimate. As a choice for the

kernel, the Epanechnikov kernel [Comaniciu and Meer, 1999] shown below

is frequently called upon.

KE =


1

2cd

(
d+ 2

)(
1− xTx

)
, ifxTx < 1

0, otherwise,
(2.2.16)

where cd is the volume of the d dimensional unit sphere. With this kernel,
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the gradient estimate is derived as shown below.

5f̂
(
x
)

=
1

nhdcd

d+ 2
h2

∑
xi∈Sh

{
x
}[xi − x

]
(2.2.17)

=
nx

nhdcd

d+ 2
h2

(
1
nx

∑
xi∈Sh{x}

[
xi − x

])
, (2.2.18)

where Sh

{
x
}

is a hyper sphere of radius h and volume hdcd containing nx

data points. The term in the brackets is known as the sample mean shift

Mh

(
x
)
. The factor

nx

nhdcd
is regarded as the kernel density estimate f̂

(
x
)

at point x with an uniform kernel. Therefore, the sample mean shift is a

function of the normalized density gradient estimate.

Mh

(
x
)

=
h2

d+ 2
5f̂
(
x
)

f̂
(
x
) . (2.2.19)

The sample mean shift vector above points in the direction of the increasing

density and thus can be used effectively for local ”mode seeking”. This

is the basis of all mean shift methods for tracking. An example is color

based object tracking using mean shift iterations [Fukunaga and Hostetler,

1975; Comaniciu et al., 2003] for minimizing the distance measure between a

prototype kernel density estimate of the object color distribution and several

candidate color distributions in the incoming images. Given an image of the

object, centered at point x, a prototype color distribution or color model of

the object is first constructed as follows.

q̂
(
u
)

= C
∑

xi,i=1:n

K

(
x− xi

h

)
δ
(
b
[
xi

]
− u
)
, u = 1 : M, (2.2.20)

where q̂
(
u
)

represents the probability of color u, C is a normalization con-

stant and b
[
xi

]
maps the color at spatial point xi to the quantized color

space. The shape of the kernel determines how to weigh the contributions

of each spatial point towards the construction of the color model. In a new

frame of the video sequence, if tracking is initialised at some point y0, then

a color distribution py0

(
u
)

is constructed at that point. The similarity be-

tween any two non parametric distributions q, py can be measured by the

following distance measure [Comaniciu et al., 2003].

ρ
(
q, py

)
=

√
1−

∑
u=1:M

√
q
(
u
)
py

(
u
)
, (2.2.21)
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where ρ is the Bhattacharya coefficient (see [Comaniciu et al., 2000]). At

some point y around y0, the above distance measure can be appoximated by

a first order Taylor expansion.

ρ
(
q, py

)
≈ T

(
y0

)
+ C

′ ∑
xi,i=1:n

wiK

(
y − xi

h

)
, (2.2.22)

where T
(
y0

)
represents the term without y, C

′
is a position independent

normalization factor and,

wi =
∑

u=1:M

δ
(
b
[
xi

]
− u
)√ q

(
u
)

py0

(
u
) , (2.2.23)

is a weighting factor. Now, minimization of the distance measure implies

minimizing the second term, which is of the form of a kernel density estimate.

Therefore, the mean shift iterations can be used to effectively solve this local

mode seeking (optimization) problem. The authors [Comaniciu et al., 2000]

also propose a solution for automatically varying the kernel bandwith h and

determining the scale of the target in [Comaniciu et al., 2001].

Apart from the density gradient estimation problem, kernel based methods

have also found a place in a number of other instances. The kernel based

Bayesian filtering approach [Han et al., 2005] which uses Gaussian mixture

approximations of the likelihood and prior to propogate a Gaussian mix-

ture over time. It is claimed that such a technique leads to more efficient

sampling of the state space while being able to maintain a multi-modal pos-

terior. A contemporary method to that of [Han et al., 2005] is the multiple

collaborative kernels approach proposed by [Fan et al., 2005]. The authors

linearize the optimization problem and argue that a single kernel may not be

sufficiently ”observable” to recover the true motion of the target due to rank

deficiency in the observability matrix of the measurement model. Therefore,

in an attempt to overcome this rank deficiency the authors suggest using

a concatenation of kernels or a combination of kernels to extract more dis-

criminative data. Extending this further, they also suggest using natural

structural constraints when possible, for example when tracking a limb two

kernels may be placed on either end with a constant length constraint be-

tween their positions, to obtain a full rank observability matrix.
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More recently [Han et al., 2007] proposed a Bayesian fusion tracking ap-

proach using Gaussian mixture based filtering. The idea here is to do par-

ticle filtering with a way to distribute a fixed number of particles amongst

different observation models. To each particle drawn from an importance

sampling function an assignment probability is computed for each of the

N different state space models. The particle is then assigned to the state

space model under which it bears maximum weight. Thus this look ahead

scheme is able to allocate a large number of particles to a potentially fruitful

observation model. In their scheme, the kernel based representation of the

posteriors plays an important role in enabling the computation of the assign-

ment probabilities at arbitrary particle locations. Other recent kernel based

approaches are [Leichter et al., 2007; Nguyen et al., 2007; Yilmaz, 2007].

3. Multi-Feature or Multi-Part Object tracking

Next in the hierarchy of increasing state space dimensions is tracking multiple

interconnected parts of an object. Such trackers are motivated by the observa-

tion that different parts inside a region representing an object frequently have

different appearances and if the object is non-rigid, then the parts have differ-

ent motions too. Therefore, the need for local part trackers automatically arises.

These local trackers are linked via a network and integrate ”messages” received

from other parts, thereby inducing global constraints on their estimates. It may

so happen that a part is completely occluded and cannot be tracked reliably by

a local part tracker, therefore its position can only be estimated from ”predictive

information” received from other unoccluded parts.

A part can be defined as an image area inside, near or even outside a target. It

may or may not have semantic meaning. For example, a part could be an eye on

the face or it could just be a patch stradling the forehead and hair. The selection

of the parts is usually based on the nature of the object and the expertise of

the user. [Perez et al., 2002] use a color based particle filters to track the head

and the upper torso with a rigid interconnection between them and demonstrate

increased robustness of object tracking over single region tracking. Another in-

stance of multi part tracking is the approach of [Fan et al., 2005], described

earlier. [Rasmussen and Hager, 1998] formulate the multi-part tracking problem

in a Joint Probabilistic Data Association framework [Bar-Shalom and Fortmann,

1988] (this framework is discussed shortly) and demonstrate robust tracking of



2.2. TAXONOMY OF VISUAL TRACKING 15

face and hands through clutter and partial occlusions. [Sudderth et al., 2003] pro-

pose a non-parametric belief propagation approach with learnt geometric priors

for robust tracking of facial features through partial occlusions. Recently, [Yang

et al., 2006] proposed tracking of auxiliary objects in the background to achieve

robust tracking of an target under temporary occlusions. Multi-part geometric

layout based tracking is dealt with in detail in this thesis and [Badrinarayanan

et al., 2008] is a related work on fusing patch tracking and online geometric priors.

This thesis also investigates a simple interactive verison of multi-part tracking to

enable tracking of complex objects in unconstrained videos. More on this topic

can be found in the chapter on Multi-part tracking 6.

4. Articulated body tracking

The most frequently dealt with problem in articulated body tracking is the track-

ing of the head, torso, palm, fingers and limbs of a person. The general idea

is to divide the object into multiple semantic sub-parts and track each sub-part

separately. The results of sub-part tracking and the physical constraints on the

interconnections or the so called compatibility functions between these sub-parts

are all fed to an inference engine, such as the Belief propagation method [Yedidia

et al., 2001], to arrive at the marginal posteriors of the sub-parts. This tracking

methodology is equally useful for multi-part tracking.

Most instances of articulated body tracking usually assume a strong prior knowl-

edge of compatibility between the variables. For example, the work by [Wu et al.,

2003] uses a Gaussian prior on the interconnections and Mean field Variational ap-

proximation techniques [Jaakkola, 2000] to approximate their graphical model to

ease the computation during inference. Contemporary work by [Sigal et al., 2003]

encourage use of motion capture data to learn priors on their graphical model

and employ non-parametric belief propagation [Wan and van der Menve, 2000]

for inference. Another and a more recent work on similar lines which imposes a

temporal constraint of smooth motion on each sub-part to reduce computation is

one of [Han and Huang, 2005].

Analytical approaches have also been considered to perform articulated hand

tracking; a well known technique is Eigen tracking wherein a view-based repre-

sentation of the object is created using a set of basis images and a non-linear

optimization problem is solved to determine an affine transformation which min-

imizes a special distance norm (which down weighs outlier matches) between the
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matched image and the reconstruction from the basis images [Black and Jepson,

1998]. Replacing the brightness constancy constraint used in optical flow methods

by a sub-space constancy constraint, wherein the warped matched image is simi-

lar to the reconstructed image from the basis images, this optimization problem

assumes the look of a typical constrained optical flow equation. This equation

is solved by iterative gradient descent, where at each step the warp parameters

and the basis coefficients are refined. The authors also extend this to multi-scale

search by pyramidical decomposition of the images. In recent times, such repre-

sentations have become popular even in low dimensional tracking problems, see

[Ho et al., 2004].

5. Curve or contour tracking

Tracking the deformable contours of an object has been an active subject of

research ever since the seminal work of [Kass et al., 1987]. They begin by defining

the contour as a parametric curve v(s) =
(
x(s), y(s)

)
and associating an energy

functional to this curve, which captures both the intrinstic characteristics of the

curve like bending or its elasticity, and external influences on the curve from

image data. The general form of the energy functional is shown below.

E
(
v
)

= Eelastic

(
v
)

+ Ebending

(
v
)

+ Eimage

(
v
)
. (2.2.24)

Example definitions of intrinsic energies depending on the potential energy (stretch-

ing is seen to increase the potential energy of the curve) and curvature properties

of the curve (relates to the bending of the curve) is shown below.

Eelastic

(
v
)

=
1
2

∫
S
α(s)

∣∣∣dv(s)
ds

∣∣∣2ds, (2.2.25)

Ebending

(
v
)

=
1
2

∫
S
β(s)

∣∣∣d2v(s)
ds2

∣∣∣2ds, (2.2.26)

where α(s), β(s) are control parameters. The image based energy can be defined

in multiple ways depending on the nature of local features extracted from the

image parts close to the curve. An example, based on the local image gradients

is shown below.

Eimage

(
v
)

= −
∫

S

∣∣∣∇I
(
v(s)

)∣∣∣2ds. (2.2.27)

The evolution of an initial contour to its new state, given an image, is then cast

as an variational calculus problem of minimizing the total energy E. Employing
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the Euler-Lagrange equations leads to the following kind of differential equation

law for the curve.

α(s)
d2v(s)
ds2

− β(s)
d4v(s)
ds4

−∇Eimage

(
v(s)

)
= 0. (2.2.28)

In practice, equations of the above form are discretized and the resulting difference

equations are solved to determine the location of the curve. Although restricted

to small motions and closed curves, this technique paved the way for several other

analytical techniques for deformable contour tracking. Among them is the Active

shape models or smart snakes approach of [T.F.Cootes and C.J.Taylor, 1992], also

an iterative optimization scheme which tries to fit best a shape model to image

evidence by varying its pose and shape parameters under a global constraint on

the shape parameters. [Xu and Prince, 1998] proposed to alleviate the problem

of mifitting concave curves in the Kass approach by using the edge image based

external energy term in the original snakes equation.

Another important strand of analytical methods for contour tracking are the ones

based on the level set representation of contours. Based on the work of [Osher

and Sethian, 1988] the idea is to represent the contour v
(
x(s, t)

)
, x(s, t) ∈ RN

(1 ≤ s ≤ S, is the spatial position parameter and t is time) as a zero level set of a

higher dimensional embedding function ψ
(
x(s, t)

)
. That is to say, at any instant

t, the evolving contour can be obtained by solving the following equation.

ψ
(
x(s, t)

)
= 0, (2.2.29)

with the property that at the instant t = 0,

v
(
x(s, t = 0)

)
=
{
x(s, t = 0)|ψ

(
x(s, t = 0)

)
= 0
}
. (2.2.30)

It is now necessary to produce an equation for the surface ψ
(
x(s, t)

)
such that its

zero level set would deliver the propagating contour v
(
x(s, t)

)
. For points x(s, t)

on this propagating contour the following relation must hold by definition.

ψ
(
x(s, t)

)
= 0. (2.2.31)

By the chain rule of calculus,

∂ψ

∂t
+

N∑
i=1

∂ψ

∂xi

∂xi

∂t
= 0, (2.2.32)
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where xi is component in dimension i of x(s, t). This partial differential equa-

tion (pde), of the Hamilton-Jacobi type, is to be solved for the evolving surface

ψ under the initial condition given by Eqn.2.2.30. This equation possesses sev-

eral desirable properties including description of arbitrary motions of the contour

topology and ease of discretization. Contour tracking methods based on such

representations include [Malladi et al., 1995; Yilmaz et al., 2004].

Stochastic methods for contour/curve tracking based on measurements under

clutter use the concept of iterative sampling to maintain multiple hypotheses of

contours or curves [Storvik, 1994]. The CONDENSATION framework of [Isard

and Blake, 1996] demonstrated the application of iterative sampling to track con-

tours of heads and hands under dense clutter. Their filtering framework relies

on a discretized stochastic diffusion equation which models the learnt parametric

motion of a B-spline curve [Blake et al., 1995] and a measurement density which

can be evaluated at each curve or contour sample. With these two components,

a weighted sample based approximation of the posterior distribution for the evo-

lution of the curve or contour is computed at each tracking step (see Chapter 3).

The generality of their framework took it far beyond tracking curves or contours

and Gaussian posterior distributions [A. Blake and Zisserman, 1993] to influence

a generation of sequential Monte Carlo tracking techniques [Doucet et al., 2001].

2.2.2 Statistical paradigm for visual pattern modeling and interpre-

tation

Statistical models of visual tracking follow one or a combination of three paradigms: the

descriptive modeling paradigm, discriminative modeling paradigm and the descriptive-

generative modeling paradigm. These paradigms represent different schools of thought

representing the statistical idea to analyse the observed data, the hidden variable(s) in

question and their relationships. Tracking algorithms derived from statistical models

can therefore be seen to represent one or a combination of these paradigms.The in-

terpretation of the visual tracking problem under each of these paradigms is discussed

below.

1. Descriptive models

The descriptive modeling of data (say, images captured by a sensor) is marked

by the absence of hidden variables. It is fundamentally based on extracting sev-

eral image feature statistics (like statistics of linearly transformed images using
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Fourier, Gabor filters) and assuming these as the marginal statistics of an en-

semble of images. A maximum entropy probabilistic model, usually from the

exponential family, is derived whose marginal statistics match that of the image

feature statistics. The higher the number of image features that are extracted, the

more complex the descriptive model. An image then is a sample drawn accord-

ing to this probability distribution. Following this and extending to sequential

data (typically a tracking scenario), a maximum entropy model is estimated by

statistical analysis.

p
(
y1:n; Θ

)
=

1
Z
(
Θ
) exp

{
−

K∑
k=1

〈
λk, h

[
φk (y1:n)

]〉}
, (2.2.33)

where Θ =
{
λ1, . . . λK

}
are the Lagrange multipliers in the optimization and

h
[
φk (y1:n)

]
are histograms of the features φk (y1:n) , k = 1 : K. The histograms

are assumed to be the marginal statistics of the true distribution of the data.

If it were possible to estimate such a model, of which the given data sequence

is a sample, then in effect there is no tracking problem at all!, for any sequence

of patterns can be ”generated”, instead of being ”extracted” from some data

sequence. Unfortunately such a situation is far from being reached. Even the laws

governing the synthesis of simple textures remain an active subject of research

[Zhu, 2003] today.

2. Discriminative models

The discriminative modeling paradigm is an ”image processing” or bottom-up

approach to modeling the relationship between the observed data and hidden

variable of interest (in tracking, say, the position of an object). The relationship

between grouping of image based features like key points,edge segments, curves

and attributes of 2D objects (for instance, the position, shape and appearance of

an object) is described in a statistical sense. The grouping itself is done using

”visual dictionaries”, which is basically a collection of all subjective and empiri-

cal knowledge of how to generate complex image structures from simpler building

blocks. The parameters of a probabilistic model (which employs the visual dic-

tionary within it) which relates the data (image features) and the hidden variable

of interest (say, position of the object) is learnt by some form of training. An ex-

ample of such a discriminative model is a conditional random field (CRF) model
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[Qi et al., 2005], used for classification problems, shown below.

p
(
x0:n|y1:n,w

)
=

1
Z
(
w
) ∏

iεCi

φi

(
xi, y1:n;w

)
, (2.2.34)

where Ci ⊂ x1:n are cliques of hidden variables and the hidden variable xiεCi. The

compatibility functions φi, iεCi encode the relationship between the data y1:n and

the hidden variables x0:n. w parameterizes these functions. Z
(
w
)

is the normal-

ization constant (usually difficult to compute). An example of a compatibility

function is exp
[
wζi

(
xi, y1:n

)]
, where the function ζi(.) extracts features of the

relationship between the data and the hidden variables in the clique Ci.
The phrase ”training the CRF model” implies learning the parameters w. Once

the model is trained, given a new data sequence y∗1:n, estimates of the hidden

variables (say, tracks) is made from the predictive distribution p
(
x0:n|y∗1:n,d,w

)
,

where d = {x0:n, y1:n} represents the complete training data (See [Qi et al., 2005]

for more details). The CRF model is, in principle, capable of capturing relation-

ships between the observed data at several instances (long range correlations) and

hidden variables, thus avoiding standard Markovian assumptions which decrease

modeling power.

Some deterministic methods regard the tracking problem as one of classification

or equivalently prediction of a pattern in each frame of the sequence from ex-

tracted image features. These are also considered (for discussion’s sake) follow

this paradigm. Well known among such approaches is the Support Vector Track-

ing (SVT) of Avidan [Avidan, 2004] where an Support Vector Machine (SVM)

classifier is trained to detect vehicles. In each new frame an energy functional

is maximized to find the image region with the maximum support vector score.

This optimization then delivers the image region closest to the training set. In

order to introduce smoothness into tracking, the energy functional is made to

include the brightness constancy constraint of standard optic flow formulations.

The iterative optimization of this constrained problem results in the estimation

of the motion parameters and maximizes the classication score based norm. The

Eigen tracking approach of Black and Jepson [Black and Jepson, 1998] can also be

classed here. It is similar to SVT except that the norm in the energy functional is

a distance to the space of Eigen vectors instead of a SVM score. The Relevenace

Vector Machine (RVM) based tracking of [Williams et al., 2005] is another semi-

deterministic approach wherein a trained classifier outputs a displacement for a
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given image region instead of a binary classification score. This displacement is

then fused with a motion predictor using a standard Kalman Filter with a gain

factor balancing the uncertainty of the so called displacement expert (the RVM

output) and the stochastic diffusion equation. Other recent approaches using key

point matches for tracking is the discriminative local features approach of [Grab-

ner et al., 2007], where online boosting techniques are used to update a key point

based appearance description of the object. Analytical approaches relying on the

optic flow equation like the KLT tracker [Tomasi and Kanade, 1991] or kernel

based approaches like Mean-shift tracking [Comaniciu et al., 2000] also belong to

this group.

Although computationally efficient and intuitive, the argument against the fore-

going methods (as compared to CRF models) is that they are more so a compu-

tational heuristic, than a model formally incorporating the uncertainties in the

data and parameters. Further these methods usually require a top-down guid-

ance (priors) to bring down the computational cost. However, these techniques

can act to develop importance sampling proposals for statistical methods aiming

to approximate the posterior p
(
x1:n|y1:n

)
.

3. Descriptive-Generative models

In contrast the descriptive-generative model is a ”top-down” approach where

the top most layer in the conceptual hierarchy, usually attributed to a complex

visual pattern or image, is taken to be synthesized based on a series of discoveries

(inferences) of hidden variables. The fundamental idea is that the complex visual

patterns or structures are generated by a hierarchy of hidden variables which

need to be inferred based on image data. The hidden variables themselves are

related by a descriptive model, like a Markov Random Field (MRF) model learnt

from a statistical analysis of an ensemble of images or more frequently, simply

postulated by the designer for convenience. The transition between layers in the

model (intra-layer compatibilities) is parameterized by a component of a visual

dictionary which is required to interpret higher structures from lower ones.

From a tracking point of view, the distribution p (y1:n;α, β) is composed by the

following integration.

p (y1:n;α, β) =
∫
p (y1:n|x1:n;α) p (x1:n;β) dx1:n, (2.2.35)
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where α is a parameter in the link between the observed data and the hidden

variables, while β is a parameter of the descriptive model relating the hidden

variables. In Bayesian terms, the first component inside the integral is the data

likelihood function and the second is the prior distribution.

The integral on the right hand side is either analytically evaluated (in feasible

cases) or approximated using techniques like deterministic quadrature or Monte

Carlo simulations. Tracking methods based on descriptive-generative models all

vary in the way the data likelihood distribution and the prior are composed.

Among the key methods is the CONDENSATION filter of Isard and Blake [Isard

and Blake, 1996] using edge features to define the likelihood and a first order

Markov stochastic diffusion model as the prior. The parameters of this prior dis-

tribution is learnt from ensemble of (labelled) image data (See [Blake et al., 1998;

1995]). The color based particle filter of [Perez et al., 2002] uses color histogram

features to define the likelihood and a second order stochastic diffusion model as

the prior. Likewise is the tracking approach based on fusion of multiple features

like sound and color, as in [Perez et al., 2004]. Subspace based methods like the

one of [Ho et al., 2004] use projections of an ensemble of the tracked pattern as

features.

Although computationally friendly, under some standard assumptions, these tech-

niques work only when consistent likelihood functions and priors can be defined.

In several important and practical cases such definitions are hindered by dimen-

sionality problems and mathematical intractabilities (see Chapter 3 for further

discussions).

The reader is also referred to an indepth discussion, epistemological view point, analysis

of these paradigms and their relations in [Zhu, 2003].

2.2.3 Modality of visual appearance description

The task of visual tracking may be equated to the task of recognizing some particular

features or attributes of a particular visual pattern or object. Fundamental to this

task is a description of the visual pattern by some statistical or deterministic feature

analysis. Depending on the paradigm used for tracking, features can be classified into

the following two categories.
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1. Descriptive features

Under the descriptive modeling paradigm, given an ensemble of images of a visual

pattern and a pool of features, a descriptive model p
(
y1:n; Θ

)
can be derived (see

earlier discussions) by using some subset of features from this pool. A new most

descriptive feature from the pool can then be added to this subset using the

minmax entropy principle, that is to say, choosing the feature which minimizes

the KL divergence between p+
(
y1:n; Θ

)
and f (y1:n). This method then selects the

most descriptive features among the pool by being as dissimilar as possible to the

already existing features. An example is made by [Zhu, 2003] of the descriptive

features such as the local image gradient, second order local image gradient and

local curvature features used in descriptive modeling of contour priors in [Kass

et al., 1987]. Another example is the local edge normal features used by [Isard

and Blake, 1996].

2. Discriminative features

In discriminative or descriptive-generative modeling methods, features are cho-

sen to minimize the KL divergence between p
(
x1:n|y1:n

)
and q

(
x1:n|φk (y1:n)

)
. In

simple terms, the chosen features try to minimize the loss in inferring the hid-

den variables (image structures) from image features rather than the image itself.

These features are called discriminative features and are implicitly used even in

descriptive-generative modeling methods which rely on discriminative modeling

of importance proposals (distributions such as q
(
x1:n|φk (y1:n)

)
).

More often than not selection of features are discriminative in nature and their

selection is based on empirical experience rather than a rigorous statistical anal-

ysis as described above. Key point features and their online update is built into

the tracking scheme of [Grabner et al., 2007]. Color histogram features used in

[Comaniciu et al., 2000; Perez et al., 2002] and feature point templates used in

KLT tracking [Tomasi and Kanade, 1991] are other examples of discriminative

features.

The importance of the nature of a feature(s) cannot be over emphasized. It is a

fact which remains fundamental to the success of a tracking method. It is a gen-

eral percept that using multiple complementary cues should lead to more robust

tracking, but it is not always clear as what the nature of these cues must be. An

even more challenging issue is to how to select, use and adapt these features over

time. The selection of a feature must bear in mind the ensuing complexity in its
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adaptation. Attempts have also been made to construct complex time varying

discriminative features using combinations of time varying image templates [Jep-

son et al., 2003], online subspace modeling [Ho et al., 2004; Yang and Wu, 2005]

and more recently, features of varying time spans [Li et al., 2007]. More details of

this complex issue follow in Chapter 5. A recent work related to this discussion

can be found in [Badrinarayanan et al., 2007b].

2.2.4 Single or Multiple target tracking

In single target tracking, the standing assumption is that a sensor (say, a video camera)

obtains measurements (images) from which the attributes of the target (position, size

and so on) can be inferred. However, it is not known as to whether these measurements

must be associated to the true target or spurious clutter arising due to absence of the

target in the range of the sensor/presence of occluding objects with similar appear-

ance/sensor noise/errors. This problem is termed the data association problem or

simply the problem of dealing with unlabelled measurements. It is interesting to note

that single target tracking methods do not explicitly deal with this problem (see the

pseudo data association based approach in Chapter 5 for an explicit formulation).

The data association problem is further vexed in the multiple target tracking scenario

where there are multiple measurements arising from several targets. These measure-

ments are assumed to be obtained from one or more (homogeneous) sensors. As in

single target tracking, the measurement at each sensor can be associated to a target or

spurious clutter, as earlier. In addition, when multiple sensors are brought into play,

there is the issue of associating measurement to targets (this is a combinatorial prob-

lem). Therefore, multi target tracking methods must make way for these additional

possibilities too.

Among the well known methods for multiple target tracking is the Expectation Max-

imization (EM) based approach of Probabilistic Multi Hypothesis Testing (PMHT)

[Willett et al., 2002]. This so called optimal approach is a batch based iterative scheme

to arrive at a Maximum a Posteriori (MAP) estimate of the joint state of K targets,

represented as X1:T =
{
x1,1:T , . . . , xK,1:T

}
, given a sequence of observed data or mea-

surements Y1:T from a sensor, taking into account the unknown target to measurement

associations. Formally,

X̂1:T = argmax
X1:T

p
(
X1:T |Y1:T

)
, (2.2.36)
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where X̂1:t is the sought MAP estimate of the joint trajectory of the K targets with

the set of data association vectors Ω =
{

Λt =
{
rj,t
}
, j = 1 : M

}
, t = 1 : T (with

element rj,t representing the mapping of the measurement to target(s) at instant t as

the hidden parameter).

This approach to multi-target tracking [Willett et al., 2002] is limited only to offline

tracking due to its non-sequential nature. Further, the general assumption that a

measurement can be associated to one or more targets and vice-versa is considered

unrealistic.

The PMHT and the Probabilistic Data Association Filter (PDAF) [Bar-Shalom and

Fortmann, 1988; Rasmussen and Hager, 2001] (seen as an extension to the Kalman Fil-

ter incorporating uncertainty due to unlabelled measurements) were initially designed

for a multi target single sensor tracking scenarios. Naturally, then arose the multi

target multiple sensor problems. Sequential Bayesian estimation methods have been

regarded highly in this area for their generality. To restate and recaptiulate the prob-

lem in a Bayesian context, the issue is to infer the joint state of K targets, represented

as xt =
{
x1,t, . . . , xK,t

}
, given a sequence of observed data or measurements Y1:t from

multiple sensors or observers in the scene. The observation at instant t is composed of

a set of Mi measurements at observer i among the N observers (sensors);

Yt =
{{
y1
1,t, . . . , y

1
M1,t

}
, . . . ,

{
yN
1,t, . . . , y

N
MN ,t

}}
. (2.2.37)

The measurements made by each observer in general contain measurements arising

from targets and/or clutter; whichever the case, the measurements are unlabelled. Here

arises the data (measurement) association problem. For an observer i, at instant t, a

measurement to target association vector Λi
t =

{
ri
j,t

}
, j = 1 : Mi maps the measurement

j to a target or to clutter;

ri
j,t =

{
k ∈ 1, . . . ,K, if the measurementjarises from target k
0, if the measurement arises from clutter.

(2.2.38)

This data association is equivalently represented with no loss of information as an target

to measurement association vector Λ̃i
t =

{
r̃i
k,t

}
, k = 1 : K, the elements of which are,

r̃i
k,t =

{
j ∈ 1, . . . ,K, if the measurementjarises from target k
0, if the measurement goes undetected.

(2.2.39)

The probabilistic filter must infer the posterior of the joint state bearing the uncertainty

in the data association vectors. Even without the uncertainty in data association, fil-

tering in the joint state space is a formidable problem; the dimension of the state
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space increases with the number of targets. To circumvent this problem, taking into

account the data association uncertainty, the well known Joint Probabilistic Data As-

sociation Filter (JPDAF) [Bar-Shalom and Fortmann, 1988] disintegrates the problem

into tracking individual targets and handles the data association problem by making a

soft-assignment of measurements to targets. For a target k, the posterior is evaluated

as shown below.

pk

(
xk,t|Y1:t

)
∝

N∏
i=1

[
βi

k0 +
M i∑
j=1

βi
kjp
(
yi

j,t|xk,t

)] ∫
pk

(
xk,t|xk,t−1

)
pk

(
xk,t−1|Y1:t−1

)
dxk,t−1,

(2.2.40)

where in the term outside the integral (the likelihood function) βi
k0 is the posterior

probability that target k goes undetected at observer i and βi
kj = p

(
r̃i
k = j|Y1:t

)
is the

posterior probability of associating target k to measurement j at observer i. Therefore,

the JPDAF inserts the uncertainty in the data association through the data likelihood.

The posterior probabilities in the data likelihood are computed via marginalization as

shown below.

βi
kj = p

(
r̃i
k,t = j|Y1:t

)
=

∑
Λ̃i

t∈Ωi
t:r̃

i
k,t=j

p
(
Λ̃i

t|Y1:t

)
, (2.2.41)

where Ωi
t is the set of all possible data associations at instant t at observer i. The

posterior of the data association vector is decomposed as follows.

p
(
Λ̃i

t|Y1:t

)
=
p
(
Λ̃i

t

)
p
(
yi,t|Λ̃i

t, Yt/i, Y1:t−1

)
p
(
Yt/i|Λ̃i

t, Y1:t−1

)
p
(
Y1:t

) . (2.2.42)

=
p
(
Λ̃i

t

)
p
(
yi,t|Λ̃i

t, Y1:t−1

)
p
(
Yt/i|Y1:t−1

)
p
(
Y1:t

) . (2.2.43)

∝ p
(
Λ̃i

t

) ∏
ri
j,t=0

p
(
yi

j,t

) ∏
ri
j,t=k

pri
j,t

(
yi

j,t|Y1:t−1

)
. (2.2.44)

The decomposition is performed by aid of assumptions that at any instant the measure-

ments at different observers are independent of each other, the predictive likelihoods of

a measurement at any observer is independent of predictive likelihoods of other mea-

surements and measurements at any observer are independent of data associations at

other observers. The fact that Λ̃i
t and Λi

t contain the same information is also used

here. The computation above relies on a pre-defined prior on the data association vec-

tor and clutter probability. [Vermaak et al., 2005] provide some arguments for defining

such priors. The remaining predictive likelihood component can be evaluated using the
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following equation.

pri
j,t

(
yi

j,t|Y1:t−1

)
=
∫
pri

j,t=k

(
yi

j,t|xk,t

)
p
(
xk,t|Y1:t−1

)
. (2.2.45)

With things standing as such, the computational complexity involved in the determining

the posterior association probabilities β’s is a deterrent to direct use of this technique.

For an observer, to evaluate each of these posteriors, all possible permutations of data

association must be considered. This number, for even a moderate number of targets,

is a mighty one and when there are several sensors, things only detoriate. To make this

computation manageable the JPDAF filter uses the concept of ”Gating” [Bar-Shalom

and Fortmann, 1988] - that is at each observer, reject all infeasible data associations

by defining a measurement validation region for each target via computation of its

predictive likelihood as discussed above. For a particular target only measurements

falling in this region are considered feasible. This reduces the entire complexity by

an order of magnitude. A more thorough discussion of the Gating concept can be

accessed in [Vermaak et al., 2005]. The main drawback of the JPDAF [Bar-Shalom

and Fortmann, 1988] is that at each instant it approximates the posterior filtering

estimate of each target by a Gaussian distribution for convenience. This could prove

harmful in the presence of clutter when data likelihoods are multi-model in nature.

A Gaussian posterior would mean discarding several co-existent alternate hypotheses.

Attempts to do away with such conveniences, by maintaining Gaussian mixture forms

for the posteriors, have also been proposed [Pao, 1994]. A full SMC approach bearing

the name MC-JPDAF has been proposed in [Vermaak et al., 2005] to propagate non-

Gaussian and possibly multi-modal posterior distributions for the targets.

Continuing the discussions on the MC-JPDAF, [Vermaak et al., 2005] consider the

general problem of estimating both the state of the targets and their association vectors

together in an Sequential MonteCarlo framework. In formal terms, they propose to

estimate the following distribution.

p
(
Xt, Λ̂t|Y1:t

)
∝ p
(
Λ̃t

)
p
(
Yt|Xt, Λ̃t

) ∫
p
(
Xt|Xt−1

)
p
(
Xt−1|Y1:t−1

)
dXt−1, (2.2.46)

where Xt =
{
x1,t, . . . , xK,t

}
is the joint state of the targets and Λ̂t =

{
λ1,t, . . . , λN,t

}
is

the joint data association vector. A standard assumption of independence of measure-

ments over time, conditional on the joint state and data association vectors is made

(See [Doucet et al., 2001]). Within the SMC framework, [Vermaak et al., 2005] pro-

pose different forms for constructing proposal distributions for importance sampling.
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Depending on the assumptions used for defining the dependecies between the elements

of an association vector to arrive at the proposal for association vector hypotheses,

they arrive at the Serial Sampling Particle Filter [Vermaak et al., 2005] for multi target

tracking. The proposal distribution for an observers association vector is constructed

to subsume the idea of gating by serially conditioning the elements of an association

vector on its preceeding elements, thus pruning away infeasible hypotheses. In yet an-

other filter, termed the Independent partition particle filter, they assume that at any

observer several targets may be assigned to a single measurement and vice-versa. This

eases the construction of the proposal distributions and effectively brings the problem

of sampling the joint state and association vector space to simply sampling from indi-

vidual target posteriors, although paving the way for a degraded performance under a

large number of targets in high clutter. In conclusion, the authors remark the consis-

tency of the MC-JPDAF over the other methods.

Of the other interesting approaches is the Markov Chain Markov Chain (MCMC) based

particle filter for tracking multiple interacting targets of nearly identical nature [Khan

et al., 2004]. In particular the authors tackle the problem of tracking a bunch of ants in

a closed environment. They insist that traditional factored models for motion prior are

inefficient when there are frequent interactions of identical targets, and demonstrate

that a motion prior which includes a term describing the interactions of a target with

other targets in its vicinity leads to robust tracking. The traditional factored motion

models are replaced by an MRF based motion prior whose links (edges) are modified on-

line depending on the possible interactions of each target. They also replace importance

sampling by an MCMC sampler [Doucet et al., 2001], based on the Metrepolis-Hastings

algorithm [Hastings, 1970], to draw true samples from the joint target state posterior.

BraMBLe is another Bayesian approach based on sequential MC for multiple object

tracking for indoor scenes [Isard and MacCormick, 2001]. This method relies on blob

representations of people and

2.2.5 Mode of tracking

Two modes of tracking stand out. First of which is the automatic multi-cue mode and

the second is interactive mode or tracking with an operator in the loop. In principle,

most tracking algorithms, especially multi-cue robust schemes, claim to be automatic

in nature, delivering a ”track” (or tracks in multiple target case) once they have been

set to track a particular target(s) by another device (manually initialised) or algorithm
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(say, a face detector). But it is only automatic until the first failure point i.e when the

method loses track, an occurence which is common in all tracking methods today which

work in unconstrained environments. At each failure, the method has to be reinitialised

by a supporting algorithm like an object detector or by manual intervention. Thus, one

can argue that, there still is no true automatic tracking method which can do without

any external aid. In practice though, one could loosely define automatic tracking algo-

rithms as those ”online” or ”sequential” (meaning not batch processed) methods which

require ”minimal” external support for tracking in an unconstrained environment when

the target displays complex motion, appearance changes and occlusions, for a duration

in the order of a few hundred seconds. This definition itself implores further study of

the general visual tracking problem.

Although almost all of today’s tracking methods can be technically classified into in-

teractive tracking methods and there is no fine line dividing automatic and interactive

modes, it is generally understood that algorithms requiring considerable manually in-

teraction or which are ”offline batch based” can be classified as interactive schemes. Of

immense value in several applications including high end post-production of cinema,

motion capture, to name a few, interactive methods have recently gained in popularity

and is currently indispensable when the tracked state is of a high dimension (contours

and layouts). A brief summary of some algorithms in these two classes is made below.

1. Automatic multi-cue mode

Since automatic tracking is synonymous with requirement of robust tracking, it

relies on methods based on multiple cue fusion which stand out in this category.

From collective empirical experience, it is common knowledge that, by somehow

offsetting the weaknesses of any single cue by complementary cue(s) and intro-

ducing cooperative interaction between cues, leads to robust tracking.

Among the recent examples in this category are hand tracking based on a bunch

of KLT feature points [J.Shi and C.Tomasi, 1994] and object color distribution

[Kolsch and Turk, 2004]. A set of KLT features or ”good features to track” are

chosen inside a detector provided area and several of them pruned away based on

the learnt color distribution of the hand and a probability likelihood spatial be-

longing mask provided at the detection stage. The remaining features are tracked

using the KLT point tracking approach and a subset of them removed, if consid-

ered to deviate from the ”flock” distance-wise or matching correlation-wise. The

removed features are replaced by new features (this time non KLT features) at
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locations ”close” to the flock and with a neighbourhood color content within a

prescribed distance to the hand color distribution. This approach is seen as a

two-cue fusion of textured feature points and textureless color distribution, where

the strength of the color modality can be increased (or decreased) based on in-

creased replacement (longer retention) of feature points at each instant.

The Co-inference learning approach is another example, where, in light of a vari-

ational approximation of a factorized HMM graphical model (both hidden states

and observations are factored) for tracking, the authors seek introduce intercou-

pling of cues. The estimation of the variational parameters (which play the role

of the data likelihoods in the original factored model) in the approximate model

effectively couple the cues together. This fact is used as a basis for developing a

SMC filtering based method which tracks a target based on shape (ellipse) cues

and color cues. The essence of co-inference learning is captured via importance

sampling: samples of shape (conics) are derived based on color cues and vice-

versa. It is then hoped that such co-operation will maximise the data likelihood

of both the cues.

[Triesch and von der Malsburg, 2000] propose democratic integration of multiple

cues for robust tracking. They reemphasize that the cues must self-organize in

absence of an external agent monitoring their reliabilities. In lieu of a demo-

cratic setup, information from cues (shape, color, intensity differences, motion

continuity and contrast change) which are coherent or concordant are integrated

automatically while suppressing the discordant ones. Each cue is associated with

a reliability weight which follows a first order differential equation law param-

eterized by a variable time constant. Based on this law, the reliability of cue

varies as the difference between its current quality or how well it participated in

arriving at the current estimate of the target state and its current value. Com-

puting the reliability based on this law essentially produces a prediction of the

reliability for the next time instant. The time constant determines how quickly

the reliability must be varied. Once the reliabilities are in hand the state of the

target is a MAP estimate of a linear combination of saliency maps (created by

comparision of the cue appearance model or prototype to each image location)

of the cues. A similar differential law is also used for adapting the appearance

models or prototypes for each cue. Apart from the preceeding methods there ex-

ist several other techniques, some of which have already been discussed earlier in



2.2. TAXONOMY OF VISUAL TRACKING 31

this review [Perez et al., 2004; Han et al., 2007] and some others [Veeraraghavan

et al., 2006; Moreno-Noguer et al., 2008].

2. Interactive mode

Among the very recent approaches is the formulation of [Buchanan and Fitzgib-

bon, 2006] for interactive point tracking. Theirs is a ”search and optimization”

strategy to tracking. To start with, every pixel (actually a patch centered on

it of the size of feature point template) in each frame of the video sequence is

projected onto a basis and so ”coded” automatically. For each frame, the codes

of its pixels are arranged as a k-d tree for purposes of efficient search. This con-

cludes the preprocessing stage. Next, in the interactive stage, the user views

the sequence and designates key frames and the feature point location, template

in each of these key frames. A search operation is then launched on the k-d

trees to look for the top M locations in each tree which best matches these key

frame templates. Finally, a table is filled in, with these matches on the ordinate

and their ”match errors” on the abscissa. A provision is made for occlusions by

including a occlusion state with a fixed occlusion penalty as one of the candi-

dates in the ordinate. Dynamic programming (DP) is carried out to compute

the least cost path through the table and thus directly marking the trajectory

of the feature point. In extension to the interactive feature point tracking of

[Buchanan and Fitzgibbon, 2006], [Wei et al., 2007] propose interactive tracking

of color objects. It is batch based with no preprocessing stage. The interac-

tive contribution of the user is in providing key frames in which a bounding box

over the target is marked. A non-parametric color distribution of the target is

then constructed (histograms) and a target detector based on color similarity is

used to select ”close” candidates in each frame. The best M of these candidates

in each frame is ”picked out” by a forward-backward mean-shift tracking based

trajectory growing within a small time window. From this point onwards the

method aligns itself to the DP optimization based optimal trajectory selection.

The above two methods are batch based methods from recent times. In contrast

non-batch based or naive ”step back, correct and proceed” techniques has been

in existence for a long time. Their simplicity must not be misconstrued as their

weakness and for a multitude of tasks which, for example, cannot afford enough

computation for massive preprocessing as required in [Buchanan and Fitzgibbon,

2007; Wei et al., 2007] or which need tracking of complex contours or layouts
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or which need quick-fix solutions, this is a very useful resort. Reiterating what

was said earlier, most automatic methods can all be made interactive, but their

usefulness in an interactive mode is directly determined by their inherent charac-

teristics and amount of user support that is required. More on this issue can be

found in Chapter 6.

2.2.6 Methods vs Systems

The discussion on automatic tracking methods highlighted their need for an external

agent or method, like an object detector, to ”correct” them. Differently, tracking algo-

rithms can play a symbiotic role too, that is, they could support an external agent or

method by reducing their characteristic burden. In such cases, where tracking is used

as a functional component, it is defined as a tracking based system. It is emphasized

here that this viewpoint as to what constitutes a tracking based system is a personal

one of the author and may not necessarily find universal approval.

Tracking systems are very popular in applications such as people tracking for visual

surveillance and activity monitoring [Ramanan and Forsyth, 2003; Siebel and May-

bank, 2004; Wren et al., 1997] and building Human Computer Interfaces (HCI) [Wren

et al., 1997]. Samples of such systems in literature include, people finding and tracking

system of [Ramanan and Forsyth, 2003]. The idea is to describe the image of a person

by a set of rectangular boxes placed on the torso, arms and legs and then generate a

continuous track of these parts. To achieve this, the authors search for rectangle like

segments, compute their color histogram models and cluster them in color feature space

to produce likely segments of body parts. Clusters which disobey a motion constraint

(people are assumed to move constantly) are pruned away. The remaining clusters then

produce tracks of different body segments. The authors contrive a probabilistic graph-

ical model, inference on which would amount to generating the required tracks. To

infer the track of a person, a loopy undirected graphical model linking the appearances

of various segments and their positions is constructed. Inference on this loopy graph is

reduced to a series of inferences on different trees connecting some nodes of the loopy

graph. For instance, first only the appearance of the torso and the hidden positions of

the torso in the sequence are inferred. In parallel, the appearance of the arms and its

positions are inferred. Thus the appearance models (in color histogram feature space)

are leant for different body segments. It is argued that such inferences are equivalent to

clustering in color histogram feature spaces to produce likely clusters of body segments.
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Then on, the next tree connects the positions of the arms and torso with a kinematic

prior. The positions of the arms and torso are inferred by message passing [Yedidia

et al., 2001] on this tree and in doing so, imposing a kinematic constraint.

An example of how tracking is used in a system is in the person detection and

localization system of [Song et al., 2000]. Given a frame in a video sequence, key point

features are automatically detected. These key points are tracked to the next frame

and the problem is to detect a person based on computing a ratio of likelihoods for

labeling these points into labels belonging to foreground and background. If the likeli-

hood of labelling the points as foreground body parts (arms, wrist, knee etc.) is greater

than labeling them as background features, then a person is considered detected in the

scene. Once detected, a person is localized by deriving the Maximum Likelihood (ML)

estimate for the labels. The likelihood model is an MRF with Gaussians as the com-

patibility potentials whose parameters are learnt by extensive hand labeling of body

features and their correspondences between frames. Provisions are also made for miss-

ing or occluded body parts.

In the context of visual surveillance, an example of a tracking based system is the

Annotated Digital Video For Intelligent Surveillance and Optimized Retrieval or in

short, ADVISOR system [Siebel and Maybank, 2004] for people tracking, crowd mon-

itoring and behaviour analysis in railway stations. Tracking is done using data from

multiple calibrated cameras for determining the position and size of moving objects.

The results of tracking is also fed to a behavior analysis module for signaling rogue

activity.

Tracking is also essential in several augmented reality applications, for instance,

creating virtual spaces of people and other graphically generated objects undergoing

interaction. More recently the concept of virtual reincarnations or Avatars has caught

the fancy of the masses. These avatars are puppets or cartoonized alter egos of people

and creating plausible avatars requires accurate tracking and analysis of the real per-

son’s motion. The pfinder detection and tracking system of [Wren et al., 1997] is used

for creating such avatars, vision driven interfaces for video games and a preprocessor

for gesture recognition to decipher American sign languages. It uses a ”blob” repre-

sentation of the human body following the work of [R.J. Kauth and Thomas, 1977]

where each pixel on the body belongs to a cluster in a feature space of spatial loca-

tion and color distribution. These blobs are constructed by automatic detection of a

person inside a closed space and tracked then on for other motives. As an aside, blob
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representations have also been used by SMC filtering based trackers like the BraMBLe

multi-blob tracker of [Isard and MacCormick, 2001]. Finally, simultaneous tracking and

object recognition systems based on Nearest Neighbour (NN) search object localization

has also been proposed [Sakagaito and Wada, 2007].

2.3 Summary

Even this non-exhaustive review gives a fair idea of the omnipresence of visual tracking

methods in computational vision. Practically every video processing application beck-

ons to them. These calls have been answered by numerous strategies and frameworks

over the years, each of which can be viewed from one aspect or other. Such views

directly reflect the diversity of the methods and beyond doubt establishes the difficulty

of even the simplest visual tracking problem. This motivates the search for better and

more advanced frameworks for visual tracking. Towards this goal, existing strategies

may need to be revisited and made compliant with current day frameworks. It is also

useful to bear in mind the application scenarios while designing a tracking method, as

suitable prior knowledge or interaction can be exploited for maximum benefit. These

are the key points which motivate the contributions of this thesis.
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Probabilistic inference

Consider a random variable x ∈ Rn about which some prior knowledge is available

with some degree of certainty. Let measurement or evidential data yεRm be known

which is related to x in some manner and so can say something about x with some

degree of certainty. The inference problem is to combine this prior and evidential

knowledge in a meaningful fashion to produce a statement or belief about x. Due to

the inherent randomness involved in the description of the prior knowledge and the

measurements, this problem is elegantly stated using the language of probability. In

particular, the inference problem can be stated using the Bayes rule for conditional

probabilities [Papoulis and Pillai, 2002]. By this rule,

p
(
x|y
)

=
p
(
y|x
)
p
(
x)∫

p
(
y|x
)
p
(
x)dx

. (3.0.1)

In words, the above rule expresses the knowledge of x conditional on the given

information y, known as the filtering distribution, using the prior (knowledge) distribu-

tion p
(
x
)

and the relationship between y and x stated through the likelihood function

p
(
y|x
)
. This rule is very intuitive: if the prior knowledge is very strong, which implies

p
(
x
)

is peaked, and the likelihood function is diffuse due to uncertain measurements,

then the prior has a larger contribution to the filtering distribution and vice-versa. The

denominator is a function of the measurement y and the parameters of the prior model,

if any. This function acts to normalize the numerator so that the filtering distribution

is a probability density function. As a note of interest, the Bayes rule employed above

acts as an inference rule, that is a way to infer the distribution of the hidden variable

under light of evidential data.

35
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The components of Eqn. 3.0.1 will be frequently encountered throughout this manuscript

and therefore is discussed in more detail below.

3.1 Prior

The prior incorporates all empirical or otherwise obtained knowledge about the hidden

random variables of interest to the inference problem. It captures two main forms

of knowledge, the structure of dependencies (or independencies) between the hidden

random variables and the functional form or parameterization of these dependencies.

Suppose the set of hidden variables of interest is denoted as XN = {xi, i = 0 : N}, then

a standard way to express the prior knowledge is by supplying a joint distribution of

these hidden variables, p
(
Xn

)
.

A structure can be imposed on this joint distribution to write this prior as a product

of some simpler factors. The general form of this structure is as shown below.

p
(
XN |θ

)
=

1
Z
(
θ
) ∏

CεΩ(XN )

ψC

(
xC |θ

)
, (3.1.1)

where C = Ω(XN ) is a subset of the set XN . Each factor or compatibility potential

ψC

(
xC |θ

)
is therefore a function of only a subset of the hidden variables, xC = {xi, iεC}.

These factors define the dependency structure of the hidden variables.

The proportionality constant (independent of the hidden state) Z is a function of the

parameters controlling the prior distribution and is known as the partition function.

This function can be evaluated as follows.

Z
(
θ
)

=
∫ ∏

CεΩ(XN )

ψC

(
xC |θ

)
dXN . (3.1.2)

Other than in some simple cases, it is difficult to evaluate the above integral due to the

dependency structure of the hidden variables and/or due to the functional form of the

factors ψC

(
xC |θ

)
themselves.

An example of a prior distribution is the multi-variate Gaussian prior defined below.

p
(
XN |θ = {µN ,ΣN}

)
=

1
(2π)d/2|ΣN |d/2

exp−1
2
(
XN − µN

)T Σ−1
N

(
XN − µN

)
, (3.1.3)

where θ = {µN ,ΣN} are the parameters (mean and covariance matrices respectively)

of the prior distribution and d is the dimensionality of XN . If xiεRn, then d = nN .
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In this Gaussian case, the partition function is easily evaluated to be a function of the

parameters as shown below.

Z
(
θ
)

=
1

(2π)d/2|ΣN |d/2
. (3.1.4)

In the Gaussian case the dependency structure between the hidden variables xi, i =

1 : N is controlled by the inverse co-variance matrix Σ−1
N . If this matrix is diagonal

then the hidden variables are independent, each with an exponential form. In this case

the structure is completely disconnected. On the other end, all the variables are fully

connected if none of the elements in the inverse co-variance matrix are zero. Several

other possibilities exist mid-way between the two. A convenient way to visualise this

dependency structure is provided by what are called graphical models [Pearl, 1997].

Graphical models are a qualitative visual representation of a dependency model such

as a probability distribution (the prior distribution) from which several conditional in-

dependence statements among the hidden variables can be asserted by inspection of

the graphs without resorting to complex and cumbersome numerical operations. This

representation is very useful to design engines for solving inference problems. Con-

versely, probability distributions, like the ones representing the prior, can be derived

from graphical models which are constructed using a set of qualitative conditional in-

dependency statements such as, a variable X is independent of variable Y given a third

variable Z between subsets of (hidden) variables from the set of variables of interest.

These attributes of graphical models have found widespread use in modeling problems

in such varied domains as computer vision (visual tracking and image segmentation),

digital communications, signal processing, speech processing and model identification.

A short note on the kind of graphical models and their representation capabilities is

provided below, all along bearing in mind that these models are used to represent the

structural dependencies of the prior.

Undirected graphs [Pearl, 1997]

An undirected graph G =
(
V,E

)
contains a set of vertices or nodes V and a set of

edges E between certain pairs of vertices or nodes in V . By an undirected graphi-

cal representation of a probability distribution over a set of random variables U , it is

meant that a direct correspondence between V and elements of U (for example, XN

from earlier discussions) is established such that the topology of G reflects some con-

ditional independency properties among the elements of U . Once this correspondence
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is established, then both the graph G and the probability distribution are seen to be

equivalent, that is G =
(
U,E

)
. An example of an undirected graph is shown in Fig.

3.1.

Undirected graphs aim to represent conditional independency statements between

Figure 3.1: An undirected graph.

triplets of disjoint subsets of hidden variables using vertex separation on the graph.

For instance, if a set of variables X is conditionally independent of another (disjoint)

set of variables Y given a set of variables Z (disjoint from X and Y ), then the vertices

corresponding to the elements of Z intercept all paths going from an element of X to

an element of Y .

Two varieties of maps can be obtained using undirected graph representations. The

D-map or dependency map in which all dependencies between sets of disjoint variables

asserted by the probability distribution are connected by edges on the graph, but one

in which some dependencies may go unrepresented; this is because all forms of depen-

dencies cannot be captured by vertex separation on undirected graphs. The I-map or

independency map in which all conditional independency statements asserted by the

dependency model is represented by vertex separation on the graph, but one in which

some conditional independency statements may go unrepresented; having some super-

fluous edges on the graph.

If all the conditional independency statements asserted by the probability distribution

can be faithfully represented by vertex separation on the undirected graph (that is the

graph is both an D-map and an I-map), then the graph is called the perfect map of the

dependency model.

For the example shown in Fig. 3.1, the following conditional independency statements

can be read out by inspection (of vertex separation).

x1⊥{x2, x4, x5} |x3, read x3 separates x1 from the rest of the variables,

x2⊥x5|x4, read x4 separates x2 and x5, (3.1.5)

and so on. A convenient way to inspect conditional independency between a set of

nodes X and another set Y given a set Z (all disjoint), is to remove from the graph Z
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all the edges connected to it, and then see if there are other paths connecting X and

Y . If there are, then they are not conditionally independent, else they are.

As mentioned earlier, all forms of dependencies cannot be faithfully represented by

vertex separation, in particular, if induced, logical or functional dependencies connect

the variables. For example, consider the three random variables x1, x2, x3 related by

x3 = x1x2. Let p
(
x1, x2

)
= p

(
x1

)
p
(
x2

)
(mutually independent) by definition. The

D-map for this relation is shown in Fig. 3.2 (by definition, all dependencies must be

explicitly shown here, but some dependencies may escape representation). From the

Figure 3.2: Shortcoming of an undirected graph representation.

graph in Fig. 3.2, p
(
x1, x2|x3

)
= p

(
x1|x3

)
p
(
x2|x3

)
, but, given x3 (an instantiation of

it) the variables x1, x2 are dependent, a fact which is not represented by the graph.

The graph is therefore not an I-map because, if were so, then separated vertices x1 and

x2 would be conditionally independent. Joining the vertices x1, x2 does not help either

as this implies x1, x2 are dependent even if nothing is known about x3, contradicting

their definition. Therefore (vertex separation on) undirected graphs can offer perfect

representations only in the absence of induced, logical or functional dependencies be-

tween the variables.

For a probability distribution to have a perfect map requires it to satisfy certain ax-

ioms (see [Pearl, 1997] for axiomatic characterization of vertex separation) which would

allow the conditional independencies asserted by it to be represented on an undirected

graph on which vertex separation implies conditional independence. The presence of

induced dependencies between the variables prevents the distribution from satisfying

these axioms. Nevertheless, sub-optimal representations in the form of I-maps can still

be constructed based on the axiomatic characterization of the notion of conditional

independence itself (see [Pearl, 1997]). The most important of them is the minimal I-

map or Markov network (or field) for a probability distribution (for instance, the prior)

which can be constructed (if certain axioms of conditional independence are fulfilled by

the probability distribution) in a rule based fashion (edge deletion procedure or Markov

boundary approach).

Conversely, one may start from an undirected graphical model and derive a probability
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distribution from it. For instance, a graphical structure may be imposed on the hid-

den state variables according to the designers mental understanding of the problem,

say, and a corresponding probabilistic distribution (the prior) can be derived using a

product of simpler compatibility potentials and a normalizing function (the partition

function). The theorem of Hammersley and Clifford guarantees that the undirected

graph will be a perfect map of the derived probability distribution [Besag, 1974].

The probability distribution for which the graph in Fig. 3.1 is a perfect map can be

derived using the notion of clique potentials (see Hammersley and Clifford theorem,

[Pearl, 1997]). Cliques are defined as maximal sub graphs with nodes which are all

adjacent to each other. For example, the set {x3, x4, x5} is a clique. To each clique

Ci a non-negative compatibility function ψi

(
ci
)

is assigned which describes the relative

strength of each value assignment ci or configuration to the variables in the clique. With

this assignment, the probability distribution quantifying the conditional independency

structure of the graph can be derived as follows (for the example case shown in Fig.

3.1).

p
(
X = {x1, . . . , x5}

)
=

1
Z
ψ1

(
c1 = {x1, x3}

)
ψ2

(
c2 = {x2, x4}

)
ψ3

(
c3 = {x3, x4, x5}

)
,

(3.1.6)

where,

Z =
∫ [ ∏

i=1:3

ψi

(
ci
)]
dX. (3.1.7)

In general, it is difficult to define the compatibility functions gi

(
ci
)

by empirical expe-

rience alone as the interaction between the variables in each clique is also dependent on

other cliques, making it difficult to ”book-keep” all the possible interactions and even

if it is possible, evaluating Z can be computationally expensive or intractable. For-

tunately, some graphical models like Hidden Markov Models (HMM) or Markov trees

allow a natural decomposition of the probability distributions they represent so that

there is a direct relation between marginal probabilities of the variables of a clique and

the compatibility functions. Such models are widely employed. However such graph-

ical models are based on a designers viewpoint, which is itself based on experiential

learning, and may or may not reflect the true nature of the conditional independence

structure among the variables. A simple graphical structure is usually justified in a

computational complexity sense, the true structural dependencies may be more com-

plex.

Next, the inability of undirected graphs to represent induced dependencies is rectified
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using the richer representation of directed graphs.

Directed graphs [Pearl, 1997]

Consider the following directed acyclic graph (DAG), that is a graph with arrows on

the edges and without having directed loops. In DAG’s conditional independency state-

Figure 3.3: A directed graph for x3 = x1x2

ments can be read using the d-separation rule [Pearl, 1997]. This rule prescribes what

connections on the graph are made (activated) or broken (blocked) if knowledge of a

set of (conditioning) variables is given. In verbatim, recounting [Pearl, 1997],

If X,Y,Z are three disjoint subsets of nodes on a DAG D, then Z is said to d-separate

X,Y, if along every chain of nodes between a node in X and a node in Y there is a

node w satisfying one of the following two conditions: (1) w has converging arrows and

none of w or its descendants are in Z, or (2) w does not have converging arrows and w

is in Z.

For the graph in Fig. 3.3, this rule implies x1, x2 are mutually independent if nothing

is known about x3 or the path between them is blocked and this path is activated upon

knowledge of x3. This notion is exactly what undirected graphs could not capture.

A more complex DAG is shown in Fig. 3.4. The following statements can now be read

out by inspection.

Figure 3.4: A directed graph for x3 = x1x2

1. x1 is mutually independent of x2.

2. x4 may be dependent on x5 (under no conditioning; ”may be” because there is a

chance that p
(
x4, x5

)
= p

(
x4

)
p
(
x5

)
due to numerical compatibility, purely by coinci-

dence).
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3. Given both x3 and x6, x4 may be once again be dependent on x5 (two paths between

x4 and x5).

4. Given x3, x6 is independent of x1.

5. Given x4, x6 maybe dependent on x1 (two paths between x6 and x1).

Similar to undirected graphs, minimal directed I-maps or Bayesian networks asserting

all conditional independencies present in the probability distribution (for instance, the

prior) can be constructed, if the probability distribution satisfies certain fundamental

axioms (called semi-graphoid axioms) governing conditional independence [Pearl, 1997].

Conversely, a probability distribution can be derived from a DAG such that the DAG

is a perfect map of the probability distribution, an attribute which is widely used. For

example, for the tree structure shown in Fig. 3.4, the probability distribution can be

developed as follows.

p
(
x1, x2, x3, x4, x5, x6

)
= p
(
x6|x4, x5

)
p
(
x4|x3

)
p
(
x5|x3

)
p
(
x3|x2, x1

)
p
(
x1

)
p
(
x2

)
,

(3.1.8)

or, written more abstractly,

p
(
x1, x2, x3, x4, x5, x6

)
=
∏

i=1:6

p
(
xi|Pai

)
, (3.1.9)

where Pai represents the set of parent nodes of the node i. As another frequently

encountered example, consider the first order HMM shown in Fig. 3.5, for which,

Figure 3.5: A first order Hidden Markov Model.

p
(
x0:n

)
=
∏

i=1:n

p
(
xi|xi−1

)
p
(
x0

)
. (3.1.10)

For Bayesian networks wherein there is a sequential chaining of the variables as in Fig.

3.5, the terms process model or state evolution model is sometimes used to describe the

probability distribution (prior) derived from such models. As a note of interest, the

process model could, for instance, be defined using a one step relationship as shown

below.

xn = xn−1 + ηn, where, ηn⊥x0:n−1. (3.1.11)

where ηn is a i.i.d process noise model whose parameters need to be specified or deter-

mined by a learning step.
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To summarise the discussions on the prior, the structural knowledge can be incorporated

directly using Markov or Bayesian networks or even a combination of them depending

on the nature of the dependencies between the hidden variables or the designers in-

tent and experience. The compatibility potentials over the cliques on the graph model

capture the functional form (strengths of the cliques) of the knowledge (potentials are

usually drawn from the exponential family for ease of integration’s sake). With the

structural and functional form defined, the prior distribution is completely established.

3.2 Data likelihood

The relationship between the observed or measured data y and the hidden variable(s)

of interest x is given by the (hidden) data likelihood or just likelihood function p
(
y|x
)
.

The likelihood is sometimes explained as an inverse probability, that is, given the data

y, the probability of some sample of x is represented by this likelihood function.

The terms observed data, measured data or simply data are used interchangeably, al-

though in general, the observed data is taken to be the sequence of images and the

measured data could be parts of an image(s), some feature(s) (say, an edge map, optic

flow fields) or quantities (say, edge corners, motion model parameters) derived from

it, see [Isard and Blake, 1996; Arnaud et al., 2004] for relevant examples. Whatever

the nature of the data, the important fact is that it can be observed or measured by

a device (a camera, for example) independently from the hidden variables and some

inference about the hidden variables can be drawn from it through an a priori pre-

scribed observation process or model. For instance, a simple linear observation process

is shown below.

y = Hx+ ζ, (3.2.1)

where H is a parameter and ζ is the observation noise. The parameters of the model

and the observation noise must be established by empirical knowledge or in other

words, these parameters must be learnt from examples. However, this is very difficult

to do, for example, if the data is a sequence of images (usually of dimension in the

order 106) and the hidden variable is, say, the position and some other attributes of an

object, scale, contour (usually of a dimension ≤ 102), then establishing a relationship

between the data and the hidden variable is indeed a phenomenal task, even if it can

be achieved. Further, the problem of establishing this relationship as a conditional

probability distribution requires computation of some very high dimensional (in the
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order ≥ 106) integrals over highly non-linear integrands, which in general is intractable.

In an attempt to handle the dimensionality issue, the general practice in computer

vision is to define low dimensional feature matching distance based likelihood functions,

usually of the following form.

p
(
y|x
)

=
1
Zx

exp
{
λ
(
f(y, x)

)}
, (3.2.2)

where λ is a control parameter, f(y, x) is a matching distance, say the Bhattacharya

coefficient for matching histograms [Perez et al., 2002] and Zx is the normalizing factor

given as follows.

Zx =
∫

y
exp

{
λ
(
f(y, x)

)}
dy, (3.2.3)

where the integral is to be evaluated over the space of all possible data (imagine the

space of all possible images) and not just the observed data. If this is not possible, then

comparisons such as p
(
y|x = xi

)
and p

(
y|x = xj

)
for instantiations or samples xi, xj

cannot be performed. If by some means it is possible to evaluate the above integral,

the result (normalizing factor) still remains a function of x. The common but flawed

practice is to ignore the dependence of Zx on x (so treating it as a constant), which

implicitly biases the likelihood towards samples with larger Zx. These are undesired or

trivial samples which usually provide high match scores (see [Minka, 2004] for a succint

description).

The correct, albeit difficult, approach would be to evaluate the proper normalizing

factors. A recent attempt to tackle this problem is the PDF projection theorem (for data

classification problems) proposed by [Baggenstoss, 2003]. The idea is to develop the

(normalized) likelihood function of the original high dimensional data from a normalized

likelihood function over low dimensional features extracted from the training data and

a nominal or base distribution of the original high dimensional data (the distribution

of images in the training set). However, even arriving at a rough estimate of the

base distribution can be a difficult task in practice, especially for filtering problems

in high dimensional state spaces. Further research in this direction may reveal new

methodologies to resolve this problem. Meanwhile an important note to bear in mind

is that employing such biased likelihood functions can lead to less informative filtering

distributions, meaning the uncertainty in the estimation of the state described by the

filtering distribution may be unreliable or even erroneous. Some respite to this practical

problem can be found by averaging over several measurements (likelihood functions),

an aspect which motivates the contributions in Chapter 5.
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3.3 Evidence of prior model parameter(s)

Consider the denominator in Eqn. 3.0.1 with the prior parameterized by θ as shown

below.

p
(
y|θ
)

=
∫
p
(
y|x, θ

)
p
(
x|θ)dx. (3.3.1)

This is the probability distribution of the data which acts as the normalizing factor

in the Bayes rule, Eqn. 3.0.1. At the same time, this may be viewed as the evidence

of the prior model parameter θ given the data y or simply the likelihood function of

θ given the data y. Note that the likelihood function p
(
y|x
)

is sometimes also called

the model evidence, especially in data classification literature (see [Bishop, 2006] for

discussion on likelihood ratios or Bayes factors); this must not be confused with the

evidence of the prior model parameter θ.

As an example, if the likelihood function and the prior on the hidden state variables

are both Gaussian, then the distribution of the data is also a Gaussian as shown below.

p
(
y|µ,Σ

)
= N

(
y;µ = Hµx,Σ = HΣxH

T +Σy

)
=
∫
N
(
y;µy = Hx,Σy

)
N
(
x;µx,Σx

)
dx,

(3.3.2)

where the notation N
(
x;µ,Σ

)
=

1
(2π)n/2|Σ|1/2

exp
{
−1
2

(x− µ)T Σ−1(x− µ)
}

is used

throughout this manuscript.

In most computer vision problems it is difficult to evaluate the model parameter evi-

dence due to difficulties involved in either normalizing the likelihood function (model

evidence) or computing the partition function of the prior on the hidden variables or

in the worst case, both. Therefore other approximations of the prior model param-

eter evidence, using deterministic quadrature or Monte Carlo simulations need to be

invoked.

3.4 Sequential filtering problem

The sequential filtering problem is to evaluate or equivalently, propagate the following

posterior distribution.

p
(
x0:n|y1:n

)
=

p
(
y1:n|x0:n

)
p
(
x0:n)∫

p
(
y1:n|x0:n

)
p
(
x0:n)dx0:n

. (3.4.1)

On the right hand side of the above equation is a formidable inversion problem, that

is, computing the likelihood of the sequence of hidden random variables x0:n given the
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sequentially collected data y1:n. Secondly, the dimensionality of this filtering problem

increases at each time step as more and more variables (both hidden and observed) are

appended into the equation above. Thirdly, at each time step the memory required

to store the sequential observed data increases. However, all these issues maybe dealt

with depending on the structure of the prior over the hidden variables and the way the

observed data is related to the hidden variables. Graphical models once again provide

a convenient modeling and visualization tactic to make this sequential filtering problem

tractable. The most popular model is the first order HMM (with data included in gray

filled circles) Bayesian network shown in Fig. 3.6. For this directed graph, the following

conditional independency statements can be asserted in keeping with the d-separation

rule.

Figure 3.6: A model for sequential filtering

p
(
yn|x0:n, y1:n−1

)
= p
(
yn|xn

)
,

p
(
xn+1, xn−1|xn

)
= p
(
xn+1|xn

)
p
(
xn−1|xn

)
,using d-separation rule. (3.4.2)

With these statements the filtering problem can be simplified as shown below.

p
(
x0:n|y1:n

)
=
p
(
yn|xn

)
p
(
y1:n−1|x1:n−1

)
p
(
xn|x0:n−1)p

(
x0:n−1

)
p
(
y1:n

)
=
p
(
yn|xn

)
p
(
xn|xn−1

)
p
(
x0:n−1|y1:n−1

)
p
(
yn|y1:n−1

) (3.4.3)

A recursive form arises from Eqn. 3.4.3, the posterior at instant n can be developed

from the posterior at instant n− 1, the likelihood function at n and the low order one

step process model. The filtering distribution too can be obtained from Eqn.3.4.3 by

appropriate marginalization as shown below.

p
(
xn|y1:n

)
=
∫
p
(
x0:n|y1:n

)
dx0:n−1

∝ p
(
yn|xn

) ∫
p
(
xn|xn−1

)
p
(
x0:n−1|y1:n−1

)
dx0:n−1

= p
(
yn|xn

) ∫
p
(
xn|xn−1

)
p
(
xn−1|y1:n−1

)
dxn−1, (3.4.4)
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which upon using the Chapman-Kolmogorov rule, yields,

p
(
xn|y1:n

)
∝ p
(
yn|xn

)
p
(
xn|y1:n−1

)
. (3.4.5)

The term p
(
xn|y1:n−1

)
is sometimes called the effective prior, which is a slight abuse of

terminology as a prior should be independent of any observed or measured data. The

proportionality factor in Eqn. 3.4.5 can be evaluated as follows.

p
(
yn|y1:n−1

)
=
∫
p
(
yn|xn

)
p
(
xn|y1:n−1

)
dxn. (3.4.6)

This factor can be seen as a measurement prediction distribution (see the application of

this density to measurement gating in multi-target tracking [Vermaak et al., 2005]). In

another way this distribution is once again the likelihood or evidence of the parameters

of the prior model as described in Sec. 3.3. Finally, depending on the nature of the

application, either the posterior or the filtering distribution may need to be propagated.

The propogation of the posterior or the filtering distributions is dependent on the func-

tional form of the prior (the process model) and the likelihood function (the observation

model). Only in a limited number of cases can posterior/filtering distributions be prop-

agated by analytical evaluations. In all other cases, more general strategies must be

resorted to. Both these cases are described below in order.

3.4.1 Analytical solutions

Consider the following state space model (the process + observation model) in <n.

xn = Axn−1 + ηn, where, ηn⊥x0:n−1. (3.4.7)

where A is a parameter and the process noise ηn ∼ N
(
ηn; 0, P

)
.

yn = Hxn + ζn, (3.4.8)

where H is a parameter and the observation noise ζn ∼ N
(
ζn; 0, Q

)
. With these

definitions, the filtering distribution can be evaluated as follows.

p
(
xn|y1:n

)
∝ N

(
yn;Hxn, Q

) ∫
N
(
xn;Axn−1, P

)
N
(
xn−1;µn−1,Σn−1

)
dxn−1, (3.4.9)

where the filtering distribution at instant n− 1 is represented as N
(
xn−1;µn−1,Σn−1

)
.

The effective prior can be computed using standard rules for Gaussian distributions

(see [Bishop, 2006]) as shown below.

p
(
xn|y1:n−1

)
= N

(
xn;µeff = Aµn−1,Σeff = AΣn−1A

T + P
)

(3.4.10)
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Upon meshing the effective prior with the likelihood function the following Gaussian

form of the filtering distribution is obtained,

p
(
xn|y1:n

)
= N

(
xn;
(
HTQ−1H+Σ−1

eff

)−1(
HTQ−1yn+Σ−1

effµeff

)
,
(
HTQ−1H+Σ−1

eff

)−1)
.

(3.4.11)

This filtering technique is the celebrated Kalman filter which propagates Gaussian

distributions. After some manipulations, this result is usually expressed in another

form using the Kalman gain factor K = ΣeffH
T
(
Q+HΣeffH

T
)−1, through which,

p
(
xn|y1:n

)
= N

(
xn;µeff +K

(
yn −Hµeff

)
,
(
I −KH

)
Σeff

)
, (3.4.12)

where the expression
(
yn −Hµeff

)
is known as the innovation term. This term is the

difference between the actual measurement at n and the predicted measurement using

the effective prior estimate µeff . The Kalman gain then balances the contributions of

the innovation and µeff . If the gain K is large then the the measurement variance is

small compared to the effective prior variance and so contributes more to the filtered

estimate than the effective prior, and vice-versa. The parameters of the state space

model A,P,H,Q can all be time variant (if they are updated online) without any

change to the filtering equation.

In general, analytical recursive (to avoid storage problems) solutions (see mean and

covariance terms in Eqn. 3.4.12) can be obtained for any member of the exponential

family of distributions (Gaussian, Gamma, Poisson, Beta distributions, see [Minka,

1999]) as these are closed under multiplication (filtering is in effect multiplication of

the prior and likelihood function) and can be described by a finite number of sufficient

statistics. Recursions for non-Gaussian distributions in the exponential family will

however be different from the Kalman filter recursions.

The Kalman filter is also employed for linearlized formalisms of non-linear state space

models. The general non-linear state space model is given as follows.

xn = fn−1

(
xn−1, ηn−1

)
, (3.4.13)

which upon linearization using the Taylor’s series expansion,

xn = Fn−1xn−1 + bn−1 + η∗n−1 + ηn−1, (3.4.14)

where, Fn−1 =
∂fn−1

∂xn−1

∣∣∣
x̂n−1

, bn−1 = fn−1

(
x̂n−1,

)
− Fn−1x̂n−1, η∗n−1 represents the

linearization error (or residue) with co-variance P ∗n−1 (notice the time index here). A
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similar linearization of a (possibly) non-linear observation model can be made as shown

below.

yn = hn

(
xn, ζn

)
, (3.4.15)

which upon linearization using the Taylor’s series expansion,

yn = Hnxn + dn + ζ∗n + ζn, (3.4.16)

where, Hn =
∂hn

∂xn

∣∣∣
x̃n

, x̃n is the predicted state estimate derived from the process model,

dn = hn

(
x̃n,
)
−Hnx̃n, η∗n represents the linearization error (or residue) with co-variance

Q∗n.

The different approaches to filtering with non-linear state space models through the

Kalman filter differ in the way they deal with the linearization and the linearization

error. For instance, the Extended Kalman Filter (EKF) linearizes the process (and/or

observation) model around the past (and/or predicted) estimate and ignores the result-

ing linearization error(s). The Linear Regression Kalman Filter (LRKF) linearizes the

process (and/or observation) model by linear regression over a set of sampled points

around the past (and/or predicted) estimate and the (non-linear) function values ob-

tained by the respective process (and/or observation) model(s). The sample points

themselves are so selected that the sample statistics matches the statistics of the past

estimate. The LRKF also takes into account the linearization error in the filtering

process, thus reducing bias in the filtered estimates. It is interesting to note that the

LRKF is a general formulation of the well known Unscented Kalman Filter (UKF). For

a more detailed comparative review see [Schutter, 2001].

In the foregoing state space models it was assumed that the functional form of the

non-linearities (the relationship between the noise terms, hidden state terms and the

observed data) are known and the statistics of the noise terms are supplied. Further,

it was implicitly assumed that the non-linearities were tractable to some method of

linearization. In a more general case, such linearizations may be intractable, especially

in the observation model, due to the unknown statistics of the noise and the form of the

non-linear relationship between the high dimensional observed data , the lower dimen-

sional hidden state and the corrupting noise. Things turn more complex if the observed

data itself is a function of the hidden state (see the discussions in Sec. 3.2). Therefore,

it is difficult in such cases to supply even a general non-linear observation model of

the form in Eqn. 3.4.15. In all, only an evidence or likelihood for a hypothesis of the

hidden state may be computable. Other issues may arise on the side of the process
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model too, making it difficult to write down the low order conditional probabilities

such as p
(
xn|xn−1

)
and instead only an unnormalized compatibility function (see Sec.

3.1) between the hidden state variables may be accessible. Another way to summarise

these difficulties is to view the filtering problem as one of propagating arbitrary (out

of the exponential family) distributions. Approximate techniques to solve the filtering

problem with these restrictions have been developed. These are considered below.

3.4.2 Simulation methods

Monte Carlo simulation methods are used to tackle two problems:

1. The sampling problem, which is to draw independent samples from a probability

distribution p
(
x
)
.

2. The approximation problem, which is to evaluate expectations of the form f̂ =∫
f
(
x
)
p
(
x
)
dx, where f

(
x
)

is some function of the random variable x.

If the first task is solved then the second follows immediately from the property of the

law of large numbers (LLN) [Papoulis and Pillai, 2002];

f̂ ≈ 1
M

∑
i=1:M

f
(
xi
)
, xi ∼ p

(
x
)
, i = 1 : M. (3.4.17)

However, in several cases, the probability distribution may only be available upto a

multiplicative constant, that is one may be able to evaluate a function p∗
(
x
)

such that

p
(
x
)
∝ 1

Z∗
p∗
(
x
)
. The computation of the normalization constant Z∗ may require

an enormous amount of effort if the dimension of the state space (dimension of x) is

large. Even if x were discrete in dimension N = 1000 and its elements were binary,

it would require 21000 additions to compute Z∗. If x took continuous values, then the

Z∗ =
∫
p∗
(
x
)
dx could be analytically intractable in all but a few cases.

An alternative way to compute expectations of the form shown in Eqn. 3.4.17 is to

evaluate the integral at uniformly drawn samples in the state space, by which,

f̂ ≈
∑

i=1:M

f
(
xi
) p∗

(
xi
)∑

j=1:M p∗
(
xj
) . (3.4.18)

The success of the above technique depends on how many samples lie within the typical

set of p
(
x
)
. The typical set, defined as |T | ≈ 2H

(
x
)
, where H

(
x
)

is the Shannon-

Gibbs entropy of p
(
x
)
, is a small region in the state space where the majority of the

probability mass of the distribution is concentrated (especially in higher dimensions).

Therefore, if sufficient samples do not ”hit” the typical set (typically requires 2N−H
(
x
)
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samples, a very large number indeed for high dimensions), then the estimate may be

under valued. Other alternatives have been developed to handle such problems. Of

these the technique of importance sampling is widely used (including this thesis) and

is described in detail below. Subsequently other relevant Monte Carlo techniques are

briefly mentioned.

1. Importance sampling (IS)

Figure 3.7: Importance sampling - an illustration

This technique is used to evaluate expectations of the form shown in Eqn. 3.4.17.

The idea is as follows. Select a proposal or importance sampling density q
(
x
)

=
1
Zq
q∗
(
x
)

which is easy to sample from (Zq is known) and also evaluate (see Fig.

3.7). With this, consider the following manipulation.

f̂ =
∫
f
(
x
) p∗

(
x
)∫

p∗
(
x
)
dx
dx,

=
∫
f
(
x
)p∗(x)
q
(
x
) 1∫ p∗(x)

q
(
x
) q(x)dxq

(
x
)
dx. (3.4.19)

Draw independent samples xi ∼ q
(
x
)
, i = 1 : M . Appealing to the law of large

numbers,

f̂ ≈
∑

i=1:M

f
(
xi
)p∗(xi

)
q
(
xi
) 1∑

i=1:M

p∗
(
xi
)

q
(
xi
) . (3.4.20)

Terming wi ≡
p∗
(
xi
)

q
(
xi
) as the unnormalized importance weight, the expectation

is approximated using normalized importance weights
∑

i=1:M w̃i = 1 as shown

below.

f̂ ≈
∑

i=1:M

w̃if
(
xi
)
. (3.4.21)



52 3. PROBABILISTIC INFERENCE

It is informative to observe that the intractable normalizing constant is obtained

by consequence of the above approximation as given below.∫
p∗
(
x
)
dx ≈

∑
i=1:M

wi. (3.4.22)

The (normalized) importance weights can be seen as a corrective weight being

attached to each sample from q
(
x
)

as it is not being sampled from the true dis-

tribution p
(
x
)
. At samples where q

(
x
)
< p
(
x
)

the samples are assigned a greater

weight to offset their under representation and vice-versa.

The practical difficulty with importance sampling lies in the fact that the variance

of the estimator f̂ cannot be reliably indicated through the empirical variance of

w̃if
(
xi
)
. If the value of

∣∣∣f(x)p∗(x)∣∣∣ is large where q
(
x
)

is small, then even after

a large number of samples have been drawn, the empirical estimate of the expec-

tation can be drastically wrong with no indication in the empirical variance of

the estimate that the true variance of the estimate is large. This is the weight

variance problem in importance sampling (see [Arulampalam et al., 2002]). Due

to this reason importance sampling densities with heavy tails is advocated in

practice.

In higher dimensions importance sampling suffers from two problems. First the

sampling density q(.) must have a typical set similar to that of p(.) so that a

large number of samples come from this set, which then requires q(.) to be a

good approximation of p(.) and second, even if the samples lie in the typical set

their importance weights vary by a large order of magnitude, thereby increasing

the variance of the estimate. Some solutions have been proposed to address this

weight variance problem (see importance resampling (IR) technique in [Arulam-

palam et al., 2002]).

The importance sampling technique can also be manipulated to approximate

probability distributions using the following tautology.

p
(
x
)

=
∫
δ
(
x− τ

)
p
(
τ
)
dτ,

=
∫
δ
(
x− τ

)p∗(τ)
q
(
τ
) 1∫ p∗(τ)

q
(
τ
) q(τ)dτ q

(
τ
)
dτ, (3.4.23)
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which upon drawing samples τ i ∼ q
(
τ
)
, can be approximated using the normal-

ized sample-set
{
τ i, w̃i

}
i=1:M

as shown below.

p
(
x
)
≈
∑

i=1:M

w̃iδ
(
x− τ i

)
. (3.4.24)

This approximation of distributions is what is used in making sample-set approx-

imations of the posterior distribution of Eqn. 3.4.3. The following approach is

commonly used.

Sample xi
0:n ∼ q

(
x0:n|y1:n

)
, i = 1 : M and evaluate unnormalized importance

weights as shown below.

wi
n =

p
(
yn|xi

n

)
p
(
xi

n|xi
n−1

)
p
(
xi

0:n−1|y1:n−1

)
q
(
xi

0:n|y1:n

) , i = 1 : M. (3.4.25)

Normalizing these weights appropriately gives,

p
(
xi

0:n|y1:n

)
≈
∑

i=1:M

w̃i
nδ
(
x0:n − xi

0:n

)
. (3.4.26)

This weight computation can be made recursive by virtue of the following fac-

torisation.

wi
n =

p
(
yn|xi

n

)
p
(
xi

n|xi
n−1

)
p
(
xi

0:n−1|y1:n−1

)
q
(
xi

n|xi
0:n−1, y1:n

)
q
(
xi

0:n−1|y1:n−1

) , i = 1 : M

=w̃i
n−1

p
(
yn|xi

n

)
p
(
xi

n|xi
n−1

)
q
(
xi

n|xi
0:n−1, y1:n

) , i = 1 : M. (3.4.27)

Notice that the weight recursion proceeds from the normalized weights at instant

n−1 to unnormalized weights at instant n. One issue remains, that is importance

sampling of sample trajectories xi
0:n, i = 1 : M which increases in dimension at

each instant (if x ∈ RN , then O
(
nRN

)
). As discussed earlier, sampling is very

high dimensions is inefficient and leads to biased estimates. However, if the pro-

posal density can be factorised into low order conditional probability distributions

then this Markovian nature of the proposal can be leveraged to sample in low di-

mensions. For example, if the proposal density is (sub-optimally) chosen to be

a first-order Markovian process prior p
(
x0:n

)
= p
(
x0

)∏
k=1:n p

(
xk|xk−1

)
, then at

each stage of importance sampling the trajectory samples can be obtained via

sample augmentation as xi
0:n =

{
xi

n, x
i
0:n−1

}
i=1:M

, where xi
n ∼ p

(
xn|xi

n−1

)
. In

this case the weight recursion largely simplifies as shown below.

wi
n = w̃i

n−1p
(
yn|xi

n

)
, i = 1 : M. (3.4.28)
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The use of the prior as the proposal density is widespread but nevertheless sub-

optimal. The optimal proposal density can be derived with a view to minimize

the empirical variance of the importance weights, thereby hoping to minimize the

empirical variance of the posterior. To this end, upon computing the variance

of the importance weight wi
n

(
xn

)
conditional upon the trajectory xi

0:n−1 and

observed data y1:n,

varq
[
wi

n

(
xn

)
|xi

0:n−1, y1:n

]
=
(
w̃i

n−1

)2 ∫
(
p
(
yn|xn

)
p
(
xn|xi

n−1

))2

q
(
xn|xi

0:n−1, y1:n

) dxn − p
(
yn|xi

n−1

)2 .
(3.4.29)

The above variance is zero if, q
(
xn|xi

0:n−1, y1:n

)
= p

(
xn|xi

n−1, yn

)
. To verify this

it is only necessary to note that this form of proposal can be rewritten as follows.

p
(
xn|xi

n−1, yn

)
=
p
(
yn|xn

)
p
(
xn|xi

n−1

)
p
(
yn|xi

n−1

) . (3.4.30)

This optimal proposal is rarely used in practice as it requires sampling from the

distribution p
(
xn|xi

n−1, yn

)
which involves the current observed data and secondly

it requires evaluation of the density p
(
yn|xi

n−1

)
=
∫ (
yn|xn

)(
xn|xi

n−1dxn

)
so as to

compute the importance weights as follows.

wi
n = w̃i

n−1p
(
yn|xi

n−1

)
, i = 1 : M. (3.4.31)

The above evaluations are only possible for a very restrictive case of state space

models (see [Doucet et al., 2000] for some examples).

2. Rejection sampling

The technique of rejection sampling is used to draw samples from distribution

p
(
x
)
∝ p∗

(
x
)

which can only be evaluated upto a multiplicative constant, as be-

fore. To this end a simpler proposal density q
(
x
)

=
q∗
(
x
)

Zq
is chosen for sampling

with a requirement that for some positive constant c, cq∗
(
x
)
> p∗

(
x
)
. Once c

is found, a sample x′ ∼ q
(
x
)

is drawn and another sample u is drawn from an

uniform distribution in the range
[
0, cq∗

(
x′
)]

. If, u > p∗
(
x
)
, then x′ is rejected

otherwise it is accepted as a sample from p
(
x
)
.

The intuition behind rejection sampling is simple: the probability p
(
u 6 p∗

(
x′
))

=
p∗
(
x′
)

cq∗
(
x′
) ∝ p∗(x′), therefore it must be that the probability of the sample p

(
x′
)
∝

p∗
(
x′
)

as desired.
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Like importance sampling, rejection sampling too is inefficient in high dimen-

sions, in general c ∝ exp(N), where N is the dimension and the acceptance rate

for samples goes as
1
c
, which decreases as the dimension grows. In general it

is even difficult to evaluate c as the modes of p∗
(
x
)

are difficult to compute in

high dimensional spaces or due to its complex nature. Therefore, alternative

techniques are employed for sampling in high dimensions.

3. The Metropolis method

This is an iterative method for drawing independent samples from a distribution

p
(
x
)
∝ p∗

(
x
)

which can only be evaluated upto a multiplicative constant, as

before. The idea is to draw a sample x′ ∼ q
(
x;xt

)
where the sampling density

is a function of the current state xt (there is no restriction on the form of this

density). With this, define,

a =
p∗
(
x′
)

p∗
(
xt

) q(xt;x′
)

q
(
x′;xt

) . (3.4.32)

If a ≥ 1, then the sample x′ is accepted, else it is accepted with probability a. If

the step is accepted then xt+1 = x′ or if the step is rejected, then xt+1 = xt. it is

proven that following this procedure xt ∼ p
(
x
)

as t→∞ (see [Mackay, 1998]).

This method is an example of a Markov chain Monte Carlo (MCMC) method as

the probability distribution of each state xt+1 depends on the previous state xt.

Since the states are correlated, it is usually necessary to run several iterations to

obtain independent samples from p
(
x
)

(because as t → ∞, p
(
x
)

tends towards

the invariant distribution of the Markov chain q
(
x;xt

)
, see [Mackay, 1998] for

more details).

The advantage of the Metropolis (also called Metropolis-Hastings) algorithm is

that it is independent of the dimension of the state (the sampling density need

not satisfy any specific properties on its form, unlike importance and rejection

sampling), but it is controlled by the size of the Markov chain transitions in the

state space. Small transitions are useful in exploring high dimensional spaces, but

take a lengthy duration to generate an independent sample. On the other hand

large transitions may fall outside the typical set of p
(
x
)
. However there have

been some successful attempts at improving the convergence speed of MCMC

schemes (hybrid Monte Carlo, see [Mackay, 1998]), although, it remains difficult

to analyse the convergence of MCMC schemes.
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4. Gibbs sampling

Also known as the heat bath method, this sampling technique is used to sample

from distributions over several variables (minimum two). This is also a Metropo-

lis method where the proposal densities are the conditional distributions of the

variables which can be easily sampled from. This is a special case of the Metropo-

lis sampling scheme where every new sample is always accepted.

As an example, to draw a sample from the distribution over two variables p
(
X =

x1, x2

)
, a sample xt+1

1 ∼ p
(
x1|xt

2

)
and then a sample xt+1

2 ∼ p
(
x2|xt+1

1

)
is drawn

to obtain Xt+1. This iterative procedure is followed to convergence. Since the

procedure is a Metropolis method the probability distribution of Xt converges to

p
(
X
)
as t→∞.

The advantage of Gibbs sampling is that there are no adjustable parameters like

the other methods. The disadvantages of the Metropolis class of methods how-

ever remains due to the random walk nature of exploration of the state space.

For a more elaborate description of all the aforementioned techniques, the reader

is referred to [Mackay, 1998].

3.5 Inference on graphs - message passing schemes

This section describes a general technique to compute beliefs or posterior probability

distributions of hidden variables in Bayesian and Markov networks under light of ob-

served data or evidence. This foundation of this technique lies on passing messages,

which are functions of random variables. If the random variables are discrete, then

messages can be represented by vectors or else if they are continuous, then they can be

represented as continuous functions. In either case, if the messages are normalized to

sum to unity, then they act as probability distributions of the corresponding random

variables.

The description of the technique follows largely from the one found in [Pearl, 1997].

For the sake of generality, it is assumed that the variables are continuous in nature

(replace all integrals by sums for discrete variables). Bayesian networks are considered

first.
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Figure 3.8: A simple directed chain.

3.5.1 Bayesian networks

1. One link chain

b
(
x
)
≡ p
(
x|e
)

= βλ
(
x
)
π
(
x
)
, (3.5.1)

where, e is the observed data or evidence. It is emphasized that evidence or

observed data includes any external knowledge input to the network (usually

represented by a shaded node) and/or all instantiations of hidden variables in the

network. λ
(
x
)

= p
(
e|x
)

is the likelihood, also called the diagnostic message, and

π
(
x
)

= p
(
x
)

is called the causal or predictive message (the prior or predictive

prior), see Fig. 3.8. β =
1

p
(
e
) is a normalization constant to ensure the belief sums

to unity. In order to keep the notations clear, in the remaining discussions the

constant β is to be understood as an appropriate normalization factor, wherever

it appears.

2. Causal chain

Consider the belief of node x on the chain (see Fig. 3.9).

Figure 3.9: A causal chain - evidence on both sides.

b
(
x
)
≡ p
(
x|e =

{
e−, e+

})
= βλ

(
x
)
π
(
x
)
, (3.5.2)

where,

λ
(
x
)
≡ p
(
e−|x

)
, (3.5.3)

and,

π
(
x
)
≡ p
(
x|e+

)
, (3.5.4)

in which e− denotes all observed data or evidence at the tail end of the chain and

similarly, e+ denotes all observed data or evidence at the head end of the chain.

λ
(
x
)
≡ p
(
e−|x

)
=
∫
p
(
e−|t

)
p
(
t|x
)
dt =

∫
λ
(
t
)
p
(
t|x
)
dt. (3.5.5)
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The λ messages propagate backwards along the chain using the above rule.

π
(
x
)
≡ p
(
x|e+

)
= β

∫
p
(
x|u
)
p
(
u|e+

)
dt =

∫
p
(
x|u
)
π
(
u
)
du. (3.5.6)

The π messages propagate forwards along the chain using the above rule. At each

node in the chain (except the evidence nodes) the belief can be computed as a

product of its λ and π messages, which in turn are computed recursively, and

β = p
(
e−|e+

)−1.

3. Causal tree

Consider the belief of node x on the tree shown in Fig. 3.10.

Figure 3.10: A causal tree - one parent per node; message directions are indicated.

b
(
x
)
≡ p
(
x|
{
e−x , e

+
x

})
= βλ

(
x
)
π
(
x
)
, (3.5.7)

where,

λ
(
x
)
≡ p
(
e−x |x

)
, (3.5.8)

and,

π
(
x
)
≡ p
(
x|e+x

)
, (3.5.9)

in which e−x denotes all observed data or evidence available in the sub-tree rooted

at x, that is all evidence contained in its descendants (may include an instantia-

tion of x itself, if necessary) and e+x denotes all observed data or evidence in the

rest of the network (in its ancestors, cousins).

It is sufficient to describe how each variable updates its belief from the messages

it receives and the manner in which it generates messages for its descendants

and its parent. Through such local computations alone (due to the d-separation

criterion for Bayesian nets) at each variable, all the variables on the graph can

correctly update their belief states in a time proportional to the diameter of the
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network. The two local steps are described below for the tree in this example.

Incoming messages to variable x - belief update:

p
(
e−x |x

)
= p
(
e−y ∪ e−z |x

)
= p
(
e−y |x

)
p
(
e−z |x

)
, (by d-separation). (3.5.10)

Denote, λy

(
x
)
≡ p

(
e−y |x

)
, the message sent from child y to parent x and with a

similar connotation, λz

(
x
)
≡ p
(
e−z |x

)
.

p
(
x|e+x

)
=
∫
p
(
x|u
)
p
(
u|e+x

)
du, (by d-separation). (3.5.11)

Denote, πx

(
u
)

= p
(
u|e+x

)
, the message sent from parent u to child x. From Eqns.

3.5.10,3.5.11 the belief of variable x can be updated as shown below.

b
(
x
)

= βp
(
e−x |x

)
p
(
x|e+x

)
. (3.5.12)

Outgoing messages from variable x - propagation in trees:

Consider,

λx

(
u
)
≡ p
(
e−x |u

)
=
∫
p
(
e−x |x

)
p
(
x|u
)
du =

∫
λ
(
x
)
p
(
x|u
)
du. (3.5.13)

The above rule prescribes the recursive computation (based on the message node

x receives from its children) required to compute the message variable x sends to

its parent u. Consider,

πy

(
x
)
≡ p
(
x|e+y

)
= βp

(
e+y =

{
e+x , e

−
z

}
, x
)

= βp
(
e−z |x

)
p
(
x|e+x

)
= βλz

(
x
)
π
(
x
)
.

(3.5.14)

The above rule prescribes the recursive computation (based on the message x

receives from its other child z and its parent u) required to compute the mes-

sage variable x sends to its child y. Now the method is complete. The Eqns.

3.5.10,3.5.11,3.5.13,3.5.14,3.5.12 enable all hidden variables in the network to up-

date their beliefs in light of the evidence provided to the network.

The key point to observe here is that the computation of the messages λy

(
x
)

and

πy

(
x
)

are unaffected by each other. This ensures that the belief update of x does

not enter a circular loop (this is due to the d-separation criterion). Hence all the

belief states can be stably updated in one single pass (bottom up and top down)

through the network.

As a note of interest, consider the HMM shown in Fig. 3.6. Each hidden variable
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has one parent and two children (one of them, the observed data, is instantiated).

The belief of xn can be computed using the message passing equations as follows.

b
(
xn

)
≡ p
(
xn|
{
e−xn

, e+xn

})
= βλ

(
xn

)
π
(
xn

)
= βp

(
e−xn
|x
)
p
(
xn|e+xn

)
, (3.5.15)

where,

λ
(
xn

)
= p
(
yn|xn

)
, (leaf node). (3.5.16)

π
(
xn

)
=
∫
p
(
xn|xn−1

)
πxn

(
xn−1

)
dxn−1, (3.5.17)

where,

πxn

(
xn−1

)
≡ p
(
xn−1|e+xn

)
= p
(
xn−1|e+xn

= {y1:n−1}
)
. (3.5.18)

Combining the above equations,

b
(
xn

)
= βp

(
yn|xn

) ∫
p
(
xn|xn−1

)
p
(
xn−1|y1:n−1

)
dxn−1. (3.5.19)

This is the standard filtering equation, see Eqn. 3.4.5.

Next consider the task of evaluating the belief for the hidden variable xn in the

Figure 3.11: Smoothing on a HMM.

Bayesian network shown in Fig. 3.11. The incoming λ and π messages for xn can

be evaluated as follows.

λ
(
xn

)
= p
(
yn|xn

)
λxn+1

(
xn

)
= p
(
yn|xn

) ∫
λ
(
xn+1

)
p
(
xn+1|xn

)
dxn+1. (3.5.20)

π
(
xn

)
= p
(
xn|e+xn

)
=
∫
p
(
xn|xn−1

)
πxn

(
xn−1

)
dxn−1, (3.5.21)

where,

πxn

(
xn−1

)
≡ p
(
xn−1|e+xn

= {y1:n−1}
)
. (3.5.22)

Combining the above equations,

b
(
xn

)
= βp

(
yn|xn

) ∫
λ
(
xn+1

)
p
(
xn+1|xn

)
dxn+1

∫
p
(
xn|xn−1

)
p
(
xn−1|y1:n−1

)
dxn−1.

(3.5.23)

The above rule is the smoothing equation. When seen on a time axis, the belief

of xn is computed with past, present and future evidences taken into account. If
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the λyn

(
xn

)
= p
(
yn|xn

)
,∀n = 1 : T messages have a Gaussian form and the link

probability distributions p
(
xn|xn−1

)
,∀n = 1 : T are also Gaussian in nature, then

this belief update recursion is exactly the Rauch-Tung-Streibel (RTS) smoothing

equation, also known as the Kalman smoother (see [Minka, 1999]).

4. Causal polytrees

In a polytree a variable has one or more parents and several children. An

Figure 3.12: A causal polytree - several parent per node; example message directions are
indicated.

illustrative example is shown in Fig. 3.12. Consider the belief of variable x

on this graph.

b
(
x
)
≡ p
(
x|e−x , e+x

)
= βp

(
e−x |x

)
p
(
x|e+x

)
, (3.5.24)

where, e+x =
{
e+xu1

, . . . , e+xun

}
, is the collection of evidences contained in sub

networks on the parent side of x and e−x =
{
e−xy1

, . . . , e−xym

}
is the collection of

evidences contained in the sub-network on the descendants side of x.

Incoming messages to variable x - belief update:

λ
(
x
)
≡ p
(
e−x |x

)
=
∏

i=1:m

p
(
e−xyi
|x
)

=
∏

i=1:m

λyi

(
x
)
, (d-separation). (3.5.25)

π
(
x
)
≡ p
(
x|e+x

)
=
∫
p
(
x|u1,...,n

) ∏
i=1:n

p
(
ui|e+xui

)
du1,...,n. (3.5.26)

Denote πx

(
ui

)
= p
(
ui|e+xui

)
, the message sent from parent ui to x.

Outgoing messages from variable x - propagation in trees:

The message x sends to its parent ui is computed as follows. Let v = {uk}k 6=i,k=1:n.

λx

(
ui

)
≡ p
(
e+xv, e

−
x |ui

)
, (3.5.27)
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where e+xv is the evidence available in the v subnetwork and e−x is the evidence

available in the network rooted at x.

λx

(
ui

)
=β
∫
p
(
e+xv, e

−
x , ui, x

)
dx,

=β
∫
p
(
e−x |x

)
p
(
e+xv, ui, x

)
dx, (d-separation),

=β
∫
λ
(
x
) ∫

p
(
e+xv, ui, v, x

)
dvdx,

=β
∫
λ
(
x
) ∫

p
(
e+xv|v

)
p
(
x, v|ui

)
dvdx,

=β
∫
λ
(
x
) ∫ p

(
v|e+xv

)
p
(
v
) p

(
x|v, ui

)
p
(
v|ui

)
dvdx,

=β
∫
λ
(
x
) ∫

p
(
v|e+xv

)
p
(
x|v, ui

)
dvdx,

=β
∫
λ
(
x
) ∫ ∏

j 6=i,j=1:n

πx

(
uj |e+xuj

)
p
(
x|v, ui

)
dvdx. (3.5.28)

The message x sends to the child yi can be computed as follows.

πyi

(
x
)
≡ p
(
x|e+xyi

)
=βp

(
x,
{
e+xuj

}
j=1:n

,
{
e−xyj

}
j=1:m,j 6=i

)
,

=β
∏

j 6=i,j=1:m

p
(
e−xyj
|x
)
π
(
x
)
,

=β
∏

j 6=i,j=1:m

λyj

(
x
)
π
(
x
)
. (3.5.29)

These equations are sufficient to update the beliefs of the hidden variables in the

network.

5. Loopy Bayesian networks - multiply connected networks

Loopy graphs are multiply connected Bayesian networks that contain undirected

loops (directed loops are disallowed in Bayesian networks). The message pass-

ing scheme described so far may not converge to a stable equilibrium as the

d-separation rule on which it is based does not hold true (a parent and a child

of a variable may be connected via another path through the network). An illus-

trative example is shown on the left part of Fig.3.13.

There are three different approaches to deal with loops. First, is the cluster-

ing method where variables are lumped together to form a compound variable

and so converting the loop to a tree on which standard message passing can be

used. See Fig. 3.13 for an illustration. This is reasonable only when the loops



3.5. INFERENCE ON GRAPHS - MESSAGE PASSING SCHEMES 63

Figure 3.13: Reducing a loopy graph to a tree - the clustering approach.

are small and the dimension of the variables are low, otherwise the re-evaluation

of the probability distributions of the links (potentials) would be difficult due

to the compounding of high dimensional variables (with exponentially increasing

cardinality). Things are more complicated if the variables are continuous. An-

other difficulty is that the lack of structure within the compound variable makes

it difficult to explain the belief updates of its component variables.

The second approach is the conditioning approach, where a variable in the loop

Figure 3.14: Reducing a loopy graph to a tree - the conditioning approach.

is instantiated such that the loop is converted to a singly connected network and

then the beliefs of the non-instantiated variables are averaged over the posterior

distribution of the instantiated variable. For the graph shown on the left part

of Fig.3.14, if the variable a is instantiated, then the belief of variable b can be

computed using the Chapman Kolmogorov rule as shown below.

p
(
b|e
)

=
∫
p
(
b|a, e

)
p
(
a|e
)
da. (3.5.30)

The belief of a itself is computed as follows.

p
(
a|e
)

= βp
(
e|a
)
p
(
a
)
, (3.5.31)

which requires knowledge of the prior distribution of a and the ability to evaluate

p
(
e|a
)

(normally evaluated using message passing on a singly connected network

between e and a). This method again suffers when the network is highly con-

nected and the number of variables required to be instantiated to render a singly
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connected network is large.

The third approach is the Gibbs sampling approach (see Sec.3.4.2) to drawing

samples from the posterior distribution over all the hidden variables in the net-

work. The beliefs for each state of a hidden variables is then computed by counting

the frequency with which that sample is drawn. An implicit assumption in this

approach is that a sample of a hidden variable can be drawn from the distribu-

tion of the variable conditioned on its Markov blanket (see [Pearl, 1997]). This is

usually difficult in general cases where the likelihood functions (λ messages) are

difficult to sample from due to normalization problems (see Chapter 6 for such a

case).

3.5.2 Markov networks

1. Markov trees

Consider the Markov network shown in Fig. 3.15. The belief of variable x can

be computed using a strategy similar to the one described for Bayesian networks

with a few modifications (there is no notion of a parent and child in these net-

works).

Belief update:

Figure 3.15: General Markov tree.

b
(
x
)
≡ p
(
x|e
)

= βp
(
ex|x

)
p
(
x|eM(x)

)
, (3.5.32)

where ex is the evidence directly connected to x, eM(x) is the evidence avail-

able in the Markov boundary of x (the Markov boundary is the minimum set

of neighbours of x which vertex separates x from the rest of the network, in

Fig. 3.15, M(x) = {u1, . . . , un}) and β is an appropriate normalizing constant
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to ensure the belief sums to unity. For comparison’s sake, λ
(
x
)
≡ p

(
ex|x

)
and

π
(
x
)
≡ p
(
x|eM(x)

)
.

p
(
x|eM(x)

)
=β
∫
p
(
x,M(x), eM(x)

)
dM(x),

=β
∫
p
(
eM(x)|M(x)

)
φ
(
x,M(x)

)
dM(x), (3.5.33)

where φ
(
x,M(x)

)
=
∏

i∈1...n φi

(
x, ui

)
is a compatibility function over the cliques

(here, pair-wise cliques) of the network. Now,

p
(
x|eM(x)

)
=β
∫ ∏

iεM(x)

p
(
eM(ui)/x ∪ eui |ui

)
φi

(
x, ui

)
dM(x), (By conditional independency),

=β
∏

iεM(x)

mui→x

(
x
)
, (3.5.34)

where mui→x

(
x
)

=
∫
p
(
eM(ui)/x ∪ eui |ui

)
φi

(
x, ui

)
dui is the message sent from ui

to x. With these messages the belief of x can be computed as shown below.

b
(
x
)
≡ p
(
x|e
)

= βp
(
ex|x

) ∏
iεM(x)

mui→x

(
x
)
. (3.5.35)

Message propagation:

The message x sends to its neighbour ui can be computed recursively as shown

below.

mx→ui

(
ui

)
≡β
∫
p
(
eM(x)/ui

∪ ex|x
)
φi

(
x, ui

)
dx,

=β
∫
p
(
ex|x

)
φi

(
x, ui

) ∏
kεM(x)/ui

muk→x

(
x
)
dx. (3.5.36)

These recursions are sufficient to propagate the effects of the observing new data

throughout the network.

2. Loopy Markov networks - multiply connected networks

As for loopy Bayesian networks, only approximate belief propagation strategies

exist for multiply connected Markov networks. To see why, consider the network

shown in Fig. 3.16, the elements in the Markov boundary of x1 are not separated

by x1 due to the other pathway x2 − x3 − x4. But this is the assumption under

which the recursive message propagation equations 3.5.36 were derived. There-

fore, exact beliefs cannot be computed on such loopy graphs.
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Figure 3.16: A loopy Markov network.

The general strategy to deal with loops in Markov networks is to perform be-

lief updates and message propagation as described for the case of Markov trees.

Theoretical convergence to the exact beliefs is not guaranteed, nevertheless the

method has found wide spread use due to its empirical success. There have also

been some attempts to explain its success by viewing loopy belief propagation as

an energy minimization strategy (see [Yedidia et al., 2001]). In formal terms, the

message propogation from variable x1 to its neighbour x2, at iteration t, in the

loopy graph of Fig. 3.16 is made as follows.

mt
x1→x2

(
x2

)
≡ β

∫
p
(
e1|x1

)
φ1,2

(
x1, x2

) ∏
kεM(x1)/x2

mt−1
xk→x1

(
x1

)
dx1, (3.5.37)

The above form of message update is used for all message computations. The

belief update of variable x2 at iteration t is now made as follows.

b
(
x2

)
≡ pt

(
x2|e = {e1, . . . , e4}

)
= βp

(
ex2 |x2

) ∏
iεM(x2)

mt
xi→x2

(
x2

)
. (3.5.38)

The above form of belief update is used for hidden variables. Note that these

iterative updates are exactly the same as the message propagation and belief

update equations given in Eqn. 3.5.35 and Eqn. 3.5.36 (with added time index

for more clarity).

A note on message computation:

Although all the messages necessary for a belief update can be computed in an

unnormalized form and their product normalized to render the normalized belief,

it is generally advised to normalize the messages individually (that is, compute

the β constants for each message) before the belief update step to avoid numerical

overflow problems.



4

Probabilistic fusion of point

trackers

4.1 Introduction

Tracking feature points is ubiquitous and its relevance cannot be over stated. On

its own, it is a vital preprocessing step for applications such as, digital cinema post-

production [Buchanan and Fitzgibbon, 2007], motion estimation [Sand and Teller, 2006]

and people finding [Ramanan and Forsyth, 2003]. This approach has also established

its place as a component of several recent tracking methods including, the ”flock of

KLT features” approach of [Kolsch and Turk, 2004; Tomasi and Kanade, 1991] for

hand tracking, ”learning features” approach of [Grabner et al., 2007] for tracking rigid

objects, ”conditional filters” for point tracking of [Arnaud et al., 2004], simultaneous

localization and mapping (SLAM) algorithms [B. Williams and Reid, 2007] and ”ran-

domized features” as a cue within a multi-cue object tracking [Badrinarayanan et al.,

2007b] method.

The strength of point tracking is apparent when tracking distinct feature points, like

SIFT based features [Lowe, 2004] or corner points [Harris and Stephens, 1988], lying on

objects displaying smooth and nearly planar motion. The resulting trajectory is smooth

and can be used, for instance, to estimate object motion models or camera pose pa-

rameters. If additional care is taken [J.P.Lewis, 1995], then points can be tracked even

under drastic changes in illumination or shadow effects visible on the object. However,

weaknesses begin to appear in presence of non-planar motions, clutter, camera jerks

or occlusions. Here the trajectory goes awry and the tracking process needs to be

restarted. This is because point trackers implicitly assume the posterior distribution

67



68 4. PROBABILISTIC FUSION OF POINT TRACKERS

of the tracked point is uni-modal and the object is at a distance from the camera for

which its motion can be assumed planar. All these are very restrictive assumptions and

more often than not unrealistic. Attempts have been made recently to overcome some

of these shorcomings by driving the ”search” for feature points based on the predictions

of the global motion of the object [Buchanan and Fitzgibbon, 2007]. In any case, point

trackers are still useful during tracking over short time-spans and when several of them

are made to work in a globally consistent fashion [Buchanan and Fitzgibbon, 2007;

Badrinarayanan et al., 2007b].

Two fundamental differences exist between discriminative approaches like point

tracking and generative approaches like Bayesian filtering. First is in the relationship

between the observed data (image or collection of some of its parts) and the hidden

state variable. In point tracking, true to other discriminative approaches, the observed

data is used to directly predict the position of the point (the hidden state). In this

sense there is a deterministic relationship established between the observed data and

the hidden state. On the other hand, generative models in a Bayesian framework intro-

duce a data likelihood which assigns a measure to the hidden variable. This measure

quantifies how likely the hidden variable is to have generated the observed data. There-

fore, there is a probabilistic relationship established between the observed data and the

hidden state. The second difference lies in the way the state space is explored by these

approaches. In point tracking methods, such as correlation based tracking [J.P.Lewis,

1995] , the exploration is regular image grid search, usually centered on the estimated

position of the point at the previous instant. In contrast, several Bayesian methods

employ random walks or other stochastic diffusion equations to explore the state space.

These two characteristic differences are an asset and can be exploited advantageously

within a framework in which these two approaches can operate together symbiotically

while essentially retaining their characteristic qualities. Probabilistic graphical models

provide a mechanism to model these ideas.

The contents of this chapter first present a probabilistic graphical model to view point

tracking as a Monte Carlo (MC) simulation filter in Sec. 4.2. Then on, in Sec. 4.3

a graphical model is presented for measurement fusion via a ”probabilistic message

combination” technique. Based on a simplified switching version of this model, a useful

tracking scheme termed randomized feature point tracking is constructed in Sec. 4.4.

Some experiments are then setup in Sec. 4.5 to test this tracker. Results of tracking
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with this scheme are presented and the qualities of this tracker discussed in Sec. 4.6.

Conclusions are drawn in Sec. 4.7.

4.2 Point tracking from a Bayesian perspective

In feature point tracking, a small patch of image around a chosen feature point, also

called the point image appearance template (or interchangeably termed template), is

tracked. At the arrival of new data (image) this template is matched with test tem-

plates extracted around grid points (samples) in a search space S. In practice, S is

centered on the estimated location of the feature point at the previous instant. The

matching involves computing the sum of square distance (SSD) or normalized cross-

correlation (NCC) between the appearance template and the test template.The samples

in S and their corresponding match weights together compose a similarity or match

surface. The coordinates corresponding to the modal point of this surface is taken to

be the estimated location of the feature point.

Emulation of these forms of point tracking within a stochastic filtering framework re-

quires the specification of an appropriate process model for the hidden state, herein the

position of the feature point, and an observation model describing the relation between

the sequential data (images) and the hidden state. The process model facilitates the

prediction of the state of the point based on its previous states. To specify such a

model, it is informative to observe that given the image at instant n, the grid search

space in which the new location of the feature point is sought is a deterministic function

of the match surface at the instant n−1 (in general practice, search space S is centered

on the coordinates of the modal point of this surface). This search is equivalent to a

kinematic prediction. Therefore, this prediction of the hidden state is parameterized

by the match surface or some statistic derived from it.

The observation model describes the relation between the image data (or a collection

of its parts) and the hidden state. This relationship is in general described through a

non-linear function between the image data and the hidden state; the matching process

in the case of point tracking. Based on these guidelines, the graphical model in Fig.

4.1 is put forth for a stochastic description of point tracking.

In the graphical model shown in Fig. 4.1, where xn denotes the hidden state at instant

n (the location of the feature point at n), y1:n denotes the sequence of measurements

associated to the sequence of hidden states x1:n and q0:n−1 are parameters controlling

the process model. From the model, the measurement process is independent when
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conditioned on the hidden states. Upon noting this and the form of the graphical

model in Fig. 4.1, the filtering distribution can be expressed as shown below.

Figure 4.1: Disconnected graphical model for point tracking. Deterministic parameters are
marked by small rectangles.

p
(
xn|y1:n;ϑ, qn−1

)
= p
(
xn|yn;ϑ, qn−1

)
∝ l
(
yn|xn, ϑ

)
p
(
xn|qn−1

)
, (4.2.1)

where ϑ is a parameter of the data likelihood l(.), which, for instance, could be the

image appearance template of a feature point.

In this model, the matching process between the image appearance model and test

templates at samples of xn can be subsumed in the functional definition of the data

likelihood l
(
yn|xn;ϑ

)
as demonstrated below.

l
(
yn|xn;ϑ

)
, ‖T (yn, xn)− ϑ‖, (4.2.2)

where the function T (yn, xn) depends on the observation (test templates) and ‖.‖ is

a chosen distance measure (SSD, NCC). Here, ϑ is the reference image appearance

template for a point tracker against which the test templates are compared.

Approximating the filtering distributions:

Say, at instant n − 1, the following sample set
{
xi

n−1, w̃
i
n−1

}M

i=1
approximation of the

filtering distribution is available.

p
(
xn−1|yn−1;ϑ, qn−2

)
≈

M∑
i=1

w̃i
n−1δxi

n−1

(
xn−1

)
. (4.2.3)

From this approximation, the parameter qn−1 is updated as shown below.

qn−1 ≈ argmax
xn−1

M∑
i=1

w̃i
n−1δxi

n−1

(
xn−1

)
. (4.2.4)

Given this estimate of qn−1, the filtering distribution at instant n can be approximated

by aid of importance sampling [Arulampalam et al., 2002], with the prior p
(
xn|qn−1

)
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acting as the importance or proposal distribution. Samples
{
xi

n ∼ p
(
xn|qn−1

)}M

i=0
are

drawn and associated with an unnormalized importance weight as indicated below.

wi
n = l

(
yn|xi

n, ϑ
)
, i = 1 . . .M. (4.2.5)

In accordance with the principle of importance sampling, normalizing these importance

weights delivers the required approximation of the filtering distribution:

p
(
xn|yn;ϑ, qn−1

)
≈

M∑
i=1

w̃i
nδxi

n

(
xn

)
. (4.2.6)

These steps are repeated at each new filtering instant.

The proposal density

The following proposal density is designed with a view to imitate regular grid search

used in point tracking.

p
(
xn|qn−1

)
= US

(
xn;µ = qn−1

)
, (4.2.7)

where US

(
xn;µ = qn−1

)
is a uniform distribution in xn, with mean µ and support S.

If sufficient non-repetitive samples of xn are drawn from this distribution, then regular

grid search inside the search space S can be mimicked. As a note of interest here,

the definition of the prior in Eqn. 4.2.7 is only one among several ways in which the

parameter qn−1 could be used to imitate point tracking. Other novel ways to utilize

such parametrization could indeed lead to various other discriminative/deterministic

tracking schemes.

Two points are noteworthy in this filtering by simulation representation of point

tracking. First is the fact that any arbitrarily shaped filtering distribution can be

propagated over time, true to a sequential Monte Carlo approach and second is that

filtering at each time instant can be made iterative. The approximated filtering dis-

tribution at the end of an iteration can parameterize the filtering distribution at the

following iteration. This brings it closer in spirit to iterative optimization schemes such

as in the deterministic tracker of [Comaniciu and Meer, 1999], [Tomasi and Kanade,

1991], wherein the sampling of the search space is in the direction of the steepest gra-

dient. Further work is necessary in this direction to establish this proposition. Finally,

the appendix at the end of this chapter describes another Bayesian viewpoint of point

tracking based on the concept of Assumed density filtering (ADF) [Boyen and Koller,

1998].
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If the problem is to track the center of an object, then tracking a single feature

point on the object (excluding the center itself) consistently would be sufficient if the

spatial relationship between the feature point and the center remains constant while

the object is in motion. But such assumptions are easily violated in practice. Instead,

if several points on the object are tracked independently and their estimates of the

center are consistently fused, then a meaningful estimate with high certainty can be

obtained when a majority of the points are tracked correctly. The next section paves

the way for modeling such an idea borrowing from the concept presented so far.

4.3 Graphical model for tracking with a set of point track-

ers

4.3.1 Static model

Consider the following joint model corresponding to the graph shown in Fig. 4.2.

p
(
x0, x1, x2|y1, y2; θ

)
∝ l1

(
y1|x1

)
l2
(
y2|x2

)
p
(
x0, x1, x2|θ

)
, (4.3.1)

where, x0 is the hidden ”fused state”, x1, x2 represent hidden states with corresponding

measurements (data) y1, y2. l1 and l2 define the likelihood functions (no observation is

associated with x0), whose partition functions are difficult to compute analytically. x0

is related to the other hidden states by the prior defined below.

Figure 4.2: Graphical model for message combination in the static case with 3 hidden variables.

p
(
x0, x1, x2|θ

)
, θg

(
x0|x1

)
p
(
x1

)
p
(
x2

)
+
[
1− θ

]
h
(
x0|x2

)
p
(
x2

)
p
(
x1

)
; (4.3.2)

where, parameter θ ∈ [0, 1] and g
(
x0|x1

)
6= p

(
x0|x1

)
, h
(
x0|x2

)
6= p

(
x0|x2

)
are two

instrumental conditional distributions. With this definition, the posterior distribution

of x0 is obtained by marginalisation of the joint law in Eqn. 4.3.1:

p
(
x0|y1, y2; θ

)
= θ

∫
l1
(
y1|x1

)
g
(
x0|x1

)
p
(
x1

)
dx1∫

l1
(
y1|x1

)
p
(
x1

)
dx1

+
[
1− θ

]∫ l2(y2|x2

)
h
(
x0|x2

)
p
(
x2

)
dx2∫

l2
(
y2|x2

)
p
(
x2

)
dx2

.



4.3. GRAPHICAL MODEL FOR TRACKING WITH A SET OF POINT TRACKERS73

Analogous to belief propagation terminology [Yedidia et al., 2001; Sudderth et al.,

2003], messages m1→0,m2→0 are defined and used as follows.

m1→0

(
x0

)
=

∫
l1
(
y1|x1

)
g
(
x0|x1

)
p
(
x1

)
dx1∫

l1
(
y1|x1

)
p
(
x1

)
dx1

,

m2→0

(
x0

)
=

∫
l2
(
y2|x2

)
h
(
x0|x2

)
p
(
x2

)
dx2∫

l2
(
y2|x2

)
p
(
x2

)
dx2

,

p
(
x0|y1, y2; θ

)
∝ θm1→0

(
x0

)
+
[
1− θ

]
m2→0

(
x0

)
. (4.3.3)

The message switching or linear weighted message combination attribute is apparent

from the above equation. For instance, if θ is a binary variable taking value 1, then

the posterior of x0 is influenced only by m1→0

(
x0

)
. On the other hand, if θ takes on

real values in the range
[
0, 1
]
, then the posterior is composed by a linear combination

of messages. Also, note that the messages are normalized to sum to unity.

It is also informative to observe the posterior distribution of x1:

p
(
x1|y1, y2; θ

)
= θ

∫
l1
(
y1|x1

)
g
(
x0|x1

)
p
(
x1

) ∫
l2
(
y2|x2

)
p
(
x2

)
dx0dx2+[

1− θ
] ∫

l2
(
y2|x2

)
h
(
x0|x2

)
p
(
x2

) ∫
l1
(
y1|x1

)
p
(
x1

)
dx0dx2, (4.3.4)

which reduces to;

p
(
x1|y1, y2

)
≡ p
(
x1|y1

)
∝ l1

(
y1|x1

)
p
(
x1

)
. (4.3.5)

This posterior is not controlled by the parameter θ and the same holds true for state

x2 too. Similar results emerge for the sequential case too, as discussed below.

4.3.2 Sequential model

Consider the following model corresponding to the Dynamic Bayesian Network (DBN)

shown in Fig. 4.3.

p
(
Xn|Y1:n; θn

)
∝ l
(
Yn|Xn

)
p
(
Xn|Y1:n−1; θn

)
, (4.3.6)

where, Xn =
{
x0

n, x
1
n, x

2
n

}
, Y1:n =

{
y1
1:n, y

2
1:n

}
. The first order Markovian transition

distribution (or joint process model) is defined below.

p
(
Xn|Xn−1; θn

)
,
[
θng
(
x0

n|x1
n

)
+
[
1− θn

]
h
(
x0

n|x2
n

)]
p
(
x1

n|x1
n−1

)
p
(
x2

n|x2
n−1

)
, (4.3.7)
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Figure 4.3: Graphical model for message combination in the sequential case with 3 hidden
variables.

with parameter θn ∈ (0, 1) and instrumental distributions, g
(
x0

n|x1
n

)
, h
(
x0

n|x2
n

)
. The

filtering distribution of x0
n can then be evaluated through the following steps.

p
(
x0

n|Y1:n; θn

)
∝
∫ [

θng
(
x0

n|x1
n

)
+
[
1− θn

]
h
(
x0

n|x2
n

)]
l1
(
y1

n|x1
n

)
l2
(
y2

n|x2
n

)
×

p
(
x1

n|x1
n−1

)
p
(
x2

n|x2
n−1

)
p
(
Xn−1|Y1:n−1; θn−1

)
dx1

ndx
2
ndXn−1. (4.3.8)

Tackling temporal loops

The variables x1
n, x

2
n are intricately connected in the above integral via the term

p
(
Xn−1|Y1:n−1; θn−1

)
. In general, it is difficult to achieve the goal of expressing the

above integral as a linear combination of messages like in Eqn. 4.3.3. However, the

integral is indeed simplified under the special case of filtering by simulation model of

point tracking (see Eqn. 4.2.1 in Sec. 4.2). When this special case is invoked the model

Figure 4.4: Simplified graphical model for message combination in the sequential case with 3
hidden variables.

simplifies to the form shown in Fig. 4.4. It is brought to the notice of the reader here

that such model simplifications will be used frequently in the forthcoming discussions.

From the reduced model the following equations can be written down.

p
(
x0

n|Yn; q1n−1, q
2
n−1, θn

)
= θnm1→0

(
x0

n|q1n−1

)
+
[
1− θn

]
m2→0

(
x0

n|q2n−1

)
, (4.3.9)
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where,

m1→0

(
x0

n|q1n−1

)
=

∫
l1
(
y1

n|x1
n

)
p
(
x1

n|q1n−1

)
g
(
x0

n|x1
n

)
dx1

n∫
l1
(
y1

n|x1
n

)
p
(
x1

n|q1n−1

)
dx1

n

, (4.3.10a)

m2→0

(
x0

n|q2n−1

)
=

∫
l2
(
y2

n|x2
n

)
p
(
x2

n|q2n−1

)
h
(
x0

n|x2
n

)
dx2

n∫
l2
(
y2

n|x2
n

)
p
(
x2

n|q2n−1

)
dx2

n

, (4.3.10b)

and q1n−1, q
2
n−1 are parameters defined as in Eqn. 4.2.4.Proceeding in the same lines as

the preceding demonstration, the filtering distribution of say, x1
n, is as shown below.

p
(
x1

n|y1
n; q1n−1

)
∝ l1

(
y1

n|x1
n

)
p
(
x1

n|q1n−1

)
. (4.3.11)

Once again, as in the static case, the prior is so arranged that the filtering distributions

of variables x1
n, x

2
n are not influenced by the parameter θn. This is an important point

and proves useful in the update of θn.

4.3.3 Parameter update

The remaining issue in computing the filtering distribution of x0
n is the parameter

update. In convenient situations, where the joint state posterior can be computed an-

alytically, the Maximum Likelihood Estimate (MLE) or Maximum a Posteriori (MAP)

estimate of θn can be obtained. However such closed form computations generally

involve intractable integrations. Instead, the Iterative Conditional Estimate (ICE)

technique of [Salzenstein and Pieczynski, 1995] proposes the following iterative method

for parameter update.

θn = E
p
(
Xn|Yn;θn−1

)Θ(Xn, Yn

)
. (4.3.12)

The statistical estimator Θ
(
.
)

could in an analytically convenient case be a MLE or

MAP estimator. In more difficult cases, a choice based on empirical experience needs

to be made. One such example, where the statistical estimate is binary, is given below.

Θ
(
Xn, Yn

)
=

1, if,
C1

[
p
(
x1

n|Yn;q1
n−1

)]
C2

[
p
(
x2

n|Yn;q2
n−1

)] ≤ 1

0, otherwise,
(4.3.13)

where C1, C2 are some scalar measures of certainty or figures of merit, for instance,

determinants of covariance matrices. The filtering distributions for hidden states x1
n, x

2
n

can themselves be approximated independent of θn (see Eqn. 4.3.11). As such, other
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verification measures to determine inconsistency like the ones suggested in Hua et al

[Hua et al., 2006] can also be configured to deliver statistical estimates resembling the

one shown above.

To put all these ideas in context, a motivational example of sequential state es-

timation based on the sequential message switching model is presented below. Two

hypothetical point trackers are employed for demonstration. The measurement mod-

els are assumed non-linear and priors are assume to be non-Gaussian, thus invoking

importance sampling for approximations of filtering distributions [Arulampalam et al.,

2002].

4.3.4 Switching two point trackers

Figure 4.5: Graphical model for switching two point trackers. Parameters controlling the links
are denoted.

Problem: Given two distinct point trackers on an object and their prior relation-

ship with the position of the centre of the object (x0
n), estimate sequentially the position

of centre of the object by tracking these two points (see Fig. 4.5.

With reference to Fig. 4.5, the filtering model for the joint state, with explicit param-

eterization, is shown below.

p
(
Xn|Y1:n; θn, t1, t2, ϑ1, ϑ2

)
∝ l
(
Yn|Xn;ϑ1, ϑ2

)
p
(
Xn|Y1:n−1; θn, t1, t2

)
, (4.3.14)

where the notations for the state and measurements remain the same as before. t1, t2

parameterize the prior relationship between x0
n, x

1
n and x0

n, x
2
n respectively. ϑ1, ϑ2 are

the image appearance templates for the point trackers.

Once again, to overcome the intractable inference issue associated with temporal loops,

the model is simplified using the strategy presented earlier for the sequential case (see

Sec. 4.2 and Fig. 4.4); whereupon, the filtering distribution of the hidden ”fused state”
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x0
n is given as follows.

p
(
x0

n|Yn; θn, q
1
n−1, q

2
n−1, t1, t2, ϑ1, ϑ2

)
= θnm1→0

(
x0

n|q1n−1, t1, ϑ1

)
+[

1− θn

]
m2→0

(
x0

n|q2n−1, t2, ϑ2

)
, (4.3.15)

where,

m1→0

(
x0

n|q1n−1, t1, ϑ1

)
=

∫
l1
(
y1

n|x1
n;ϑ1

)
p
(
x1

n|q1n−1

)
g
(
x0

n|x1
n; t1

)
dx1

n∫
l1
(
y1

n|x1
n;ϑ1

)
p
(
x1

n|q1n−1

)
dx1

n

, (4.3.16a)

m2→0

(
x0

n|q2n−1, t2, ϑ2

)
=

∫
l2
(
y2

n|x2
n;ϑ2

)
p
(
x2

n|q2n−1

)
h
(
x0

n|x2
n; t2

)
dx2

n∫
l2
(
y2

n|x2
n;ϑ2

)
p
(
x2

n|q2n−1

)
dx2

n

, (4.3.16b)

and, q1n−1, q
2
n−1 are parameters defined as in Eqn. 4.2.4. Let,

g
(
x0

n|x1
n; t1

)
= δx1

n+t1

(
x0

n

)
, h
(
x0

n|x2
n; t2

)
= δx2

n+t2

(
x0

n

)
, (4.3.17)

and

p
(
x1

n|q1n−1

)
, US

(
x1

n;µ1 = q1n−1

)
, p
(
x2

n|q2n−1

)
, US

(
x2

n;µ2 = q2n−1

)
; (4.3.18)

with the above densities being interpreted as in Eqn. 4.2.7.

Sampled based approximation of the messages

The representative example of m1→0

(
x0

n|q1n−1, t1, ϑ1

)
is considered here. On drawing

samples x1,i
n ∼ p

(
x1

n|q1n−1

)
, i ∈ 1 . . . N , this message can be approximated as shown

below.

m1→0

(
x0

n|q1n−1, t1, ϑ1

)
≈
∑

i∈1...N l1
(
y1

n|x
1,i
n ;ϑ1

)
δ
x1,i

n +t1

(
x0

n

)∑
i∈1...N l1

(
y1

n|x
1,i
n ;ϑ1

) . (4.3.19)

The other message can be approximated with a similar strategy.

Now, the filtering distribution of x0
n can be written down using a sample based approx-

imation as follows.

p
(
x0

n|Yn; θn, q
1
n−1, q

2
n−1, t1, t2, ϑ1, ϑ2

)
= θn

∑
i∈1...N l1

(
y1

n|x
1,i
n ;ϑ1

)
δ
x1,i

n +t1

(
x0

n

)∑
i∈1...N l1

(
y1

n|x
1,i
n ;ϑ1

) +

[
1− θn

]∑i∈1...N l2
(
y2

n|x
2,i
n ;ϑ2

)
δ
x2,i

n +t2

(
x0

n

)∑
i∈1...N l2

(
y2

n|x
2,i
n ;ϑ2

) . (4.3.20)

As gathered from Eqn. 4.3.11, the filtering distributions of x1
n and x2

n are independent

from θn. Therefore, their filtering distributions can be approximated with sample sets
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using importance sampling approximations of the form presented in Section. 4.2 and

this subsequently is used to determine the state of θn. If θn = 1 the posterior of x0
n is

composed by the approximation of m1→0

(
x0

n|q1n−1, t1, ϑ1

)
and vice-versa. Notice that

the approximations of the messages are already normalized to sum to unity.

Extending the discussions so far, a practical object tracking filter, henceforth termed

the randomized feature point tracker, is developed in the following section.

4.4 Randomized feature point tracker: RFT-filter

Based on the switching model presented in the previous section, the idea here is to

construct an object position tracker with a set of randomly selected feature points

(equivalently their image templates) on the object. Hence the name ”randomized fea-

ture point tracker”. In this tracker, the set of feature point templates captures the

appearance of the object. While conforming to the graphical model the tracker is given

the ability to replace a subset of the point trackers on the fly. The key strength of

this tracker then lies in its ability to ”adapt” the appearance model of the object itself

via online point tracker replacement. The method proposes two intuitive and practical

ways to replace outlier point trackers by sampling from the set of available posterior

distributions. Each sampled point is then associated with an image appearance tem-

plate to obtain a new point tracker. Finally, experiments on real data highlight the

qualities of this tracker.

It is pointed out here that the idea of tracking with a set of point trackers is not en-

tirely new. A close attempt which uses a cluster of detected corner points for tracking

is described in the work by [Reid and Murray, 1996]. Their method is proposed in

the context of active vision wherein a bunch of corner points are tracked to fixate a

head/eye system onto a particular point in the scene. In their process, unreliable cor-

ner points are removed and, if available, new ones are included. Such replacement is

also the essence of the feature learning technique proposed by [Grabner et al., 2007].

[Kolsch and Turk, 2004] employ a flock of features and feature replacement within a

deterministic method. [Arnaud et al., 2004] use a stochastic filtering model for point

tracking with global guidance from optic flow computations. This work is somewhat

close in spirit to the stochastic simulation model for point tracking presented here. The

difference with their work is that their focus is on developing new methodologies for

point tracking itself.

Apart from the obvious stochastic nature of ”picking up” point trackers online, what
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is indeed different from all these methods is the probabilistic fusion idea on which the

randomized feature tracker is based. This tracker is a stochastic filter propagating

arbitrary distributions. The result of tracking at each instant is a distribution, not

just a point estimate as in most of these other methods. This fact will later facilitate

integration of discriminative point trackers with other stochastic filters, such as particle

filters, for robust tracking (See chapter 5).

Figure 4.6: Graphical model for tracking with a set of point trackers

The graphical model underlying this tracker is shown in Fig. 4.6. At instant n,

the hidden state representing the position of the object is x0
n, while

{
xf

n, y
f
n, f = 1 : F

}
represent the hidden states and associated measurements of the point trackers. Let

Xn =
{
x0

n, x
1
n, . . . , x

F
n

}
denote the joint hidden state and Yn =

{
y1

n, . . . , y
F
n

}
the col-

lection of measurements at instant n. Notice that there is no measurement associated

with the hidden state x0
n itself. The filtering distribution of the joint hidden state is

factorised as shown below.

p
(
Xn|Y1:n; Φn, T

)
∝ l
(
Yn|Xn

) ∫
Ψ
(
Xn|Xn−1; Φn, T

)
p
(
Xn−1|Y1:n−1; Φn−1, T

)
dXn−1,

(4.4.1)

where parameter Φn =
{
αf

n, f = 1 : F
}

and αf
n are binary in nature. The elements

of Φn will now play the role of θn from the preceeding discussions (See section 4.3.2).

These parameters control the switching or combination of messages to compose the

filtering distribution of the hidden state x1
n. l
(
Yn|Xn

)
represents the likelihood function

whose partition function is difficult to compute analytically. Ψ (.) shown below is a

compatibility function (unnormalized) between the hidden variables in the model and

is parameterized by T .

Ψ
(
Xn|Xn−1; Φn, T

)
,

F∑
f=1

αf
nΨ0,f

(
x0

n|xf
n; T

)
p
(
xf

n|x
f
n−1

) F∏
j=1,j 6=f

p
(
xj

n|x
j
n−1

)
. (4.4.2)

This compatibility function describes the unnormalized relationship (in the probability

distribution sense) between the hidden state variables. The above form is somewhat
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reminiscent of Eqns. 4.3.2, 4.3.7. The key difference is that
∑

f∈1:F α
f
n 6= 1. The idea

behind this form of compatibility is fairly obvious, it is so chosen to enable the filtering

distribution of x0
n to be expressed as a linear combination of messages, as in Eqn. 4.3.9

. The product term
∏F

j=1,j 6=f p
(
xj

n|xj
n−1

)
is strictly not necessary, it is inserted only

as an adjustment factor to arrive at an elegant form of message combination. More

discussions on the compatibility function will follow shortly. For now, the filtering

distribution of the ”fused” hidden state x0
n can be written down as follows.

p
(
x0

n|Y1:n; Φn, T
)
∝

F∑
f=1

αf
n

∫
lf
(
yf

n|xf
n

)
Ψ0,f

(
x0

n|xf
n; T

)
p
(
xf

n|x
f
n−1

)
×

∫ F∏
j=1,j 6=f

lj
(
yj

n|xj
n

)
p
(
xj

n|x
j
n−1

)
p
(
Xn−1|Y1:n−1; Φn−1, T

)
dXn−1dx

1,...,F
n .

(4.4.3)

Upon simplifying the (loopy) graphical model for tractable inference (see Sec. 4.2

and Fig. 4.4), the above filtering distribution can be succintly written using message

notation as follows.

p

(
x0

n|Yn; Φn, T ,
{
qf
n−1

}
f=1:F

)
∝

F∑
f=1

αf
nmf→0

(
x0

n|q
f
n−1

)
, (4.4.4)

with,

mf→0

(
x0

n|q
f
n−1

)
=

∫
lf
(
yf

n|xf
n

)
Ψ0,f

(
x0

n|x
f
n; T

)
p
(
xf

n|qf
n−1

)
dxf

n∫
lf
(
yf

n|xf
n

)
p
(
xf

n|qf
n−1

)
dxf

n

, f = 1 : F, (4.4.5)

where q1n−1, q
2
n−1 are parameters defined as in Eqn. 4.2.4. As may be verified, the

filtering distribution of the hidden states representing the position of the tracked feature

points is as given below.

p
(
xf

n|yf
n; qf

n−1

)
∝ lf

(
yf

n|xf
n

)
p
(
xf

n|q
f
n−1

)
, f = 1 : F. (4.4.6)

It is to be noted that the above filtering distributions are not dependent on the pa-

rameter Φn. For the present, a few words about the compatibility function are in

order.

4.4.1 The elements of the compatibility function

The compatibility function is used to inject all prior knowledge regarding the hidden

states into the graphical model per se. Since this function reflects the designers em-

pirical knowledge about the relationships between the variables it can be so composed
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that further computations (after observations are available) can be made conveniently.

For instance, the form of the compatibility function chosen in Eqn. 4.4.2 results in

the composition of the filtering distribution of x0
n by a linear combination of messages

from the point trackers. Therefore, the message from each tracker can be computed

independently (and sequentially) of the others.

The elements of the compatibility function, Ψ0,f

(
x0

n|x
f
n; T

)
, f = 1 : F , describe the

relation between the hidden state of the object and the hidden states of the point

trackers. An example where the relation is linear and deterministic is shown below.

Ψ0,f

(
x0

n|xf
n; T

)
= δ

xf
n+tf

(
x0

n

)
, f = 1 : F, (4.4.7)

where δ is the Dirac delta and parameter T = tf , f = 1 : F . Other functions describing

affine or higher order relationships can also be used if deemed necessary. Inserting

Eqn. 4.4.7 into Eqn. 4.4.3, and using the sample based approximation of messages

demonstrated in Sec. 4.3.4, results in the following convenient approximation.

p

(
x0

n|Yn; Φn, T ,
{
qf
n−1

}
f=1:F

)
∝

F∑
f=1

αf
n

∑
i=1:N lf

(
yf

n|xf,i
n

)
δ
xf,i

n +tf

(
x0

n

)
∑

i=1:N l1
(
yf

n|xf,i
n

) (4.4.8)

In this case of delta compatibilities, the form of the messages is compliant with standard

normalized cross correlation (NCC) point tracking. Each of the message approximations

in practice is equivalent to computing the NCC surface of the corresponding point

tracker and normalizing it sum to unity. Finally, the filtering distribution in Eqn.

4.4.8 is obtained by summing these normalized surfaces and renormalizing the result

appropriately.

4.4.2 Parameter update

For further consideration, assume the filtering distributions of xf
n, f = 1 : F are ap-

proximated by particle-sets
{
xf,j

n , πf,j
n

}j=K

j=1
, f = 1 : F respectively.

αf
n, f = 1 : F update:

As the discussions of this section describe a switching method these parameters are

assumed to be binary in nature. Therefore, they determine whether measurements as-

sociated with a point tracker need to be considered or discarded at any instant. Hence a

robust and possibly inexpensive method must be supplied to determine this fact. Note

that as the parameters are not part of the graphical model any meaningful external
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method or tool can be used for their updates. One such method based on motion clus-

tering is described below.

Between instants n − 1 to n, let the translation vector of each tracked point be com-

puted, say as a difference of the MAP estimates of their filtering distributions at these

instants (See Eqn. 4.4.6). Let the collection of pairs of hidden states and their corre-

sponding translation vectors be denoted as
{
xf , vf

}F

f=1
(the time index n is dropped

for brevity). See the illustration in Fig. 4.7.

Figure 4.7: An illustration of clustering based outlier determination. The grey filled box
represents the feature point being signalled as an outlier.

Probabilistic rejection of point trackers:

1. Clustering :

Consider the augmented set
{
xf , vf , Bf

}F

f=1
, where Bf is the bin count for the

vector vf . The bin count is initially set to 1 for all the point trackers.

Each motion vector in the set
{
vf
}F

f=1
is compared with the remaining vectors

using an Euclidean distance measure and its bin-count is incremented for every

vector that lies within a small predefined clustering radius r of this vector.

A subset
{
vf , f ∈ I, |I| ≤ F

}
of the set

{
vf , f = 1 : F

}
is formed by selecting

all the motion vectors with associated bin-count Bf ≥ F
2 . If F is odd, then the

relation Bf ≥ F+1
2 is used instead.
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2. Rejection Control :

The two-dimensional mean of the subset
{
vf , f ∈ I, |I| ≤ F

}
and the resulting

covariance matrix, denoted as {µ,Σ} are computed. For the sake of simplicity,

the cross variance terms are assumed zero.

Let N
(
vf ;µ,Σ

)
denote a Gaussian distribution in variable vf with mean param-

eter µ and variance parameter Σ. A weight wf = N
(
vf ;µ,Σ

)
is assigned to

each motion vector in the set
{
vf , f = 1 : F

}
. The set

{
xf , wf

}F

f=1
is formed.

The weights in the set are sorted in descending order and the weight of the me-

dian element is denoted as wmed. Each point tracker is then accepted with a

probability,

pf = min
{

1.0,
wf

wmed

}
, f = 1 : F. (4.4.9)

Following this,

αf
n =

{
1, if pf ≥ ρ
0, if pf < ρ,

(4.4.10)

where ρ is a predefined threshold.

Once the parameters have been updated, Eqn. 4.4.3 can be used to compute the filtering

distribution of x0
n. The next objective is to replace all point trackers which have been

signalled as inconsistent during parameter update. A procedure for replacement is

described below.

4.4.3 Replacing point trackers

The new point trackers which would substitute the discarded ones are drawn from the

posterior distribution of the hidden state of the object Eqn. 4.4.8.

Sampling the filtering distribution of the fused hidden state

Draw a true sample from the posterior for the case indicated below.

sf ∼ p
(
x0

n|Yn; Φn, T ,
{
qf
n−1

}
f=1:F

)
, if αf

n = 0. (4.4.11)

These samples represent the locations of the new feature points.

An important consideration here is the effect of this replacement on the graphical

model. It is argued that a feature point may be replaced without breaking and replac-

ing links in the original graphical structure. Referring to Eqn. 4.2.7, replacing a feature
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point implies an update of the external parameter which controls the prior. Doing so

adjusts the search space for the newly sampled point tracker. Similarly, associating an

appearance template to the newly sampled point tracker is an update of parameter ϑ

(See Eqn. 4.2.1). Therefore, new point trackers may replace existing point trackers

without interfering with the structure of the graphical model.

Algorithm 1: Randomized feature tracking (RFT) filter
input : Video sequence with L frames and target bounding box in first frame;

Initialization;

x0
0 = Center of bounding box;

Draw F point trackers uniformly in the bounding box and set point tracking parameters;

Set compatibility function parameters tf , f = 1 : F ;

for n← 2 to L do{
mf→0

(
x0

n|qf
n−1

)
, f = 1 : F

}
← ComputeMessages

({
qf

n−1, tf , f = 1 : F
})

;{
vf , f ∈ I, |I| ≤ F

}
← Clustering

({
p
(
xf

n|yf
n; Φn

)
, f = 1 : F

})
;{

αf
n, f = 1 : F

}
← RejectionControl

(
N

(
vf ; µ, Σ

))
; /*See sec. 4.4.2*/

p
(
x0

n|Yn; Φn

)
← ComposePosterior

({
mf→0

(
x0

n|qf
n−1

)
∀f 3 αf

n = 1
})

; /*See sec.

4.4*/

if p
(
x0

n|Yn; Φn

)
! = 0 then

output : Bounding box centered on E
[
p
(
x0

n|Yn; Φn

)]
;

ReplaceOutlierPointTrackers
(
p
(
x0

n|Yn; Φn

))
; /*See Eqn. 4.5.1*/

end

else
output : Tracking failure and exit;

end

end

4.4.4 Dealing with occlusions

It is a hard problem to detect occlusions, especially when the occluding object presents

an appearance similar to the tracked object. Even so, some mechanism is needed to

signal a possible occlusion event so that some corrective action can be taken. In the

randomized feature tracking scheme, an occlusion event is signalled if outlier feature

points (See Eqn. 4.4.10) are a majority, that is, greater than F
2 (F even) or F+1

2

(F odd). In such a case, any replacement of outliers is arrested temporarily to avoid

drifting. The hope is that once the occluded object reappears the point trackers may

refind their correct tracks. However such a fortunate event is driven more often than not

by chance factors and thus cannot be generally relied upon. The algorithm so standing

is then for all practical purposes considered vulnerable to occlusions. Aside from this
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drawback, the randomized feature point tracker possesses some useful capabilities as

gathered from the following experiments. A pseudo-code to aid implementation of the

randomized feature tracking filter (RFT-filter) is given in Algorithm 1.

4.5 Experimental setup

The randomized feature point tracker is put to two tests, the first with a goal to track

the position of a human head (its center) in a video sequence and the second with a goal

to track a moving vehicle from an aerial video sequence. These sequences are chosen

with a view to qualitatively assess the performance of the tracker under varying target

appearances, environmental variations like lighting, shadow effects and occlusions.

In all experiments, the tracked targets were manually initialised via a target bounding

box. The positions of the feature points in the initialisation frame are chosen by draw-

ing samples uniformly within the provided bounding box. Their number, dimensions

of their image appearance templates and search spaces are hand tuned to comply with

the expected complexity and magnitude of motion of the target in the video sequence.

At each frame following the initial one the bounding box in the sample results (for

instance in Fig. 4.8) is centered around the expected value of the computed posterior

in Eqn. 4.4.8.

For each newly sampled feature point tracker xf
n (at the initialisation stage or replace-

ment stage), the corresponding parameter tf of the compatibility function δ
xf

n

(
x0

n−tf

)
is updated in the following manner.

tf = E
[
p

(
x0

n|Yn; Φn, T ,
{
qf
n−1

}
f=1:F

)]
− sf , f = 1 : F. (4.5.1)

4.6 Results and discussions

The results of the two tests are discussed in detail below.

Head tracking

A series of snapshots of head tracking results for the Snake-eyes test sequence are

presented in Figs. 4.8, 4.9. The total track length until failure is about 180 frames and

therefore only a small informative selection among these frames are displayed. In each

frame, the feature points (equivalently the centers of their image apperance templates)

are marked by small squares.

Two variants of results of head tracking are discussed below.
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(a). Frame 1 (b). Frame 26 (c). Frame 70

(d). Posterior at frame 2 (e). Posterior at frame 26 (f). Posterior at frame 70

(g). Frame 86 (h). Frame 98 (i). Frame 108

(j). Posterior at frame 86 (k). Posterior at frame 98 (l). Posterior at frame 108

(m). Frame 113 (n). Frame 120 (o). Frame 173

(p). Posterior at frame 113 (q). Posterior at frame 120 (r). Posterior at frame 173
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(s). Frame 174 (t). Frame 175 (u). Frame 178

(v). Posterior at frame 174 (w). Posterior at frame 175 (x). Posterior at frame 178

Figure 4.8: Randomized feature point tracking on the Snake-eyes sequence - replacement from
posterior of target. Template size = 21× 21, S = 61× 61, r = 5.0, ρ = 0.8.

Replacing point trackers by draws from the filtering distribution of the target position:

In this experiment the outlier point trackers are replaced using samples from the

target posterior in accordance with Eqn. 4.4.11. Under each selected frame in Fig.

4.8 is a graphic display of the target posterior seeking to provide some insight into its

evolution over time.

The ability to track through shadow effects, Fig. 4.8(b), and to overcome illu-

mination changes, Figs. 4.8(c,g,h,i,m), can be seen from these result samples. The

distinct unimodality of the posterior under these conditions can be observed from Figs.

4.8(e,f,j,k,l). Between pairs of posteriors in Figs. 4.8(f,j) and Figs. 4.8(k,l), one can

observe an increase in the spread of the posterior due to changes in illumination. The

tracker also remains stable under small pose changes, see Figs. 4.8(m,n), due to online

point tracker replacement. The increased spread of the posterior under pose change is

however observable in Figs. 4.8(p,q).

Following these events is an occlusion of the target by an object of dissimilar ap-

pearance, Figs. 4.8(o,s,t). The color of the feature point squares are changed to yellow

to indicate the absence of any inliers. From Eqn. 4.4.8 it is seen that the posterior

is degenerate. However, for the sake of a comparative study, all the feature points

are considered inliers temporarily and a posterior is derived as usual. Reasonably, the

posteriors are almost degenerate in Figs. 4.8(r,v,w) during the period of the occlusion.

When the tracked object emerges out of the occlusion, it appears from Fig. 4.8(u) that
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(a). Frame 1 (b). Frame 26 (c). Frame 70

(d). Frame 86 (e). Frame 98 (f). Frame 108

(g). Frame 113 (n). Frame 120 (i). Frame 173

(j). Frame 174 (k). Frame 175 (l). Frame 178

Figure 4.9: Randomized feature point tracking on the Snake-eyes sequence - replacement from
point tracker posterior. Template size = 21× 21, S = 61× 61, r = 5.0,ρ = 0.8.

Figure 4.10: A plot of the age
of the oldest active point tracker
versus the frame number for the
Snake-eyes sequence.

Figure 4.11: A plot of the number of
point trackers declared inliers at each
frame versus the frame number.
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the tracker has refound the correct track. This is only a chance effect since the camera

happens to follow the tracked object in this sequence. Strictly speaking the tracker has

failed to overcome the occlusion. This fact is corroborated by the form of the posterior

in Fig. 4.8(x).

Replacing point trackers by draws from the filtering distribution of a point tracker:

The following sampling technique may indeed be used for replacement of outlier point

trackers without compromising the robustness of the tracker.

sf ∼ p
(
xf̂

n|yf̂
n; qf̂

n−1

)
, (4.6.1)

where, if the point trackers are sorted in a descending order of their track lengths, then

f̂ is the index of the median length point tracker. Intuitively, this advocates sampling

of a new point tracker from the posterior of a point tracker which lies somewhere in

between the most stable and the most recent ones, thereby taking a balanced risk.

Fig.4.9 presents the results of head tracking in the Snake-eyes sequence using this

form of replacement. Except during pose changes, the behaviour of the tracker is not

significantly different as compared to Fig.4.8.

To round off the discussions on the results of head tracking, two more relevant analyses

need to be made. First, to observe how many point trackers are replaced at each

tracking instant and second, to observe the resilience of the sampled point trackers.

These observations provide an insight into the stability of tracking the object. The

graphical plot of the age in frames of the oldest active point tracker during head tracking

in Fig. 4.9 is shown in Fig. 4.10. Interesting events in the sequence are labelled in

these plots. As could be expected, the replacement activity is slightly hightened during

illumination changes, thus reducing the age of the oldest tracker. Overall, the average

age of point trackers is a healthy 40−60 frames, an indicator that a bunch of ”randomly”

picked point trackers can provide stable tracking. The occlusion brings the ages of point

trackers to zero.

The graphical plot in Fig. 4.11 shows the number of point trackers declared as inliers

at each tracking instant, for the sequence in Fig. 4.9. It can be seen that the occlusion

event eliminates most of the point trackers as expected, otherwise only a minority are

eliminated even under extreme illumination changes.

Vehicle tracking in an aerial video sequence

The idea behind this experiment is to test the resilience of the randomized point tracker
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(a). Frame 1 (b). Frame 60

(c). Frame 120 (d). Frame 180

(e). Frame 210 (f). Frame 240

(g). Frame 300 (h). Frame 360

Figure 4.12: Aerial sequence tracking using randomized feature tracker. Template size =
21× 21, S = 41× 41, r = 5.0, ρ = 0.8. Overlaid, with yellow bounding boxes, is result of color
based particle filtering. Video courtesy - CMU VIVID database.
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to large pose changes, in spite of the fact that there is currently no device in it to ac-

comodate such events. In lieu of the small size of the target, this experiment utilises

replacement of point trackers by draws from the target posterior, thus encouraging

dense clusters of points. The target area in the result samples are enlarged and over-

laid on the images for visual assessment.

The drift in the estimate of the position of the target is apparent from the result sam-

ples in Figs. 4.12(c,d,e,f,g,h). Nevertheless the point trackers remain attached to the

target throughout the length of the sequence, aided by the fact that the motion of the

target is smooth. For a qualitative comparison, the results of tracking the same target

with a color based particle filter [Perez et al., 2002] are overlaid. It can be seen that

this filter too suffers from tracking drift due to illumination changes.

The issue of tracking drift

When dealing with point trackers, the issue of drift in the estimation of the target

position arises, especially when the target undergoes large pose changes. As it stands,

the randomized point tracker is not particularly designed for tracking under large pose

changes. However, from the perspective of the graphical model, the ability to tackle

tracking drift is directly related to the ability to update the compatibility function in

Eqn. 4.4.2. For instance, by updating parameters tf , f = 1 : F online by some mech-

anism or aid of another cue, the compatibility function can be updated appropriately.

Thus the graphical model is general enough to accomodate such updates.

4.7 Conclusion and prospects

The principal contribution of this chapter is the probabilistic graphical model for mea-

surement fusion using linear message combinations. This model has the flexibility to

introduce empirical knowledge about the task in hand into the filtering with a goal to

perform consistent fusion. It is hoped that such models will be of use in other vision

problems which demand a provision be made for online fusion of only valid or consistent

measurements.

In the simplest case, this message combination model can be reduced to a message

switching model. Based on a probabilistic graphical model representation of point

tracking, a novel randomized feature point tracker is derived from this switching model.
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This tracker is seen to be useful when tracking a target under strong illumination vari-

ations and minor pose changes. Currently this tracker has no capability to handle

large pose changes or occlusions. However these drawbacks are not a weakness of the

graphical model itself. Arguably, the graphical model is general enough to accomodate

corrective measures to alleviate such ailments.

The randomized feature point tracker has a very useful characteristic, an inherent abil-

ity to adapt to appearance changes of the target by replacement of point trackers.

Combining this characteristic with its probabilistic nature results in a very useful filter

which is now ready to be integrated with other generative model based stochastic fil-

ters. This is the very motivation and substance of the following chapter on multi-cue

fusion. To recapitulate, beginning from a stochastic interpretation of point tracking

and progressing through graphical message combination models, the contributions of

this chapter have paved a way for the interplay of discriminative tracking approaches

like point tracking and generative model based approaches towards robust fusion.

Appendix: Assumed density filtering viewpoint for point

tracking

Assumed density filtering (ADF)

Consider the following first order Hidden Markov model (HMM).

p
(
xn|y1:n

)
∝ l
(
yn|xn

) ∫
p
(
xn|xn−1

)
p
(
xn−1|y1:n−1

)
dxn−1. (4.7.1)

In step one, say an approximation qn−1 is substituted instead of the filtering distribution

at n − 1 in the above equation (q0 ≡ p
(
x0

)
). The following approximate filtering

distribution can then be obtained.

p̂
(
xn|y1:n

)
∝ l
(
yn|xn

) ∫
p
(
xn|xn−1

)
q
(
xn−1

)
dxn−1. (4.7.2)

Now, in step 2, the approximate filtering distribution can be re-approximated by an-

other parametric distribution q
(
xn

)
by minimizing the KL-divergence between them. If

the distributions q come from an exponential family, such a minimization is equivalent

to matching moments of the approximate filtering distribution to the ones of q. These

deliver the moments of q (its sufficient statistics). The basic idea behind ADF is to

repeat these two steps at each filtering instant, thereby propagating the moments of the

filtering distributions. The ADF concept is useful to emulate point tracking techniques
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such as normalized cross correlation (NCC) or sum of squared distances (SSD) based

point tracking. Two forms of ADF viewpoints of point tracking are described below.

Propagating delta approximations

Consider the following standard model of a first order Hidden Markov Model (HMM).

p
(
xn|y1:n, ϑ

)
∝ l
(
yn|xn, ϑ

) ∫
p
(
xn|xn−1

)
p
(
xn−1|y1:n−1, ϑ

)
dxn−1, (4.7.3)

where the notations follow from Sec.4.2. Let density qn−1

(
xn−1|ζ

)
(ζ is a parameter)

be an approximation to the filtering distribution p̂
(
xn−1|y1:n−1, ϑ

)
. With this approxi-

mation, consider the exact posterior shown below.

p̂
(
xn|y1:n, ϑ, ζ

)
∝ l
(
yn|xn, ϑ

) ∫
p
(
xn|xn−1

)
qn−1

(
xn−1|ζ

)
dxn−1. (4.7.4)

Now assume the following special form for the density q.

q
(
xn−1|ζ

)
= δζ

(
xn−1

)
. (4.7.5)

Using this form, the exact posterior in Eqn. 4.7.4 reduces to the following.

p̂
(
xn|y1:n, ϑ, ζ

)
∝ l
(
yn|xn, ϑ

)
p
(
xn|xn−1 = ζ

)
. (4.7.6)

This is in a form suitable for point tracking as the prior p
(
xn|ζ

)
can be conveniently

defined to suit grid search as in Sec. 4.2. Finally, minimizing the KL-divergence

D
(
p̂n‖q

(
xn|ζ̃

))
under the constraint that E

q
(
xn|ζ̃
) [xn] = Ep̂n [xn] simply results in

ζ̃ = Ep̂n [xn]. With ζ ← ζ̃,

p̂
(
xn|y1:n, ϑ, ζ

)
≈ qn

(
xn|ζ = Ep̂ [xn]

)
. (4.7.7)

Therefore, the filtering distributions are approximated by point masses around their

expected values. If it is assumed that these filtering distributions are unimodal (which

is usually implicit for point tracking), then this assumed density filtering describes dis-

criminative point tracking in practice.

Propagating Gaussian approximations

Assume p
(
xn|xn−1

)
= δxn−1

(
xn

)
and an assumed density of the form indicated below.

qn−1

(
xn−1

)
= N

(
xn−1;µn−1,Σn−1

)
, (4.7.8)
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where N
(
xn−1;µn−1,Σn−1

)
is a Gaussian distribution in xn−1 with mean an variance

parameters µn−1,Σn−1 respectively. Now from Eqn. 4.7.3 the exact posterior is as

follows.

p̂
(
xn|y1:n, ϑ

)
∝ l
(
yn|xn, ϑ

)
N
(
xn;µn−1,Σn−1

)
, (4.7.9)

which, under the assumption that the posteriors are unimodal, implies the prior is

centered on the estimated location of the point tracker at n − 1. Now once again if

sufficient samples are drawn from this prior then this brings the computation of the

posterior closer in spirit to regular grid searches. Finally, the exact posterior is replaced

by a Gaussian with matching moments. As compared to the viewpoint prescribed in

Sec. 4.2, these ADF viewpoints are restrictive due to the specific class of distributions

they propagate.
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Bayesian multi-cue fusion

5.1 Introduction

Visual tracking literature is abundant with schemes that discuss, recommend and pro-

pose tracking algorithms based on measurements from multiple complementary cues,

such as color, motion or shape in order to mitigate the drawbacks of single cue tracking,

as in [Perez et al., 2004; Badrinarayanan et al., 2007a; Wu and Huang, 2004; Toyama

and Horvitz, 2000; Han et al., 2007; Triesch and von der Malsburg, 2000; Wang et al.,

2004]. Such multi-cue trackers need to deal with problems of measurement fusion. Nu-

merous approaches to measurement fusion have been proposed over the recent years.

Before embarking on the literature review the motivational ideas for multiple cue track-

ing is presented below.

The case for multi-cue tracking techniques

To understand why multi-cue tracking is necessary, it is useful to answer the converse

question: why single-cue tracking is insufficient in practice. In principle single-cue

tracking would be sufficient if the cue with which the target is described has enough

power to discriminate the target from any other image data and the approximate poste-

rior distribution of the tracked state accurately describes the uncertainty in the tracked

state. Both of these requirements are difficult to satisfy. Even if a cue were to be found

which has sufficient discriminative power, it is generally difficult to specify the like-

lihood function associated with it due to dimensionality and normalization problems

(see Chapter 3). Secondly an extremely large computational power would be necessary

to describe and maintain the multi-modality, if any, of the posterior distribution. Due

to these reasons the computational approximation of the posterior distributions do not

95
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accurately represent the uncertainty of the tracked state. Therefore, an alternative

to improve the estimation of the tracked state is to somehow average over multiple

measurements (equivalently cues) and decide on the estimate of the tracked state by

consensus arguments. By doing so the discriminative power of the target reference

model is improved and associating each kind of measurement to different filters with

varying kinematic models allows the state space to be explored in multiple ways. These

aspects motivate the use of multiple cues and filters for tracking an object. A review

of some key techniques for multi cue tracking are now presented below.

Techniques for multi-cue fusion tracking

A list of multi-cue fusion techniques in a somewhat increasing order of complexity

is presented below. Where relevant, a noteworthy example from literature is discussed

to aid the commentary. This review is geared towards a conceptual classification of

several techniques and is by no means an exhaustive survey.

1. Likelihood Factorisation Based Approaches

In these approaches the filtering law is factorised as shown below.

p
(
xn|Y n

)
∝

M∏
j=1

p
(
yj

n|xj
n

)
p
(
xn|Y n−1

)
; (5.1.1)

where measurement Y n = {y1
1:n, y

2
1:n, . . . , y

M
1:n}. Notable among the techniques

relying on this assumption is the BlackBox technique proposed by [Leichter et al.,

2006], wherein the combined filtering distribution is shown to be:

p
(
xn|Y n

)
∝
∏M

j=1 p
(
xn|yj

n, Y n−1

)[
p
(
xn|Y n−1

)]M−1
. (5.1.2)

Their technique aims to combine several filtering distributions using Eqn. 5.1.2,

thereby pretending to fuse only the outputs of filters while remaining oblivious

to the internal characteristics of the filters. This BlackBox treatement holds only

in as far as the numerator in Eqn. 5.1.2 is concerned as the evaluation of the

denominator requires the specification of a kinematic prior. In order to preserve

the BlackBox nature of this technique the following assumption is made.

p
(
xn|Y n−1

)
= p(xn) =⇒ p

(
xn|xn−1

)
= p(xn). (5.1.3)

This is untenable since the kinematic prior is necessary to generate the output

filtering distribution of each black box.
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Apart from the treatment found in [Leichter et al., 2006], the techniques based

on likelihood factorisation have the virtue of mathematical simplicity and ease of

implementation, but this assumption does not comply with reality. Measurements

based on cues such as color and texture are in general dependent, therefore failing

this assumption. This assumption is to be further discouraged in the presence

of clutter or occlusions where there is a possibility of having non-overlapping

filtering distributions.

2. Factored State Based Approaches

The broad idea behind these approaches is the factorisation of the tracked state

into several sub-states which are linked via observation model(s), effectively dis-

engaging from likelihood factorisation. Exact probabilistic inference to compute

the marginal posteriors (or beliefs) of these sub-states on such models is in gen-

eral intractable. Therefore these models are approximated by simpler graphical

models on which exact probabilistic inference is tractable.

The co-inference technique of [Wu et al., 2003] for multi-cue fusion is a factored

state approach based on the variational approximation technique [Ghahramani

and Jordan, 1995] for simplifying inference. In the approximate graph, the obser-

vation probabilities in the original graph are replaced by variational parameters,

leading to uncoupling of the sub-state Markov chains. These variational parame-

ters are estimated using iterative optimization to arrive at the sought approxima-

tion. In particular, minimization of the KL-Divergence [Cover and Thomas, 1991]

between the original and the approximate models result in fixed-point equations

for these variational parameters. The form of these equations reveals an interest-

ing relationship between the hidden sub-states. The variational parameters of a

sub-state are a functional of the belief of every other sub-state except itself. These

parameters effectively recouple the hidden sub-states by so called co-inference

and this forms the basis of their proposed tracker.

The authors do not attempt to provide a computational analysis of the co-

inference concept adapted to tracking and instead derive a multi-cue tracker

inspired by it. This tracker is implemented using an iterative sequential MC

simulation based approach. At each instant, a color importance prior is somehow

used to derive shape samples and these are weighed by a shape likelihood. Then,

symmetrically, a shape importance prior is somehow used to derive color samples

and these are weighed by color likelihoods. This process is iterated. The idea
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behind these iterations is that participation of both likelihoods will help propa-

gate the best shape and color samples to the next instant. The details of this

technique can be found in [Wu et al., 2003].

A shortcoming of this iterative importance sampling is that no importance sam-

ples are drawn from the priors defined for the individual hidden sub-states them-

selves. Therefore, there is an untenable assumption that measurements based on

one of the cues are always consistent. This makes it difficult to uncouple the

beneficial cue from the inconsistent cue. Further a wrong ordering of cues in the

sampling iterations can mitigate the beneficial effects of both cues. Finally, it is

unclear from the description in [Wu et al., 2003] as to how to translate between

the shape and color spaces.

3. Kernel Based Approaches

The fundamental tenet of these approaches is to model all the relevant distribu-

tions in Bayesian filtering as a mixture of Gaussians, thereby enabling the prop-

agation of multi-modal analytic filtering distributions [Han et al., 2005; 2007].

One such scheme attempting sensor (read cue) fusion in a Gaussian Kernel based

Bayesian filtering framework is by Han et al [Han et al., 2007]. The key idea in

this scheme is to partition a fixed number of importance samples amongst the

constituent sensors based on each sensor’s future potential of high observation

likelihood; thereby devoting a greater number of particles to it. To do so, impor-

tance sampling is broken down into two stages. In the first stage the importance

samples for all the sensors are drawn from a common proposal (the predictive

prior) and the individual sensor measurements evaluated. These measurements

are then re-fed in a linear combination with the common proposal to generate

the final (common) proposal. A sample from this proposal is assigned to one of

the constituent sensors upon evaluation of the combined weight of the sample

according to the sensors predictive prior and measurement likelihood. The prin-

cipal argument of this Kernel based approach is that Kernel based modeling of

these distributions aids in easy evaluation of these weights.

Although such a scheme is appealing, the model is not general enough to handle

a network of hidden states and the issue of balancing the predictive prior and

the likelihood, in course of developing the final common proposal, still remains

unresolved. In [Han et al., 2007] this balance is maintained constant, which is

not very convincing since the very objective of designing this hindsight proposal
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is to adaptively weigh the likelihood and the predictive prior. This approach also

bears striking resemblance to the more general non-parametric scheme proposed

by [Vermaak et al., 2003], the only difference being that the number of parti-

cles per mixture component is held constant in [Vermaak et al., 2003]. Finally,

the mixture weights balancing the filtering distributions from various sensors are

seen to be proportional to each sensors model evidence, similar to the likelihood

combination approach described earlier.

4. Dependent Multi-Cue Fusion

These approaches attempt to condition measurements with all other preceeding

measurements at the cost of additional complexity in simulation. A recent ex-

ample is [Moreno-Noguer et al., 2008]. The key feature of such techniques is

illustrated in the following example involving two hidden states belonging to dif-

ferent state spaces, each with a different observation model.

Define the following static state space model where all x1, x2 represent hidden

states associated with corresponding measurements y1, y2.

x1 ∼ p
(
x1

)
. (5.1.4)

y1 = g1
(
x1

)
+ ζ1. (5.1.5)

x2 = f2

(
x1, y1

)
+ η2. (5.1.6)

y2 = g2
(
x1, x2, y1

)
+ ζ2. (5.1.7)

In the above model, it is assumed that the statistics of the noise random variable

η2 is known and statistics of the noise random variable ζ1, ζ2 are unknown. In

addition it is taken that functions g1, g2 are non-linear functions of their argu-

ments while f2 is a function such that the conditional density p
(
x2|x1, y1

)
can be

easily sampled from. With the foregoing definitions and assumptions, the joint

posterior of the hidden variables can be factorised as follows.

p
(
x1, x2|y1, y2

)
∝ p
(
y2|y1, x1, x2

)
p
(
x2|x1, y1

)
p
(
x1|y1

)
. (5.1.8)

Assume a sample based approximation of the posterior p
(
x1|y1

)
is available. Then

construct a sub-optimal importance sampling proposal as shown below.

q
(
x1, x2|y1

)
= p
(
x2|x1, y1

)
p
(
x1|y1

)
. (5.1.9)
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Draw samples of the joint state xi
1, x

i
2 ∼ q

(
.
)
, i ∈ 1 . . . N . Then an approximation

of the joint posterior can be obtained as follows.

p
(
x1, x2|y1, y2

)
∝

∑
i∈1...N

p
(
y2|y1, x

i
1, x

i
2

)
δxi

1,xi
2

(
x1, x2

)
. (5.1.10)

One of the issues with such an approach is the requirement of densities such

as p
(
x2|x1, y1

)
which are data dependent. Such densities need to be learnt by

a strategy of some sort. Further, an extension to sequential filtering runs into

difficulties as discussed below.

Define the following state space model in accordance with the deliberations in

[Moreno-Noguer et al., 2008].

x1
t = x1

t−1 + η1
t . (5.1.11)

y1
t = g1

(
x1

t

)
+ ζ1

t . (5.1.12)

x2
t = f2

(
x2

t−1, x
1
t , y

1
t

)
+ η2

t . (5.1.13)

y2
t = g2

(
x2

t , x
1
t , y

1
t

)
+ ζ2

t . (5.1.14)

In the above model, the statistics of the noise processes η1
t , η

2
t are assumed known

while the statistics of the noise processes afflicting the measurement model are

unknown. The measured variables are considered non-linear functions of their

respective arguments as before. After some straightforward manipulations, the

joint state filtering distribution can be factorised as shown below.

p
(
x1

t , x
2
t |y1

1:t, y
2
1:t

)
∝ p
(
y2

t |y1
t , x

1
t , x

2
t

)
p
(
x2

t |x1
t , y

1
t

)
p
(
x1

t |y1
1:t, y

2
1:t−1

)
. (5.1.15)

Now, it is not easy to approximate the last factor in the above proportionality

as dependencies on the data y2
1:t−1 are introduced due to temporal loops in the

state space model. For the same state space model, [Moreno-Noguer et al., 2008]

propose to evaluate distributions of the following form (notice the conditioning

only on the instantaneous data):

pt
(
x1

t , x
2
t |y1

t , y
2
t

)
∝ p2

t

(
x2

t |y
1,2
t , x1

t ; p
2
t−1

)
p1

t

(
x1

t |y1
t ; p

1
t−1

)
. (5.1.16)

Although seemingly convenient there remain doubts as to how to arrive at such

a factorisation while remaining consistent with the state space model. An alter-

native factorisation, consistent with the state space model, would be as shown

below.

pt
(
x1

t , x
2
t |y1

t , y
2
t

)
∝ p
(
y2

t |y1
t , x

1
t , x

2
t

)
p
(
x2

t |x1
t , y

1
t

)
p
(
x1

t |y1
t

)
. (5.1.17)
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To proceed from this stage first requires an approximation of the last factor in

the above proportionality, for which an instanteneous prior p
(
xt

)
is necessary.

Meaningful priors of this form are difficult to define. Apart from these issues it is

difficult to define likelihoods which are conditioned on other data. Finally, impos-

ing a static ordering of the state variables with no possibility to instantaneously

change their dependency structure is definitely restrictive.

5. Integration Avoiding Measurement Inconsistency

When the objective is to fuse several measurements underlying a network of track-

ers, it is prudent to verify the mutual compatibility of the measurements to avoid

errors. An approach advocating this verification is proposed by [Hua et al., 2006].

This scheme is derived for a pairwise Markov Random Field (MRF) with Gaussian

priors and isotropic Gaussian likelihood densities. The idea is to iteratively com-

pute the MAP estimate of the hidden states and the ML estimate of the variance

of the pairwise priors using EM iterations and observe the convergent value of

the variances. If, for a pair of hidden states and their associated measurements,

the convergent value of the estimated variance for their pairwise prior is away

from zero, then the pair of associated measurements are said to be incompatible

with each other. The intuition here is that, if the measurements are consistent

then a state can predict its neighbour’s state accurately, thereby attaining a delta

compatibility (variance goes to zero).

Their proposition is to discard all measurements which have a majority disagree-

ment with its neighours. Once this done, statistical inference is performed by

including only the consistent measurements. The usefulness in discarding incon-

sistent measurements is demonstrated on multi-part tracking with a color based

particle filter and flow based Lucas-Kanade tracker. This scheme is shown to work

with missing measurements, inconsistent measurements and consistent measure-

ments. However this scheme has some drawbacks. The ideas are demonstrated

on a static Markov network with offline learnt compatibilities. The form of the

compatibilities are Gaussian and so is the form of the likelihood functions. As

such, there is no trivial extension to a non-linear sequential filtering problem.

The compatibilities are assumed fixed, while in a more general multi-part track-

ing scenario the compatibilities undergo changes (see Chapter 6). Nevertheless,

the spirit of their work is retained in the forthcoming propositions, where another
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mechanism is developed to pick out and fuse (consistent) measurements in more

general scenarios.

The review so far summarised some of the pertinent and representative techniques

of multi-cue fusion, primarily in a Bayesian framework. Their advantages and disad-

vantages were duly brought to light. This chapter presents a probabilistic model which

encompasses the advantageous ideas from the foregoing techniques is presented. This

model is based on the message combination concepts introduced in Chapter 4. The

principal advantage of this model is that it allows the posterior of the hidden state of

the target to be composed by picking or mixing linearly one or more messages from

various other hidden states. It is as if, at each instant, the model automatically chooses

messages to traverse through some particular paths to the hidden state of the target.

By doing so, the model provides the flexibility to choose, leave out or balance a mea-

surement with others, to perform fusion.

While a convenient model is imperative for cue fusion, integrating multiple cues alone

does not guarantee robust tracking. The choice of cue(s) associated to each hidden

state and the extent to which it complements other cues dictates the robustness of

the tracker. A cue, in general, describes an apperance model of the target, a common

example is a color histogram of the target [Comaniciu et al., 2000; Perez et al., 2002;

K.Nummiaro et al., 2003; Vermaak et al., 2002]. Thus each of the hidden states can be

associated to different appearance models of the target. This collection of appearance

models can be seen as a discrete set appearance model of the target. This set view-

point becomes interesting when first, the elements of this set are replaced online and

second, when appearance model adaptation involves cue interaction; such a setup is

a key ingredient for robust tracking. This forms another important subject matter of

this chapter.

The contents of this chapter are arranged in the following manner. A probabilistic

graphical model for multi-cue fusion is presented in Sec.5.2. Based on this model

a novel multi-cue tracker is derived in Sec.5.3. The experimental setup to test this

tracker is described in Sec.5.4. Both qualitative and quantitative results of the tests

are discussed in Sec.5.5. Another setting of the parameters of the graphical model is

used to derive a novel multi-cue combination tracker in Sec. 5.6. The nuances of this

tracker and the advantages it brings over the multi-cue switch tracker are discussed

with sample results. Drawbacks of these trackers alongwith some pointers to possible

improvements are summarised in Sec.5.7. Conclusions are drawn in Sec.5.8.
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5.2 Probabilistic graphical model for multi-cue fusion

The model for multi-cue fusion is an extension of the graphical model presented in

Sec.4.3 of Chapter 4 for tracking with a set of point trackers. This model is now

extended to include a color based particle filter via an addition of a new link in the

graph, see the bottom part of Fig. 5.1. Here, variable λn is the hidden ”fused” state

and is the variable of primary interest in this model. x0
n is an intermediate hidden

state tracked by the set of point trackers which are represented by hidden variables

xf
n, f = 1 : F and ξn is the hidden state tracked by a color based particle filter of [Perez

et al., 2002].

Xn =
{
λn, x

0
n, x

1
n, . . . , x

F
n , ξn

}
is the joint hidden state and Y1:n =

{
y1
1:n, . . . , y

F
1:n, y

ξ
1:n

}

Figure 5.1: Graphical model for multi-cue fusion. λn is the fused hidden state.

is the collection of associated sequential measurements (data). The filtering distribution

of the joint hidden state is factorised in the standard manner as shown below.

p
(
Xn|Y1:n; Φn

)
∝ l
(
Yn|Xn

) ∫
Ψ
(
Xn|Xn−1; Φn

)
p
(
Xn−1|Y1:n−1; Φn−1

)
dXn−1, (5.2.1)

with external parameter Φn =
{
α0

n, α
1
n, . . . , α

F
n , α

ξ
n

}
. These parameters control message

switching or message combinations to determine the filtering distribution of λn. Ψ (.)

is a compatibility function defined as follows.

Ψ
(
Xn|Xn−1; Φn

)
,
[
α0

nΨλ,0

(
λn|x0

n

)
+ αξ

nΨλ,ξ

(
λn|ξn

)]
×[

F∑
f=1

αf
nΨ0,f

(
x0

n|xf
n

)
p
(
xf

n|x
f
n−1

) F∏
j=1,j 6=f

p
(
xj

n|x
j
n−1

)]
p
(
ξn|ξn−1

)
.

(5.2.2)
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Upon recalling the fact that each point tracker can be treated as a Bayesian filter (see

Sec.4.2), the posterior of the ”fused” hidden state λn can be written using message

notation as follows.

p

(
λn|Yn, y

ξ
1:n−1; Φn,

{
qf
n−1

}
f=1:F

)
∝ α0

n

[
F∑

f=1

αf
nmf→λ

(
λn|qf

n−1

)]
+ αξ

nmξ→λ

(
λn

)
,

(5.2.3)

where,

mf→λ

(
λn|qf

n−1

)
=

∫
Ψλ,0

(
λn|x0

n

)
Ψ0,f

(
x0

n|x
f
n

)
lf
(
yf

n|xf
n

)
p
(
xf

n|qf
n−1

)
dx0

ndx
f
n∫

lf
(
yf

n|xf
n

)
p
(
xf

n|qf
n−1

)
dxf

n

, f = 1 : F,

(5.2.4)

where qf
n−1, f = 1 : F are parameters defined as in Eqn. 4.2.4, and,

mξ→λ

(
λn

)
=

∫
Ψλ,ξ

(
λn|ξn

)
lξ
(
yξ

n|xξ
n

)
p
(
ξn|ξn−1

)
p
(
ξn−1|yξ

1:n−1

)
dξn−1dξn∫

lξ
(
yξ

n|xξ
n

)
p
(
ξn|ξn−1

)
p
(
ξn−1|yξ

1:n−1

)
dξn−1dξn

. (5.2.5)

If the components of the compatibility function are delta compatibilities as shown

below,

Ψλ,0

(
λn|x0

n

)
= δx0

n

(
λn

)
,

Ψλ,ξ

(
λn|ξn

)
= δξn

(
λn

)
,

Ψ0,f

(
x0

n|xf
n; tf

)
= δ

xf
n+tf

(
x0

n

)
, f = 1 : F, (5.2.6)

where δ is the Dirac delta and tf , f = 1 : F parameterize the compatibilities between

the relevant hidden states, then the posterior in Eqn. 5.2.3 can be approximated via

sample based approximations of the above messages as shown below.

p

(
λn|Yn, y

ξ
1:n−1; Φn,

{
qf
n−1

}
f=1:F

)
∝α0

n

F∑
f=1

αf
n

∑
i∈1...N lf

(
yf

n|xf,i
n

)
δ
xf,i

n +tf

(
λn

)
∑

i∈1...N lf
(
yf

n|xf,i
n

) +

αξ
n

∑
j∈1...M lξ

(
yξ

n|ξj
n

)
δ
ξj
n

(
λn

)∑
j∈1...M lξ

(
yξ

n|ξj
n

) . (5.2.7)

The remaining filtering distributions take the following familiar forms which facilitate

their sample-set approximations.

p
(
xf

n|yf
n; qf

n−1

)
∝ lf

(
yf

n|xf
n

)
p
(
xf

n|q
f
n−1

)
, f = 1 : F. (5.2.8)

p

(
x0

n|Yn; Φn,
{
qf
n−1

}
f=1:F

)
∝

F∑
f=1

αf
n

∫
Ψ0,f

(
x0

n|x
f
n

)
lf
(
yf

n|xf
n

)
p
(
xf

n|qf
n−1

)
dxf

n∫
lf
(
yf

n|xf
n

)
p
(
xf

n|qf
n−1

)
dxf

n

, (5.2.9)
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and,

p
(
ξn|yξ

1:n

)
∝ lξ

(
yξ

n|ξn
)
p
(
ξn|yξ

1:n−1

)
. (5.2.10)

The key note of interest in this model is this, the multi-cue fusion model integrates two

stochastic filters itself and not just their measurements: a tracking filter based on a

set of point trackers can be ”tapped off” at hidden state x0
n and another tracking filter

based on color measurements can be got at hidden state ξn.

For the specific case where the parameters α0
n, α

ξ
n are binary the filtering distribu-

tion of λn is composed from one of the two stochastic filters (see Eqn. 5.2.3). This

filtering distribution is identical to either the filtering distribution of x0
n (which is

∝
∑F

f=1 α
f
nmf→λ

(
x0

n|q
f
n−1

)
) or the one of ξn (which is ∝ mξ→λ

(
λn

)
). This ”switching”

idea is used to construct a novel multi-cue tracker.

5.3 Multi-cue switch tracker

The preceeding section showed how to compose the posterior of the hidden state of

interest from messages. The control of which messages to include and which others to

discard lies with the external parameters. So the identity of the multi-cue tracker is

defined by the manner in which these parameters are updated at each tracking instant.

The following steps describe a method for their update.

5.3.1 Parameter update

For further consideration assume the filtering distributions in Eqns. 5.2.8, 5.2.10 are

approximated by sample-sets
{
xf,j

n , πf,j
n

}j=K

j=0
, f = 1 : F and

{
ξj
n, π

ξ,j
n

}j=K

j=0
respec-

tively. The update of binary parameters
{
αf

n, f = 1 : F
}

follows from the discussions

in Chapter 4 and so will not be repeated here.

α0
n, α

ξ
n update:

These parameters control switching between color based measurements and measure-

ments from the bunch of point trackers. At any instant both these measurements may

be valid, one of the two may be valid or both could be inconsistent. Since this is a

switching method one of the two measurements must be preferred or both rejected.

One way of doing this is by assigning a priority to these measurements and developing

a method by which this priority logic is reflected in the update of these parameters.

Such a concept is elucidated in the following discussions.
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If the number of point trackers is F and the number of inlier point trackers among

them at instant n is In (see Sec. 4.4.2 for a method to determine inliers), then define,

b0n ,

1, if In ≥

{
F
2 , if F is even.
F+1

2 , if F is odd.
.

0, otherwise.

(5.3.1)

Probabilistic rejection of color cue:

Let Cπ
n denote the covariance of the sample-set

{
ξj
n, π

ξ,j
n

}j=K

j=0
and let Cs

n denote the

covariance of
{
ξj
n,

1
K

}j=K

j=0
. Compute,

pr
n = min

{
1.0,

det[Cπ
n ]

det[Cs
n]

}
. (5.3.2)

pr
n tends to 1 as the posterior becomes more diffuse and tends towards 0 as the posterior

becomes more peaked. Seen another way, this ratio provides a scalar indicator of the

uniformity of the filtering distribution of the color based particle filter.

With this, define,

bξn ,

{
1, if pr

n ≤ τ
0, if pr

n > τ,
(5.3.3)

where τ is an empirical threshold. Now the logic structure presented in Figs. 5.2, 5.3

is used to update the parameters. The motivation behind this logic is tied with the

priority logic alluded to earlier. This is discussed below.

Figure 5.2: Logic for α0
n update. Figure 5.3: Logic for αξ

n update.

5.3.2 Priority switching and reference model adaptation

The form of parameter update in Figs. 5.2, 5.3 captures the notion of priority switch-

ing. Here the joint state α0
0 = 1, αξ

0 = 1 is disallowed, which implies only one of two

cues is ”ON” at the initialisation stage. To understand the notion of priority switch-

ing, consider the joint state α0
n−1 = 1, αξ

n−1 = 0, which is to be read as the RFT-filter

(see Sec. 4.4 ) is ”prioritised” over the color based filter. From the truth tables 5.1,

5.2 it can be seen that if b0n = 1, then irrespective of the state of bξn it holds that
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αξ
n−1 bξn b0n α0

n

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 0

Table 5.1: Truth table for α0
n update.

α0
n−1 b0n bξn αξ

n

0 0 0 0

0 1 0 0

0 0 1 1

0 1 1 1

1 0 0 0

1 1 0 0

1 0 1 1

1 1 1 0

Table 5.2: Truth table for αξ
n update.

α0
n = 1, αξ

n = 0. This ensures α0
n = 1 or equivalently, it retains its priority, which im-

plies that the λn continues to receive messages from the point trackers even though the

color measurements are declared consistent. Now, alternatively, if α0
n−1 = 1, αξ

n−1 = 0

and b0n = 0, bξn = 1, then α0
n = 0, αξ

n = 1, which is a ”switch” in the priority to the color

based filter and so on.

If b0n = 0, bξn = 0, then α0
n = 0, αξ

n = 0, irrespective of which filter held priority. This

results in a degenerate posterior for λn. Strong occlusions could possibly generate such

an event. From this state on, consider the event b0n = 1, bξn = 1, which results in

α0
n = 1, αξ

n = 1. In practice, it is rare that both filters successfully relock onto the

target (or something very similar to it) at the same instant. If it so happens then one

of the filters should be artificially prioritised before tracking is continued.

The switch in priority between filters should be taken as an opportunity to perform

target reference model adaptation. In this context, the following three possible courses

need to be considered.

α0
n−1 = 0, αξ

n−1 = 1 −→ α0
n = 1, αξ

n = 0:

This is a case when measurements from the set of point trackers are deemed inconsis-

tent. At such an event, the entire set of point trackers and point templates are discarded

and a new set of points (meaning point trackers) are sampled from the belief of λn.

Each of these sampled points is associated to its point template, which is a small rect-

angular patch centered around the point. The notion behind discarding point trackers

and sampling new ones is simple to understand. Since the belief λn is composed only

of the message sent from the hidden state associated to the color cue, these new point

trackers are then effectively sampled from the filtering distribution of ξn. So the change
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in the appearance model of the filter based on point trackers is ”guided” by the color

based filter.

α0
n−1 = 1, αξ

n−1 = 0 −→ α0
n = 0, αξ

n = 1:

This reverse transition is a sign of inconsistent measurements arising from the color

cue. The color histogram is chosen to remain unchanged, as this is taken as the anchor

component of the entire set appearance model of the target. Therefore, as a corrective

measure the particle filtering process is restarted with the filtering distribution of λn as

the prior distribution. With this correction, the filtering equation now reads as follows.

p
(
ξn+1|Y1:n+1

)
∝ lξ

(
yξ

n+1|ξn+1

)
p
(
ξn+1

)
, (5.3.4)

where,

p
(
ξn+1

)
≡ δλn

(
ξn+1

)
p
(
λn|Y1:n; Φn

)
. (5.3.5)

The posterior of λn, which is composed by the message sent from the set of point track-

ers, is made to play the role of a proposal density. Thereby the particles associated

with the color based filter are channelled through the posterior of λn.

α0
n−1 = 0, αξ

n−1 = 1 or α0
n−1 = 1, αξ

n−1 = 0 −→ α0
n = 0, αξ

n = 0 :

This setting of parameter values makes the posterior of λn degenerate, as both color

measurements and set of point tracker measurements are unreliable. Such an event can

result from some form of occlusion. In this case, it is clear that no reference model

update is advisable until at least one of the two cues is resurrected. It is easy to under-

stand, from the fact that the holistic color model is more stable in time than detailed

point templates, that the color based filter is more potent to relock onto the target at

the end of an occlusion. In order to aid this relock, sequential importance resampling

(SIR) procedure used in the color based filter is temporarily arrested (see [Arulam-

palam et al., 2002]. This broadens the spatial spread of the importance samples of

with a hope that some samples will ”hit” the reappearing target. Assuming there is

no clutter during such an event, if some samples do hit the target, then a return to

consistency of the color measurements will be reflected by a distinct lowering of the

rejection probability (see Sec. 5.3.1).

For the sake of stability, replacement of outlier point trackers is arrested during the

event of an occlusion. If and once the target is relocked using the color based filter, new

point trackers can once again be brought into play by sampling as discussed earlier.
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Thus occlusions are effectively handled in this multi-cue setup.

No switch in priority

If the priorities are not switched from an instant to the the next and both filters are

deemed consistent, then outlier point trackers are replaced by draws from the posterior

of λn (or the posterior of the median-aged point tracker as discussed in Chapter 4).

Similarly, importance samples for the color based particle filter can be drawn from its

effective prior or even from the posterior of λn as a way to keep the two filters tied to-

gether (this technique is employed in the construction of the multi-cue switch tracker).

If importance samples are drawn from the posterior of λn, then such an approach is

equivalent to restarting the color based particle filter as described earlier. At this junc-

ture, the key issue of reference model adaptation need to be reemphasized.

Set appearance model: The target model employed in this tracker is a discrete set

appearance model. A subset of this set is composed of the gray level templates. Due

to point tracker replacements, at any tracking instant, it is likely that the age of each

element (template) in this subset is possibly different from the rest. Therefore, this

subset consists of templates having lifespans of a few to several tens of frames and thus

plays the role of the dynamically adapted part of the entire target model.

The second subset is the constant color reference histogram of the target. This is

the static part of the two part target appearance model and does not interact with the

first subset. The histogram is deliberately kept constant to avoid false adaptation due

to illumination, orientation and size changes.

It is interesting to note that this two part model bears similarity to the scheme pro-

posed by Fleet et. al [Jepson et al., 2003]. Their scheme involves explicit construction

of a fused object reference model with static, slowly varying and fast varying compo-

nents. In this scheme, the extreme static part is the color histogram and the other two

components can be mapped to the point tracker appearance templates of varying ages.

All the discussions on multi-cue switch tracking is recapitulated in the pseudo-code

presented in Algorithm 2.

The following section proceeds to set up the experiments to test the multi-cue fusion

tracker.
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Algorithm 2: Multi-cue switch tracking
input : Video sequence with L frames and target bounding box in first frame;

Initialization;

λ0 = Center of bounding box;

Color based particle filter (CPF): Draw particle, set reference color histogram and state

space model parameters;

RFT-filter: Draw point trackers and set point tracking parameters;

Assign priority α0
1, α

ξ
1 by user choice;

if α0
1 = 1, αξ

1 = 0 then RFT-filter is prioritised;

else if α0
1 = 0, αξ

1 = 1 then CPF is prioritised;

for n← 2 to L do

b0
n ← RFTFiltering ();

bξ
n ← CPF ();{
α0

n, αξ
n

}
← ParameterUpdate

(
αξ

n−1, α
0
n−1, b

ξ
n, b0

n

)
; /* See sec. 5.3.1 */

pλn ≡ p

(
λn|Yn, yξ

1:n−1; Φn,
{

qf
n−1

}
f=1:F

)
← ComposePosterior (); /*See sec. 5.3*/

if pλn ! = 0 then
output : Bounding box centered on E [pλn ];

end

else
output : Bounding box centered on the average value of the posterior of the last

registered priority filter;

end

/*See sec. 5.3.2*/

if α0
n = 1, αξ

n = 0 then
ReplaceOutlierPointTrackers (pλn);

if α0
n−1 = 0, αξ

n−1 = 1 then
RestartCPF (pλn);

end

else
ResampleCPF ();

end

end

else if α0
n = 0, αξ

n = 1 then

if α0
n−1 = 1, αξ

n−1 = 0 then
ReplaceAllPointTrackers (pλn);

end

else
ReplaceOutlierPointTrackers (pλn);

end

ResampleCPF ();

end

else if α0
n = 0, αξ

n = 0 then
Arrest replacement of point trackers and resampling of particles;

end

else if α0
n = 1, αξ

n = 1 then
Artificially prioritise one of the two filters and perform necessary

replacement/resampling/restart according to assigned priority;

end

end
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5.4 Experimental setup

The tracker was tested on several ground-truthed color sequences provided by the

CMU VIVID-PETS project [Collins et al., 2005]. The sequences were all aerial videos

of moving cars or military vehicles. These sequences provide wide variety of chal-

lenges like small sized targets with variable motions, defocus blurs, scale changes due

to camera zoom variations and target pose changes, extreme illumination changes due

to sunlight glare and partial to complete occlusions. The project provides an online

third party evaluation system to analyse the performance of the algorithm against

several evaluation parameters, primary of which is the percentage of total frames

tracked. Other parameters like shape matches are beyond the scope of these exper-

iments and so not discussed here. The evaluation system also provides comparative

results against several fundamental/state of the art trackers. The results of this eval-

uation are produced in Table 5.3 for all the test sequences. If functional, the statistics

produced in this table can also be found online at the CMU-VIVID project website:

http://www.vividevaluation.ri.cmu.edu/main.html.

Apart from the VIVID database sequences the standard Jepson and Fleet sequence

[Jepson et al., 2003] is also used in the tests. Other long and very challenging se-

quences such as the ”Snake-eyes” sequence and the ”Children of men” sequence are

introduced. These sequences are rare long take sequences from cinema consisting of

drastic illumination variations, shadow effects, multiple occlusions, rotations in depth,

camera jerks and scaling. These sequences have not been ground-truthed and so only

qualitatively evaluated.

All tracking runs were manually initialised using a bounding box. The parameters for

the point trackers and the corresponding RFT-filter were retained from the experi-

ments performed in Chapter 4. Temporary modifications, if any, are highlighted in the

result samples. 200 samples and a first order Markovian kinematic prior with variance

proportional to the dimension of the target was used for the color based filter. The

rejection probability threshold τ was empirically set at 0.9, meaning b2 = 0, if the com-

puted rejection probability exceeded this threshold. It is prescribed that this threshold

be varied roughly in inverse proportionality to the standard deviation of the kinematic

prior.

The RGB space reference color histogram model is a 8 × 8 × 8 bin histogram. The

population of each bin is incremented if the quantized RGB value of a target pixel falls

into the range represented by that bin. The experimentalist is also free to explore
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histograms constructed on more complex color spaces like the HSV space [Perez et al.,

2002].

At each time instant, a constant size bounding box (scale is not estimated in the pro-

posed approach) centered on the E
[
p

(
λn|Yn, y

ξ
1:n−1; Φn,

{
qf
n−1

}
f=1:F

)]
is displayed.

This box is for display purposes only and it must be borne in mind that a full posterior

distribution describing the uncertainty in this position estimate is available.

5.5 Results and discussions

The results of multi-cue switch tracking of human heads and vehicles are discussed

below.

Head tracking

As a means to compare multi-cue and single cue tracking, snapshots of color based

particle filtering [Perez et al., 2002] on the 1000 frame Snake-eyes sequence is pre-

sented in Fig.5.4. The instability of the color tracker under strong illumination changes,

Figs.5.4(b),5.4(c) and clutter, Figs.5.4(g),5.4(h), 5.4(m), 5.4(n), 5.4(o), 5.4(p), 5.4(q)

can be observed here. On the other hand, its ability to relock onto the target after

occlusions (of about 5-6 frames) can be seen in Figs.5.4(f),5.4(l). Overall, the filter

wavers from the correct track at various periods and loses track completely near the

end of the sequence. For the sake of comparison, the reader is referred to the results of

head tracking on this sequence using the RFT-filter developed in Sec.4.4. The track,

although smooth is quite short and ends at the first occlusion itself. It is clear that

neither one of these filters is capable of tracking the head consistently over the entire

length of the sequence. In contrast, Fig. 5.5 strives to demonstrate the clear advantage

of bringing together these two filters over employing individual filters.

The strong changes in illumination at different periods in this sequence are handled

by the RFT-filter, see Figs. 5.5(27,31,32) for an example. The posterior in Fig.5.5(6) is

more diffuse than in Fig. 5.5(5) as the object undergoes a pose change. Similar obser-

vations can be made from samples of image, posterior pairs throughout the result sam-

ples in Figs.5.5(9,12), Figs.5.5(13,16), Figs.5.5(14,17), Figs.5.5(27,30), Figs.5.5(31,34),

Figs.5.5(32,35), Figs.5.5(33,36), Figs.5.5(37,40) and Figs.5.5(39,42). Two instances

where the color based filter guides the RFT-filter are shown in Figs.5.5(15,38).

Effective recovery from occlusion can be seen Figs.5.5(19,20,21). The spread of the
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(a). Frame 1 (b). Frame 99 (c). Frame 110

(d). Frame 169 (e). Frame 175 (f). Frame 177

(g). Frame 233 (h). Frame 257 (i). Frame 304

(j). Frame 319 (k). Frame 326 (l). Frame 329

(m). Frame 628 (n). Frame 792 (o). Frame 840

(p). Frame 858 (q). Frame 871 (r). Frame 999

Figure 5.4: Color based particle filter based head tracking in the Snake-eyes sequence using
200 particles.



114 5. BAYESIAN MULTI-CUE FUSION

(1). Frame 1 (2). Frame 92 (3). Frame 110

(4). (5). Posterior at frame 92 (6). Posterior at frame 110

(7). Frame 172 (8). Frame 176 (9). Frame 233

(10). Posterior at frame 172 (11). Posterior at frame 176 (12). Posterior at frame 233

(13). Frame 257 (14). Frame 281 (15). Frame 304

(16). Posterior at frame 257 (17). Posterior at frame 281 (18). Posterior at frame 304
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(19). Frame 319 (20). Frame 326 (21). Frame 327

(22). Posterior at frame 319 (23). Posterior of x1
326 (24). Posterior at frame 327

(25). Frame 411 (26). Frame 485 (27). Frame 559

(28). Posterior at frame 411 (29). Posterior at frame 485 (30). Posterior at frame 559

(31). Frame 588 (32). Frame 628 (33). Frame 792

(34). Posterior at frame 588 (35). Posterior at frame 628 (36). Posterior at frame 792
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(37). Frame 818 (38). Frame 840 (39). Frame 858

(40). Posterior at frame 818 (41). Posterior at frame 840 (42). Posterior at frame 858

(43). Frame 871 (44). Frame 944 (45). Frame 999

(46). Posterior at frame 871 (47). Posterior at frame 944 (48). Degenerate posterior at frame 999

Figure 5.5: Multi-cue switch tracking on the Snakeeyes sequence. Priority switching is demon-
strated by changing the color of the bounding box. Blue boxes signify the priority lies with the
set of point trackers and yellow boxes indicate priority for the color based particle filter. White
boxes signify degenerate posteriors. The priority switches 25 times in this result sample.
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Figure 5.6: A plot of the age of the oldest point template versus the frame number for the
snakeeyes sequence in Fig.5.5. Loss of point trackers to several events in the sequence is analysed
using color bands.

Figure 5.7: A plot of the number of templates retained at each frame versus the frame number
for the snake eyes sequence in Fig.5.5. The color bands have the same interpretation as in Fig.
5.6.
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Figure 5.8: A plot of the ratio of covariance determinants versus the frame number for the
snakeeyes sequence in Fig.5.5. The color bands have the same interpretation as in Fig. 5.6.

samples increases under occlusion, see Fig.5.5(23), and decreases when the object be-

gins to reappear, see Fig.5.5(24). The reader must bear in mind that the posterior

is effectively degenerate during occlusion (Fig.5.5(20)), meaning p
(
λn|Y1:n; Φn

)
≡ 0.

However the posterior of the color based particle filter is deliberately shown instead

to draw comparisons with the results of the next frame where the target is relocked

by this filter. A similar observation can be made after the target reappears after the

fourth and final occlusion, see the posterior in Fig.5.5(28).

A noticeable drift in the estimate of the target location can be seen at several in-

stances (due to a lack of adaptation of the compatibility functions), see Figs.5.5(3,7,9)

and Figs.5.5(13,32,33). Fig.5.5(26) presents a situation wherein the method misguided

by a shadow effect, hands over the priority to the color based particle filter. The tracker

however recovers soon enough from this event, see Fig.5.5(27). The distress caused to

the RFT-filter due to a lack of texture can be clearly observed from the diffuse poste-

riors in pairs Figs.5.5(39,42), Figs.5.5(43,46) and Figs.5.5(44,47).

The mutually beneficial effect of multi-cue tracking is particularly visible near the

end of the video sequence when the target undergoes a 180◦ pose change. The RFT-

filter guides the color based particle filter in Figs.5.5(33,37), while the color based filter

guides the RFT-filter through a drastic pose change in Fig.—5.5(38), thus enabling
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tracking till nearly the very end of the sequence. The tracker is ”shaken-off” at the

very end due to a strong motion jerk coupled with very low illumination. A full view

of the results may be gathered from the video provided in the supplementary material.

To corroborate the facts discussed so far, event annotated plots of the age, in frame

units, of the oldest (most consistent) point tracker at each instant, Fig.5.6, the num-

ber of point trackers retained after each execution of rejection control, Fig.5.7, and

the evolution of the ratio of determinants (proportional to rejection probability pr),

Fig.5.8 are provided. As expected, occlusions and large pose changes eliminate a large

number of point trackers. On the other hand, these NCC point trackers are resilient

to variations in illumination. The average most consistent point tracker lasts between

30 − 40 frames. Lack of texture leads to elimination of point trackers, but sampling

from the posterior of the λn replenishes them, which is another evidence of beneficial

interactions.

The ratio of the determinants of covariance matrices is close to 1.0 when the illumina-

tion changes, see Figs.5.5(2,3,14), during occlusions, see Figs.5.5(7) and Fig.5.5(8) for

an example and often in the presence of distractive clutter, see Fig.5.5(13). In contrast,

the color based particle filter is fairly resilient to pose changes and lack of texture, see

Figs.5.5(15,38).

Vehicle tracking

Table 5.3 presents the results of tracking vehicles in aerial videos provided by the

CMU-VIVID project. The results of this automatic evaluation system indicate that

the multi-cue tracker outperforms most state of art trackers and in cases where it does

not, it only lags by a negligible percentage. In these tests, the dimensions of the point

tracker appearance templates and their search spaces were hand tuned at the start to

accomodate for the variation in target sizes and motion magnitudes.

Fig. 5.9 shows result samples of tracking one of the sequences from the VIVID project.

The multi-cue tracker overcomes challenges of pose changes, clutter and strong glares in

this 2300 frame sequence. The search space for point tracking was increased to 81× 81

to accomodate camera jerks. All other parameters were the same as for the head track-

ing test. All contesting trackers meet failure due to very long occlusions presented in

test sequences EgTest04 and EgTest05.

The table also compares the performance of the multi-cue switch tracker when the

initial priority is alternated between the two filters, that is, between the two configura-

tions α0
0 = 1, αξ

0 = 0 and α0
0 = 0, αξ

0 = 1 at initialisation frame. It can be observed that
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(a). Frame 1 (b). Frame 297

(c). Frame 475 (d). Frame 663

(e). Frame 827 (f). Frame 1824

(g). Frame 2012 (h). Frame 2455

Figure 5.9: Multi-cue switch tracking of vehicles in aerial video sequences. Courtesy CMU-
VIVID database.
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this does not affect the overall results. However, in the VIVID project sequences, when

the color based particle filter is assigned the initial priority then there is at least one

switch, which is not the case when the RFT-filter is assigned the priority. This brings

out the strength of the RFT-filter as a useful tracker, but the reader must bear in mind

that since the multi-cue tracker is stochastic, these results must only be interpreted in

an average sense. In a particular test run multiple switches may occur. Apart from

the vehicle sequences the table also contains results for the Snake-eyes sequence and

the Jepson and Fleet sequence [Jepson et al., 2003]. In the Snake-eyes sequence, there

is at least one switch irrespective of the initial priority. To conclude, the fact that the

overall performance on any test sequence does not change when the initial priority is

alternated confirms its insensitivity to the initial configuration of the parameters and

the robustness that is achieved due to multi-cue interactions.

5.6 Multi-cue combination tracker

The logic structure used to construct the multi-cue switch tracker disallowed the state

α0
n = 1, αξ

n = 1, meaning the posterior of λn was composed of only one of the two

messages, even if both forms of measurements was deemed consistent. When two fil-

ters are involved, there is always the possibility of a dichotomy among the contesting

hypotheses, that is, having two non-overlapping hypotheses for the target state. The

multi-cue tracker resolves this dichotomy by virtue of its priority logic, simply, the pri-

oritised filter composes the posterior of the target state. With such logic, constructive

information from the non-prioritised filter could possibly be discarded. Note that this

is only a consequence of the form of parameter update and not the graphical model

itself. For instance, if α0
n = b0n, α

ξ
n = bξn is taken to be the form of the parameter

update, then another robust tracker can be derived from the model based on message

combinations. This tracker is termed the multi-cue combination tracker.

If the terms b0n, b
ξ
n represent the relevance (terminology employed in [Patras and

Hancock, 2007]) of the cues then these can be directly ”plugged-in” to the model

through the parameters α0
n, α

ξ
n. In this way all permutations of messages for com-

posing the filtering distribution of the target state are allowed. In particular, when

both forms of measurements are deemed relevant then the filtering distribution is a

linear mixture of the two messages, see Eqn .5.2.3. Apart from this fact, the multi-cue
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Algorithm 3: Multi-cue combination tracking
input : Video sequence with L frames and target bounding box in first frame;

Initialization;

λ0 = Center of bounding box;

Color based particle filter (CPF): Draw particle, set reference color histogram and state

space model parameters;

RFT-filter: Draw point trackers and set point tracking parameters;

for n← 2 to L do

b0
n ← RFTFiltering ( );

bξ
n ← CPF ( );{
α0

n, αξ
n

}
← ParameterUpdate

(
αξ

n−1, α
0
n−1, b

ξ
n, b0

n

)
; /* See sec. 5.3.1 */

pλn ≡ p

(
λn|Yn, yξ

1:n−1; Φn,
{

qf
n−1

}
f=1:F

)
← ComposePosterior ( ); /*See sec. 5.3*/

if pλn ! = 0 then
output : Bounding box centered on E [pλn ];

end

else
output : Bounding box centered on the average value of the posterior of either one

of the filters;

end

/*See sec. 5.6*/

if α0
n = 1, αξ

n = 0 then
ReplaceOutlierPointTrackers (pλn);

if α0
n−1 = 0, αξ

n−1 = 1 then
RestartCPF (pλn);

end

else
ResampleCPF ( );

end

end

else if α0
n = 0, αξ

n = 1 then

if α0
n−1 = 1, αξ

n−1 = 0 then
ReplaceAllPointTrackers (pλn);

end

else
ReplaceOutlierPointTrackers (pλn);

end

ResampleCPF ( );

end

else if α0
n = 0, αξ

n = 0 then
Arrest replacement of point trackers and resampling of particles;

end

else if α0
n = 1, αξ

n = 1 then
ReplaceOutlierPointTrackers (pλn);

RestartCPF (pλn);

end

end
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(1). Frame 1 (2). Frame 92 (3). Frame 283

(4). (5). Posterior at frame 92 (6). Posterior at frame 283

(7). Frame 283 (8). Frame 304 (9). Frame 326

(10). Posterior at frame 281 (11). Posterior at frame 304 (12). Posterior of x1
326

(13). Frame 485 (14). Frame 588 (15). Frame 792

(16). Posterior at frame 485 (17). Posterior at frame 588 (18). Posterior at frame 792
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(19). Frame 840 (20). Frame 871 (21). Frame 999

(22). Posterior at frame 840 (23). Posterior at frame 871 (24). Degenerate posterior at frame 999

Figure 5.10: Multi-cue combination tracking on the Snake-eyes sequence. Various permuta-
tions of messages are demonstrated by changing the color of the bounding box. Blue boxes
signify α0

n = 1, αξ
n = 0. Yellow boxes signify α0

n = 0, αξ
n = 1. White boxes signify degenerate

posteriors and orange boxes signify α0
n = 1, αξ

n = 1.

combination tracker utilizes the same concepts of reference model adaptation described

for the multi-cue switch tracker. Using the same setting of the parameters as in the

previous experiments, the combination tracker is put to a head tracking test on the

Snake-eyes sequence. A few result samples of this test are provided in Fig. 5.10 for the

sake of comparison. These samples indicate that the overall result does not vary signif-

icantly from Fig. 5.4. However the resulting ”track” is smoother than the one for the

multi-cue switch tracker. In particular, glitches in the track caused by the dichotomies

are smoothed out. A pseudo-code for multi-cue combination tracking is presented in

Algorithm 3.

The following section discusses the drawbacks and possible corrective measures for the

tracking methods proposed in this chapter.

5.7 Drawbacks and suggestions

The proposed filters do not estimate target scale or track scale changes over time.

Tracking or estimating target scale changes is not a trivial problem when dealing with

unconstrained sequences and unknown camera parameters. Although, in principle, it

is possible to estimate scale changes of the target by solving for the parameters of a

motion model by using the tracks of a few point trackers, it is unreliable in practice
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due to the fact that ambient image noise levels are comparable in magnitude to fea-

ture point displacements. A second difficulty arises from the fact that reliable model

parameter estimation is dependent on outlier data rejection, while these outliers are

difficult to signal when the target motion is unknown. The strategy of using optic flow

based motion model computation [Arnaud et al., 2004] may provide some respite here.

Another option is to employ a model free framework where scale changes are automat-

ically tracked without resorting to external estimations (see the next chapter).

The second drawback is that the tracking fails when there is gradually increas-

ing occlusion over a few frames, in which case the replaced point tracker appearance

templates have a tendency to accrue parts of the occluding object. This causes the

point trackers to drift onto other objects, failing the entire scheme. The test sequences

Egtest04 and Egtest05 present such a situation. One prospective way to avoid such

drifting is to impose kinematic priors on x0
n (see the strategy used in [Arnaud et al.,

2004]) and associating it with measurements which incorporate foreground/background

models. However the process of deriving the posterior of x0
n would be more complex

due to the introduction of a temporal component.

5.8 Conclusion

A general thumb rule to know if multi-cue tracking could provide reliable tracks is to

check the extent of tracking performance with individual component cues themselves

and if overlapping parts of the sequence can be tracked with at least one of the com-

ponent cues, then multi-cue tracking can in principle provide robust tracks. It would

be useful in general to have a ”bag of single cue filters” from which an appropriate

subset of filters can be drawn and inserted into a multi-cue model able to accomodate

these filters to achieve robust tracking. The appropriate subsets themselves can be

determined by a thumb rule such as the one prescribed above.

A set of point tracker filters and a color based particle filter formed the contents of

the bag of single cue filters from which two robust multi-cue tracking filters were con-

structed here. The first of which is the multi-cue switch model based tracker which

employs a novel priority switching logic for filtering. At any instant, the target is

tracked by two tracking filters, the RFT-filter and a color based particle filter, with the

state estimate being derived from the prioritised filter. It is important to observe that

although the state estimate is derived from one filter, the other is in operation too.
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Therefore, the priorities are switched and it is not that when a filter fails a new filter is

brought in to play at that very instant. This switch tracker was put to extensive tests

on several video sequences with targets like human heads and vehicles. Both qualitative

and quantitative results assert the robustness of this tracker.

Unlike the multi-cue switch tracker, the multi-cue combination tracker employs the

strategy of message combination for state estimation when both single cue filters are

declared consistent. In other cases the behaviour is the same as the multi-cue switch

tracker. The key functional difference between these two trackers lies in the way they

handle dichotomies in the hypotheses of the component filters. The switch model uses

a priority structure and is therefore capable of maintaining multiple hypotheses until

one of the filters fails. On the other hand the combination model fuses the hypotheses

of the component filters. Each of these two techniques could claim superiority in par-

ticular situations.

The common aspect between these two trackers is the use of an external diagnostic

test to determine the current relevance of their measurements. Although it may be

argued that the posteriors of the RFT-filter and color based particle filter themselves

represent uncertainties in state estimation, it is important to note that these posteriors

are derived using finite sample approximations for computational reasons. Therefore,

employing external monitors with some empirical knowledge are useful in increasing

the robustness of tracking.

The graphical model presented in this chapter is general enough to bear further mod-

ifications and additions of other filters to improve robustness of tracking. Among the

immediate prospects to improve upon the multi-cue switch and combination models

would be the introduction of a prior for the state x0
n based on optic flow computations

and a measurement model based on an appropriate cue. Other interesting prospects

include developing new trackers based on the concept of co-dependent particle filters

presented here and its introduction into the multi-cue switch and combination graphi-

cal model.

Finally, another important point must be borne in mind when employing multi-cue

trackers. It should be ensured that the interaction of cues must be symbiotic and not

parasitic (mitigating each others beneficial qualities). This point is asserted in a subtle

manner by way of experiments on the proposed trackers, encouraging their use.

In the following chapter, the focus shifts from position tracking to tracking arbitrarily
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shaped layouts imposed on targets, in effect moving from lower to higher dimensional

state spaces.



6

Multi-part layout based object

tracking

6.1 Introduction

Visual tracking algorithms vary in their degree of robustness against distractive mea-

surements [Hua et al., 2006] and their ability to precisely outline the boundaries of

the target object [Kass et al., 1987]. Trackers working in state spaces of small dimen-

sions like the ones proposed in Chapter 5 or in [Badrinarayanan et al., 2007b; Yang

and Wu, 2005] perform well under drastic illumination changes, short occlusions and

small out of image plane (depth) rotations of the target using various methods for

target appearance model update. The update strategies range from complex holistic

updates using foreground-background analysis [Yang and Wu, 2005], linear subspace

or manifold based modeling [Ho et al., 2004; Lee et al., 2005] to online replacement

of feature points [Badrinarayanan et al., 2007b]. Within these schemes it is only low

dimensional attributes such as the position of a target which is actually tracked while

other attributes such as scale and orientation are estimated in some other ad-hoc man-

ner. For instance, the scale of a target is commonly approximated to one of a few

discrete scales, as in [Comaniciu and Meer, 1999; Ho et al., 2004] or estimated using a

parametric motion model derived from point matches, which is often erroneous due to

its inability to combat noise in the image data or because of an oversimplified modeling

of a more complex motion. Thus these techniques are in general suitable for imprecise

or equivalently, low dimensional tracking over lengthy durations.

129
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(a). Frame 1 (b). Frame 34 (c). Frame 62

(a). Frame 107 (b). Frame 172 (c). Frame 204

Figure 6.1: Illustration of results on the challenging Children of Men sequence. The little blue
patches represent the centres of the local patch trackers, the rhombus represents the estimated
geometric layout and the rectangle is a semi-precise bound.

In contrast, contour trackers [Kass et al., 1987] work in high dimensional state

spaces to accurately delineate a target boundary, but need frequent user interaction to

steer the unstable parts of the contour. Such trackers are usually employed for precise

tracking over short time periods with some user interaction. A second differentiating

factor between trackers working in low and high dimensional spaces is that in the for-

mer, trackers rely on appearance models like color histograms/templates of the target

to estimate the state (location and scale) of the target at each new frame, whereas, in

the latter, trackers are mainly driven by geometric cues and gradients at the occluding

contours of targets.

The scheme introduced in this chapter lies mid-way between low dimensional and

high dimensional tracking. It employs local patch trackers [Badrinarayanan et al.,

2007b] and their interconnections to output a layout at each new frame from which the

location and scale of the target can be inferred directly. The form of the layout may

be used to derive other attributes like the orientation or even a semi-precise structure

of the target, for instance, a B-spline may be passed through the vertices to capture

a rudimentary shape of the target for cut-out purposes. A motivational illustration is

provided in Fig. 6.1. A rhombus shaped layout is imposed on the target with a local
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patch tracker at each vertex of the layout. Over the sequence the layout changes in

shape and size to track the target in a semi-precise manner from which attributes of

interest such as position, scale and orientation can be derived. The rectangle bounds

the layout in one, albeit very imprecise, manner.

From the foregoing descriptions the proposed scheme must not be misconstrued as a

contender for shape/contour tracking. It is based on rough layouts imposed on the

target, as opposed to precise contour based tracking as in [Zhou et al., 2005]. As the

scheme is designed with a view to work with unconstrained sequences and be free from

offline learning of object specific priors it cannot be seen in contention with meth-

ods which perform ball or hand tracking, as in [Isard and Blake, 1998], with shape

deformation priors, deformable object detection using mesh models and feature point

correspondences as in [Pilet et al., 2005] or problems like face alignment in mug-shot

faces as in Liu [Liu, 2007], which requires extensive training of weak classifiers for com-

puting mesh alignment. Others contributions such as [Sudderth et al., 2003], wherein

the addressed problem is to locate several features on human faces, when some are

occluded, also learn spatial interconnections between features offline as a probabilistic

prior.

Among some of the examples in recent literature which employ the notion of multi-

part tracking is the color based tracking using rigid geometric cues that can be found

in [Perez et al., 2002], in particular, joint head and torso tracking. The work by [Yang

et al., 2006] uses a distributed set of interconnected trackers to jointly track auxiliary

objects and a principal target. [Veeraraghavan et al., 2006] use a set of templates linked

in a geometric fashion to track moving vehicles of very small dimension. All these tech-

niques do not however attempt to deal specifically with the difficult and important issue

of multi-part target tracking with online (unsupervised) update of the interconnections

between the parts.

The work reported in this chapter considers the problem of multi-part tracking of gen-

eral targets and online update of the interconnections or equivalently the layout prior.

The issue of implicitly accomodating changing object appearances due to rotations in

depth (measuring rotations in depth in arbitrary sequences with no known camera pa-

rameters is an extremely difficult problem), scale and environment induced changes is

considered here. A probabilistic graphical model framework is postulated for a con-

certed participation of an ensemble of local patch trackers for layout tracking. Methods

based on sequential Monte Carlo simulations are invoked to fuse distributed measure-



132 6. MULTI-PART LAYOUT BASED OBJECT TRACKING

ments arising from local patch tracking and the layout prior.

The remainder of this chapter is divided in two main sections. Section 6.2 is dedicated

to the multi-part tracking problem. Section 6.2.1 describes the probabilistic graphical

modeling of the problem. Section 6.2.2 describes the proposed algorithm in detail. Sec-

tion 6.2.3 details the experimental setup. The results of the experiments, qualitative

comparisons and discussions regarding the strengths and drawbacks of the approach

form Section 6.2.4. Pointers to extension and prospective work are given in Section

6.2.5. Section 6.3 describes interactive multi-part tracking, a prospective extension to

multi-part tracking described in Sec. 6.2. The probabilistic graphical model for inter-

active multi-part tracking is presented in Section 6.3.2, followed by the proposed nature

of interactions in Section 6.3.3 and some sample results in Section 6.3.4. The chapter

is concluded in Section 6.4.

6.2 Multi-part tracking

6.2.1 Probabilistic graphical model

Consider the graphical model shown in Fig. 6.2. The joint hidden state variable is

denoted as Xn = {xi
n, iεV} and the corresponding set of measurements is denoted as

Yn = {yi
n, iεV}, where V is the set of nodes (vertices) in the graph. Although not

explicitly denoted, these measurements are indeed dependent on sequentially arriving

image data I0:n as seen from Fig. 6.2. The filtering distribution of Xn conditional on

the full observed data I0:n, Yn and parameterized by θ,PR is taken to have the following

form.

p
(
Xn|Yn, I0:n; θn,PR

)
∝ l
(
Yn|Xn, I0:n

)
lP
(
Xn|PR

) ∏
(i,j)εΓ

Ψ
(
xi

n, x
j
n|θn

)
, (6.2.1)

where l
(
Yn|Xn, I0:n

)
is a joint likelihood function. The the prior is factored into the

following terms enumerated below.

1. a layout similarity function lP
(
Xn|PR

)
with fixed deterministic parameter PR.

A short note on this function is provided below.

The layout similarity function:

Layouts are in general regular or non-regular polygons. At the initialization frame
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Figure 6.2: Graphical model for multi-part tracking with local patch trackers.

for the tracking sequence the polygon connecting the local patch trackers is stored

as a target reference polygon PR. A polygon represented by sample Xs
n, denoted

as P (Xs
n) is compared with this reference to derive a measure of similarity for

this sample. This comparison is done in a polygon code space composed by low

dimensional coded representations of polygons. This chapter utilises the polygon

turning angle based coding algorithm prescribed by [Arkin et al., 1991] to code

polygons. The measure of similarity is then taken to be L2 distance between the

representational codes of PR and P (Xs
n). This matching is in practice invariant

to rotation to a reasonable extent. The layout similarity function is then defined

as shown below:

lP
(
Xs

n|PR
)

,
1.0

‖PR − P (Xs
n) ‖

. (6.2.2)

By construction, the above term can be evaluated for any sample of the joint

hidden state.

2. A product of pairwise potential (or compatibility) functions
{

Ψ
(
xi

n, x
j
n|θn

)
, (i, j) εΓ

}
,

where θn is a variable parameter and Γ denotes the set of all edges in the graph.

It is to be noted that the set of pairwise potential functions represents the layout

and from here on the term potentials will be used interchangeably with the term

layout.

Given a realization of the sequential image data I0:n and measurement Yn derived from

it, the objective is to infer the marginal posteriors
{
p
(
xi

n|Yn, I0:n; θn,PR
)
, iεV

}
or be-

liefs at each node in the set V, of the graph. Some interesting algorithms including
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Belief/Loopy-Belief Propagation have been introduced in recent tracking literature by

[Sudderth et al., 2003; Hua and Wu, 2004] for such inference tasks. The assumption

underlying these algorithms is that a prior (the potential function) on the joint hid-

den state variable has been learnt offline via training. However, in an unconstrained

tracking context such priors are difficult to obtain and especially when there is large

scaling and rotations in depth of the target. Therefore, in an unconstrained context

these priors must be updated online, preferably in a sequential manner, as new data

arrives.

A direct application of the iterative Expectation Maximisation (EM) algorithm is not

suitable for updating the parameters of the prior as the normalization factor or parti-

tion function of the joint posterior in Eqn. 6.2.1 is difficult to obtain in closed form in

general cases (non-linear likelihood functions). Therefore, recourse is taken to Monte

Carlo sampling based alternatives to approximate the posterior from a known θn. Sub-

sequently, this sample based approximation of the posterior is used to update parame-

ter θn using the Iterative Conditional Estimation (ICE) technique of [Salzenstein and

Pieczynski, 1995]. This entire non-sequential iterative multi-part tracking algorithm is

detailed in the following section.

6.2.2 Proposed algorithm

A set of local patches are tracked or matched from one frame to the next, independently

of each other, using some convenient method. To avoid digression, discussions on the

specific patch tracking method employed in this chapter is postponed to Sec. 6.2.3.1.

For the present, consider the following general form of measurement derived by such

methods.

yi
n = argmin

ŷi
nεSn

D
[
f
(
ŷi

n, In
)
, f∗
(
I0:n−1

)]
, (6.2.3)

where D is a distance function, typically template/patch cross-correlation [J.P.Lewis,

1995] or SSD [Nickels and Hutchinson, 2002], f
(
ŷi

n, In
)

is the extracted local patch

centered around location ŷi
n in image In and f∗

(
I0:n−1

)
is a reference model for the

tracked local patch derived using past image data I0:n−1. Sn is a search space on the

image In centered on a estimate of xi
n−1. Now the following relationship is postulated

between the measured variable yi
n and the hidden state xi

n

yi
n = xi

n +N
(
0,Σi

n

)
, (6.2.4)
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where N
(
0,Σi

n

)
is a zero mean Gaussian noise with empirically determined diagonal co-

variance matrix Σi
n. With this measurement model and the assumption of independence

of measurements conditional on the joint hidden state (see Fig. 6.2), the joint likelihood

function can be written as follows.

l
(
Yn|Xn, I0:n

)
=
∏
iεV
N
(
yi

n;xi
n,Σ

i
n

)
, (6.2.5)

where, the notation N
(
yi

n;xi
n,Σ

i
n

)
represents a Gaussian distributed variable yi

n with

mean parameter xi
n and variance parameter Σi

n.

The pairwise potential functions describing the relationship between the local state

variables are assumed to have a Gaussian form as shown below;

Ψ
(
xi

n, x
j
n|θn

)
= N

(
|xi

n − xj
n|;µij

n ,Σ
ij
n

)
, (i, j) εΓ, (6.2.6)

by which the parameter θn =
{
µij

n ,Σ
ij
n ; (i, j) εΓ

}
. A note of interest here: the form

of the potential is not a typical multi-variate Gaussian, as it is based on the absolute

difference of state variables. This clearly brings out the inadequacy of attempting to

learn this type of prior offline; if attempted, even a simple scaling of the target would

affect the learnt prior considerably. Interestingly, most algorithms in tracking litera-

ture based on graphical model formulations [Sudderth et al., 2003; Briers et al., 2005;

Khan et al., 2004] do not attempt to deal with situations were the potentials undergoes

scaling, or assume that the scale normalization is performed by some external device.

6.2.2.1 Importance sampling approximation of the joint posterior

Given a realisation of I0:n and an initial estimate of the parameter θk−1
n , at iteration

k−1, the filtering distribution of Xn (see Eqn.6.2.1) can be approximated using impor-

tance sampling. To this end, importance samples are drawn from a suitable proposal

or importance sampling density developed as described below.

Developing a proposal density:

Letting aside the layout based prior term found in Eqn.6.2.1 which makes sampling

unpractical, consider the following model of the filtering distribution parameterized by

the estimate θk−1;

g
(
Xn|Yn, I0:n; θk−1

n

)
= l
(
Yn|Xn, I0:n

) ∏
(i,j)εΓ

Ψ
(
xi

n, x
j
n|θk−1

n

)
. (6.2.7)
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Probabilistic inference on this model using standard belief propagation [Yedidia et al.,

2001] results in marginal posteriors
{
g
(
xi

n|Yn; θk−1
n

)
, iεV

}
or beliefs, denoted as{

bk−1

(
xi

n

)
, iεV

}
. It is re-emphasized that belief propagation is necessary as the priors

are not multi-variate Gaussian which disallows analytic computations. The proposal

density is then developed using these beliefs as shown below.

q
(
Xn|Yn, I0:n; θk−1

n

)
=
∏
iεV

bk−1

(
xi

n

)
. (6.2.8)

The above form of the proposal is easy to sample from and is also a way to di-

gest global prior information in course of developing the proposal density. Samples{
Xs

n ∼ q
(
Xn|Yn, I0:n; θk−1

n

)
, s = 1 : M

}
are drawn and their unnormalized importance

sampling weights ws
k−1 computed as shown below:

ws
k−1 =

l
(
Yn|Xs

n, I0:n

)
lP
(
Xs

n|PR
)∏

(i,j)εΓ Ψ
(
xi,s

n , xj,s
n |θk−1

n

)
∏

iεV bk−1

(
xi,s

n

) . (6.2.9)

Following the above computation, the filtering distribution of the joint hidden state,

parameterized by estimate θk−1
n , can be approximated as indicated below.

p
(
Xn|Yn, I0:n; θk−1

n ,PR
)
≈
∑

s=1:M

ws
k−1∑

s=1:M ws
k−1

δXs
n

(
Xn

)
. (6.2.10)

In order to arrive at the above approximation, it is necessary that the layout similarity

function of the prior, lP
(
Xn|PR

)
, can be evaluated pointwise (a fact herein ensured by

construction).

The sample-set approximations of filtering distributions of Xn can be visualized in

Fig. 6.3. The joint hidden state samples shown are true samples drawn from sample-set

approximations. Therefore, their spatial spread provides an insight into the uncertainty

of the layout estimate at that instant. In the next step, the parameters of the potentials

are updated based on the approximated filtering distribution.

6.2.2.2 Parameter update

The Iterative Conditional Estimation (ICE) technique [Salzenstein and Pieczynski,

1995] prescribes parameter update from complete data, {Xn, Yn, I0:n}. The essence

of this technique lies in the following iteration;

θk
n = E

p
(
Xn|Yn,I0:n;θk−1

n ,PR
)Θ(Xn, Yn, I0:n

)
, (6.2.11)
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where Θ
(
Xn, Yn, I0:n

)
is a statistical estimator of θn. Substituting the sample-set ap-

proximation from Eqn. 6.2.10 in Eqn.6.2.11 leads to a sample based approximation of

the above expectation as shown below:

θk
n ≈

∑
s=1:M

w̃s
k−1Θ

(
Xs

n, Yn, I0:n
)
. (6.2.12)

In the experiments reported in this paper, Θ
(
Xn, Yn, I0:n

)
is chosen to be the Maximum

Likelihood Estimator (MLE);

Θ
(
Xn, Yn, I0:n

)
= argmax

θn

p
(
Xn|Yn, I0:n; θn,PR

)
. (6.2.13)

For the case of the Gaussian form of the prior postulated here, Eqns.6.2.11, 6.2.13 lead

to parameter update of the following form.

µij,k
n =

∑
s=1:M

w̃s
k−1|xi,s

n − xj,s
n |, (i, j) εΓ,

Σij,k
n =

∑
s=1:M

w̃s
k−1

(
|xi,s

n − xj,s
n | − µij,k

n

)T (|xi,s
n − xj,s

n | − µij,k
n

)
, (i, j) εΓ. (6.2.14)

The steps described in Sections 6.2.2.1 and 6.2.2.2 can be iterated until convergence.

Algorithm. 4 provides a pseudo code summarising the discussions so far. The next

section focuses on the experimental setup to test this algorithm.

6.2.3 Experimental setup

The video sequences used in all the experiments had targets undergoing significant ro-

tations in depth and/or large scale changes. In addition poor recording quality, rapid

changes in illumination and motion jerks are also found in some of them (See 6.7).

Occlusion handling is currently beyond the scope of this chapter and therefore, the

targets are unoccluded in all the sequences.

Quantitative comparisons are difficult to perform for the proposed approach as there

are no direct contenders specifically dealing with the issue of multi-part tracking and

online update of prior in unconstrained sequences. Tests are performed with stan-

dard sequences to the extent possible to aid visual comparison with other results in

literature. Standard video sequences like the Fleet sequence [Jepson et al., 2003], the

Behzad sequence (Honda/UCSD database) and the deflating Balloon sequence were

used for testing the scheme. The sources for these sequences and, if available, links

to some comparable results, which include techniques like adaptive template matching,

are provided below the appropriate results. Further new challenging video sequences
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(a). Frame 1 (b). Frame 11 (c). Frame 189

(e). Frame 306 (f). Frame 363 (g). Frame 438

(h). Frame 547 (i). Frame 572 (j). Frame 589

Figure 6.3: Tracking the Jepson and Fleet sequence. 30 joint hidden state samples from the
sample-set approximation of the filtering distribution are displayed to give an insight into the
uncertainty of the state estimate. The red polygon is the unscaled user defined reference model,
superimposed on each frame for the sake of comparison.



6.2. MULTI-PART TRACKING 139

Algorithm 4: Multi-part layout based tracking
input : Video sequence with L frames and local patch bounding boxes {Bi, i ∈ V} in first

frame;

Initialization;

InitializePatchTrackers( ); /* See Sec.6.2.3.1 */

PR ← SetLayoutReferencePolygon
(
{Bi, i ∈ V}

)
; /* Set the parameters of the Gaussian

prior */

{ci, i ∈ V} ← BoundingBoxCenters
(
{Bi, i ∈ V}

)
;

θ0 ≡
{
µij

0 = |ci − cj |, Σij
0 = large initial value; (i, j) εΓ

}
; /* See Sec.6.2.3.1 */

for n← 1 to L do

for i ∈ V do

N
(
yi

n; xi
n, Σi

n

)
← TrackLocalPatch

(
i, I0:n

)
;

end

/* Iterative Monte Carlo update, see Secs.6.2.2.1,6.2.2.2 */

θ0
n = θn−1

for k ← 0 to K do

bk

(
xi

n

)
, iεV ← DevelopProposal

({
N

(
yi

n; xi
n, Σi

n

)
, i ∈ V

}
, θk

n

)
;

p
(
Xn|Yn, I0:n; θk

n,PR
)
≈

∑
s=1:M

ws
k∑

s=1:M ws
k
δXs

n

(
Xn

)
←

ApproximateJointStatePosterior
({

bk

(
xi

n

)
,N

(
yi

n; xi
n, Σi

n

)
, i ∈ V

}
, θk

n

)
;

θk+1
n ← MLParameterUpdate

(∑
s=1:M

ws
k∑

s=1:M ws
k
δXs

n

(
Xn

))
;

end

for i ∈ V do

if found outliers then
ReplaceOutliers( );

end

end

output : Layout ≡ E
[
p
(
Xn|Yn, I0:n; θK

n ,PR
)]

;

end

like the Children of men sequence Figs. 6.1, 6.7 are introduced to test the efficacy of

the approach.

At each frame, one iteration of deriving the approximate joint hidden state filtering

distribution and subsequent parameter update was seen to be sufficient, as only one

measurement Yn is available at any instant n. Before concluding the details of the

experimental setup, the characteristics of the local patch trackers used to derive these

measurements Yn are now described.

6.2.3.1 Local patch tracking

Nature of a patch and patch tracking:

A patch is constructed or equivalently defined by a set of feature points and their,
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possibly overlapping, appearance templates. With this definition, a patch can be of

any arbitrary shape and is seldom rectangular. An example patch constructed using 4

feature points and their templates is shown in Fig. 6.4.

In practice, the location of a local patch i is tracked using the RFT-filter proposed

in Chapter 4. The resulting filtering distribution is approximated to a multi-variate

Gaussian distribution Ni

(
µ̂i

n, Σ̂i
n

)
by moment matching. This distribution is then used

to derive the statistics of the measurements, for instance, at local patch (vertex) i,

yi
n = µ̂i

n,Σ
i
n = Σ̂i

n (See Eqn. 6.2.4) and similarly for the other vertices.

As in RFT-filtering, at each instant n, a subset of outlier feature points in a local

patch (and thereby their appearance templates) are replaced online (see Chapter 4)

and therefore, the patch evolves over time. An illustrative procedural detail of patch

tracking is provided in Fig. 6.4 alongwith additional explanations.

Figure 6.4: Local patches and patch tracking. A patch, see top right hand corner, is constructed
using F = 4 feature points, with hand tuned template and search dimensions. Templates are
marked as small rectangles. RFT-filtering is used to track the location of the patch. µ,Σ are the
parameters of the Gaussian likelihood derived from the RFT-filtering distribution (see text).

Local patch selection:

Patches are manually selected at the periphery of the tracked object in a way that the

layout of the patches are isomorphic to the general shape of the object, for instance,

an elliptical layout is a natural choice for human faces. The number of patches can

be varied depending on the complexity of the layout and the computational power at

one’s disposal.

Patch evolution:
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A patch evolves because some of the feature points in its defining set are replaced online

as and when these points are signalled as outliers (see Sec.4.4.3). An important point

arises in this context. When feature points are replaced, new appearance templates

are associated to these new points, as a consequence of which the patch composition

changes. These new templates correspond to new parts on the target derived from

current data. Therefore, some templates in a patch could possibly be from the distant

past (if a particular point in the patch has been consistently tracked for a long duration),

some others could be relatively new and the rest completely new. Clearly, as the

set of templates also form the reference model for the patch, replacing feature points

(thereby bringing in new templates) means changing this reference model. This change

is essential to adapt the patch to changing appearances of the target. The method by

which feature points are replaced is described below.

Feature point replacement methodology:

In the result samples shown in Fig. 6.5, feature points at some patch (vertex) need

to be eliminated and replaced in order to adapt to deformations or rotations in depth.

The outlier feature points (See Sec.4.4.3 for an explanation of how outliers are detected)

in each patch are eliminated from the set of F feature points and replacement feature

points, denoted
{
FR

i , iεV
}
, are drawn from corresponding densities:

FR
i ∼ Nxi

n

(
E

p
(
xi

n|Yn,I0:n;θn,PR
)δ

xi,s
n

(
xi

n

)
,S
)
, iεV (6.2.15)

where the expectation is evaluated using the MC approximation of the belief and S is a

fixed sampling covariance (diagonal) matrix (It is set to 25.0I2×2 in the experiments).

6.2.4 Results and discussions

The results presented in this section are roughly arranged in an increasing order of

difficulty, starting from contrived lab test videos to outdoor cinema sequences. The

first sequence shown in Fig.6.5 (http://esm.gforge.inria.fr/ESMdownloads.html) is a

deflating and deforming balloon sequence presenting large scale changes but with little

rotation in depth. The scale is quite accurately tracked throughout the sequence.

The Behzad1 test sequence from the Honda/UCSD database shown in Fig.6.6

(http://vision.ucsd.edu/leekc/HondaUCSDVideoDatabase/ HondaUCSD.html) presents

a greater challenge to the proposed algorithm with frequent in-plane and out of plane

rotations, scale changes and fast motions. Frequent replacement of feature points can

be observed in several frames to quickly adapt to changing appearances of the target.
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(a). Frame 1 (b). Frame 284 (c). Frame 468

(e). Frame 683 (f). Frame 732 (g). Frame 848

(h). Frame 956 (i). Frame 1000 (j). Frame 1080

Figure 6.5: Results on the Deflating Balloon(Mouse) sequence. The white polygon repre-
sents the estimate of the geometric layout derived as the mean of the joint posterior. Newly
sampled feature points are displayed in small yellow rectangles. Source video can be found at
http://esm.gforge.inria.fr/ESMdownloads.html
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(a). Frame 1 (b). Frame 29 (c). Frame 47

(d). Frame 53 (e). Frame 64 (f). Frame 77

(g). Frame 85 (h). Frame 91 (i). Frame 107

(j). Frame 113 (k). Frame 128 (l). Frame 135

(m). Frame 154 (n). Frame 169 (o). Frame 178

Figure 6.6: Results on the Honda/UCSD Database Behzad1 test sequence. Source video can
be found at http://vision.ucsd.edu/leekc/HondaUCSDVideoDatabase/ HondaUCSD.html.
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(a). Frame 1 (b). Frame 3 (c). Frame 16

(d). Frame 42 (e). Frame 66 (f). Frame 86

(g). Frame 117 (h). Frame 121 (i). Frame 125

(j). Frame 141 (k). Frame 143 (l). Frame 146

Figure 6.7: Results on the Children of Men sequence. This video has poor recording quality.
Large motion jerks eventually cause tracking failure.
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(a). Frame 1 (b). Frame 17 (c). Frame 53

(d). Frame 86 (e). Frame 101 (f). Frame 121

(g). Frame 146 (h). Frame 160 (i). Frame 169

Figure 6.8: Qualitative comparison with a color based particle filter of [Perez et al., 2002].
The frequent sliding of the estimated position is clearly noticeable.

The proposed tracker is able to follow the key part of the face for most parts of the

sequence. The scale of the target is also assessed reasonably well (See Figs. 6.6 (f) and

6.6(h)). In Figs. 6.6(f) and 6.6(m) replacement features are positioned at the threshold

between the target and the background, but the presence of the layout prior prevents

tracking drift. However, after several rotations in depth of the target, the tracking

quality detoriates, primarily due to a poor proposal density warranted by absence of

a kinematic prior on the hidden states and reliance on the likelihood and layout prior

alone. This leads to misplaced feature points leading to imperfections (See Fig.6.6(p))

in tracking. In consequence the algorithm also fails to accurately track the orientation

of the target.

The ability of the tracker to perform on poor quality videos is tested in Fig. 6.7.
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The target is tracked despite large illuminations changes caused by shadowing, due

to normalised cross correlation based feature point tracking and timely feature point

replacements. In comparison, a 200 particle color based filter of [Perez et al., 2002] is

distracted by this frequent change in illumination and results in jittery estimates of the

position of the target as seen from the result samples in Fig. 6.8. A scheme to adapt the

reference color model is necessary but this problem of holistic color model adaptation is

indeed a difficult one. In contrast, patch evolution via feature point replacement han-

dles necessary partial adaptation of the target reference model implicitly. The tracker

also performs well in presence of some out of plane rotations due to target pose changes

and ego-motion of the camera. The implicit following of scale changes is brought out

in this sequence. In current day literature on filtering via Monte Carlo simulations,

scale estimation is generally decoupled from position estimation due to dimensionality

problems. Even if these dimensionality problems are resolved the issue of defining an

adequate likelihood model for a ”scale variable” is difficult.

Finally, between 30-50 joint hidden state samples were used in all the experiments and

the computational time for the tracker on a 2GHz CPU machine was estimated to be

in the order of 10-12 frames/sec without in-depth optimization of the code.

6.2.5 Prospects

An interesting prospect would be to improve the proposal distribution for importance

sampling. The high dimensionality of the joint hidden state and the MRF model makes

it difficult to develop, easy to sample yet adequate proposals. Nevertheless, attention

need to be paid towards incorporating kinematic priors on the hidden states, although

this would lead to the complicated issue of performing probabilistic inference on a Dy-

namic Bayesian Network (DBN) model. Additional forms of measurements, say, via

tracking edges close to the vertices, could be included in the development of a better

proposal.

It is informative to note that the graphical model on which the multi-part tracking

algorithm is based is free from any topological constraints, therefore, other graphs

modeling a different conditional independency structure could also be experimented

with. The Gaussian nature of the geometric potentials can also be relaxed to include

non-Gaussian potentials, although at the expense of additional complexity during the

inference stage. Although most results shown in this paper are on human faces, the

algorithm inherently is free from any object specific prior which is an added advantage.
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The algorithm’s use in arbitrary environments is still restricted due to the absence of

occlusion handling capabilities. An immediate extension which can be envisaged is the

introduction of color based holistic observations to recover from occlusions and kine-

matic priors. Finally, an alternative strategy would be to exploit the very concept of

multi-part layout based tracking in an interactive setup. Several vision applications

where tracking algorithms find place can afford a reasonable amont of user interac-

tion if the interaction is intuitive and easy. Such interactions are indeed indispensible

for several reasons including, lack or difficulty in obtaining a good prior, re-steering

of faulty tracks resulting from lack of robustness in tracking, need of quick and effi-

cient ways to generate semi-precise tracks/mattes for other applications, for instance

in compositing cinema sequences or even defining seeds and ground truths for other

experiments such as video target segementation. The following part of this chapter is

dedicated to discussions on interactive multi-part tracking addressing these and such

needs.

6.3 Interactive tracking with evolving patches and color

6.3.1 Introduction

Several video processing applications such as video editing, alpha-matting and colour

correction rely on visual tracking schemes to ease their burden. These applications are

usually semi-automatic, meaning it requires user interaction to achieve satisfactory re-

sults. Visual tracking schemes can be modified to take advantage of these interactions

to robustify their functioning. This section describes an interactive visual tracking

scheme based on an extension of the probabilistic multi-part tracking model proposed

in the previous chapter. This scheme has the ability to deliver tracks of rough arbi-

trarily shaped layouts in unconstrained videos allowing for some user interaction. Such

tracks can then lead to rough video object cut-outs useful for purposes such as, mak-

ing video collages, as seeds for finer object segmentation in a track and batch-segment

scheme, developing target mattes, to access video tubes of human faces or other objects

for training other algorithms and even generation of ground truths for tests.

In recent literature there have been some schemes proposed for interactive visual track-

ing. To set the context for the contents of this section a review of these schemes is

given below under two categories.
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1. Batch processed interactive visual tracking

The defining aspect of such schemes is that the test videos are preprocessed be-

fore the tracking run. An example in this category is the interactive feature

tracking scheme of [Buchanan and Fitzgibbon, 2006]. The problem they tackle is

the tracking of small image patches over lengthy durations. Initially the patches

around each pixel in each frame of the video sequence are projected onto a patch

basis (constructed using some randomly chosen patches in the video sequence)

and so encoded.

When a patch is to be tracked, the M best matches (equivalently patch detections)

to this patch in each frame are computed. Between one frame to the next pairwise

match errors for these best matches are computed based on a linear combination

of a motion smoothness term, a term for the appearance similarity between the

two consecutive frames and a third appearance similarity term measuring the

similarity of the current image patch to the user provided set of feature templates

(from chosen key frames). These matches and their corresponding match errors

form the states at each stage (frame) of a Dynamic Programming (DP) table.

Apart from these matches each stage in the table also includes an occlusion state

with a user controlled occlusion penalty. The optimal track for the patch is then

computed using the standard principle of optimality of DP.

The user interaction lies firstly in the adjustment of the occlusion penalty and

the coefficients of the linearly combined match error. Secondly, upon noticing an

error in the track at some frames, the user can augment key frame feature tem-

plates. To aid the choice of these templates the authors propose an auto-track

feature which uses the dynamic programming track optimization approach. After

a run of DP, the image patch around a point on the optimal track most unlike

the ones in the user provided set of feature templates is added to this set. This

eases somewhat the burden on the user. However as the authors point out this

procedure assumes there are few false positives on the optimal track. Once these

templates are augmented the DP track optimization is rerun. These two steps

are repeated until the error converges.

To provide some insight into the capabilities of their interactive setup, the authors

track a patch on a human face for a lengthy duration with few key frame templates

and parameter adjustments, and show that it is difficult to obtain a comparable

result using techniques like mean shift tracking [Comaniciu et al., 2000] or KLT
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[Tomasi and Kanade, 1991] tracking even with manual restarts after each failure.

Results on tracking features undergoing occlusion are also shown. If the user has

the convenience of pre-processing the videos, as could be the case in most offline

applications, this setup is very useful. Tracking very discriminative features like

corners, eyes and such can be performed using this method with few interactions.

However, there is no study reported in their work on what amount of interactive

effort could possibly be incurred on tracking less discriminative points. Following

which a question arises as to whether there is an obvious extension of this ap-

proach to larger patches or regions, which would be particularly useful for color

correction purposes or inserting special effects. Further more, if the user desires

to track N different patches on an object then it effectively multiplies the neces-

sary interactive effort by at least a factor of N , if the important cue of geometric

relationships between the patches are not harnessed. Aside from this fact, the

necessary parameter adjustments and setting of the occlusion penalty is not very

intuitive for an operator. In conclusion, an extension of this approach to tracking

both the position and scale of larger patches, regions or layouts is awaited.

A second example of interactive tracking of rectangular regions using color is

the offline scheme proposed by [Wei et al., 2007]. Their approch relies on the

paradigm that a combination of user interaction, object detection, tracking and

batch optimization can result in good quality tracking within a reasonable dura-

tion and effort. Their strategy is a three fold one. First, select some key frames

where the object bounding box is marked by the user. Construct boosted color

histogram features of the target from this input and train a set of weak classifiers

based on these features. A strong classifier which is constructed as a combination

of these weak classifiers is used to pick the best N detections at evenly sampled

I-frames over the entire sequence. In stage two, beginning from these I-frames a

mean shift tracker is used to grow object trajectories forwards and backwards.

From these trajectories and a slightly involved best first strategy, N object can-

didates are selected in each of the non I-frames. Building a DP table with these

candidates, DP based track optimization is used to minimize a cost function sim-

ilar to the one proposed by [Buchanan and Fitzgibbon, 2006] which also includes

an occlusion penalty. The optimal track is so obtained.

The key to the success of this approach is the trajectory growing technique which

eliminates a large number of false positive detections and a robust appearance
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model construction using a combination of weak classifiers. The method is shown

to produce reasonable results with sequences presenting several occlusions and

scale changes with few key frame markings. Overall such a technique is com-

putationally less intensive than the interactive feature tracking technique and is

able to track regions. However issues of parameter adjustments remain and the

authors do not provide statistics about the number of adjustments required to

achieve the results. Aside from this there is no key insight provided into how

to choose the key frames (if there is an auto-track type feature which could be

used) as the computationally intensive trajectory growing technique needs to be

repeated when a new key frame is inserted. Another possible issue is in construct-

ing the appearance model from these key frames, if, say, a key frame is chosen at

every distinctive color variation presented by the object, then there is a risk of

over learning the classifiers. Tests on lengthy and difficult videos would present

such issues.

2. Near sequential interactive visual tracking

All interactive approaches which do not treat the tracking problem as an opti-

mization problem with some fixed constraints (set with user provided key frame

samples) are classified here as near sequential approaches. This includes ap-

proaches where the user restarts a tracker, like a mean-shift tracker, when it is

led astray by confusion in its measurements, adjusting nodes of an active contour

tracking scheme and the like. These are the most straightforward modes of inter-

actions, but nevertheless useful and practiced in most application scenarios. It is

in this category that lies the contribution of this section, which is primarily an in-

vestigation into how the prior on the hidden states in the graphical model of Fig.

6.2 can be interactively modified to obtain desirable tracking results. If the prior

itself is Gaussian, then the user needs to control only two intuitive parameters,

namely the sufficient statistics. In comparison with the batch processed methods,

the key capability of this interactive setup is the ability to track arbitrary layouts

with reasonable interactive effort over long sequences.

The judgement of the quality of the resulting track due to interactions is a very

subjective issue, especially in the absence of ground truth, which is so often dif-

ficult to obtain. Ironically, interactive tracking is itself indispensible to generate
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Figure 6.9: Graphical model for interactive multi-part tracking with local patch trackers and
global color based likelihood.

ground truths in long sequences. Secondly, the amount of interactive effort re-

quired to generate a particular track depends on the task in hand, the sought

precision, the nature of the underlying algorithm and the easy of interaction.

Due to these reasons, only a qualititative assessment of the results are made and

argued that it is still beneficial to introduce task specific user interactions.

6.3.2 Extended probabilistic graphical model and inference

Employing the notations defined in Sec. 6.2.1, the joint hidden state is denoted as Xn ={
xi

n, iεV
}

and the associated measurement as Yn =
{
y1

n, . . . , y
5
n

}
, in which y1

n, . . . , y
4
n

are measurements derived from patch tracking, as before, and y5
n is a color based

measurement associated to the joint hidden state (see [Perez et al., 2002] for definition).

I0:n is the variable representing sequential image data upto instant n. With these

definitions the filtering distribution of Xn is given as follows.

p
(
Xn|Yn, I0:n; θn,PR

)
∝ lC

(
y5

n|Xn, I0:n

)∏
iεV

l
(
yi

n|xi
n, I0:n

)
lP
(
Xn|PR

) ∏
(i,j)εΓ

Ψ
(
xi

n, x
j
n|θn

)
,

(6.3.1)

where parameters θn,PR have the same meaning as in Eqn. 6.2.1. The procedure for

approximating this filtering distribution by a sample-set using iterative Monte Carlo

simulations are on the same lines as described in Sec. 6.2.2. If the color based likelihood

component lC
(
y5

n|Xn, I0:n

)
is set aside, the intermediate model used to develop the

proposal density remains the same as in Eqn. 6.2.7. Thereby, the proposal density for

drawing joint hidden state samples remains the same too. The only key difference lies
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in the additional color based likelihood evaluation required to compute the importance

weights for each joint hidden state sample. Compactly, if at iteration k, joint hidden

state samples are drawn as follows,

Xs
n ∼ q

(
Xn|Yn, I0:n; θk−1

n

)
≡
∏
iεV

bk−1

(
xi

n

)
, s = 1 . . .M, (6.3.2)

then,

ws
k−1 =

lC
(
y5

n|Xs
n

)∏
iεV l

(
yi

n|x
i,s
n , I0:n

)
lP
(
Xs

n|PR
)∏

(i,j)εΓ Ψ
(
xi,s

n , xj,s
n |θk−1

n

)
∏

iεV bk−1

(
xi,s

n

) , (6.3.3)

giving,

p
(
Xn|Yn, I0:n; θk−1

n ,PR
)
≈
∑

s=1:M

ws
k−1∑

s=1:M ws
k−1

δXs
n

(
Xn

)
. (6.3.4)

The color based likelihood function is introduced to act as an additional verification

factor through which each sample’s weight is influenced by a globally determined term

(a function of Xn). The other intention behind this term is a hope to minimize tracking

drift to the extent possible. The form of this function is taken from [Perez et al., 2002],

from which it is based on the Euclidean distances between RGB color space histograms

as shown below.

lC
(
y5

n|Xs
n

)
= exp−ς‖H

(
Xs

n

)
−Href‖B, (6.3.5)

where, ς is an empirical control weight (see [Perez et al., 2002] for details), H
(
Xs

n

)
is

the color histogram derived from the image data inside the bounding box set around

sample Xs
n, Href is the reference color histogram of the target built at the initialisation

stage and ‖.‖B is the Bhattacharyya distance used in Mean-shift iterations [Comaniciu

et al., 2000].

6.3.3 The case for simple interactions

In spite of some encouraging results presented in Sec. 6.2.4, unsupervised online learn-

ing (update) of the prior remains difficult due to inconsistencies in measurements (track-

ing unwarranted local patches or patches on the background providing false notions of

high confidence), lack of a smoothness prior on the hidden states and on the param-

eters of the potentials itself (including them makes inference more complex). Under

these conditions, a supervised update of the prior can be leveraged, if circumstances

are favourable. To do so, while endowing the operator with an intuitive feel for the

interactions, would require a convenient form for the prior. A parametric form is a good
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Algorithm 5: Interactive multi-part layout based tracking
input : Video sequence with L frames and local patch bounding boxes {Bi, i ∈ V} in first frame;

Initialization;

InitializePatchTrackers( ); /* See Sec.6.2.3.1 */

PR ← SetLayoutReferencePolygon
(
{Bi, i ∈ V}

)
; /* Set the parameters of the Gaussian prior */

{ci, i ∈ V} ← BoundingBoxCenters
(
{Bi, i ∈ V}

)
;

θ0 ≡
{

µij
0 = |ci − cj |, Σij

0 = large initial value; (i, j) εΓ
}

; /* See Sec.6.2.3.1 */

for n← 1 to L do
automatic mode = true;

interactive mode = false;

for i ∈ V do

if !blocked then

N
(
yi

n; xi
n, Σi

n

)
← TrackLocalPatch

(
i, I0:n

)
;

end

else

N
(
yi

n = yi
n−1; xi

n, Σi
n =∞

)
;

end

end

θ0
n = θn−1

for k ← 0 to K do

p
(
Xn|Yn, I0:n; θk

n,PR
)
, θk+1

n ← MCUpdate
({
N

(
yi

n; xi
n, Σi

n

)
, i ∈ V

}
, θk

n

)
; /* See Alg. 4

*/

end

interactive mode ← PingForInteraction( ); /* Check for any user interaction */

if interactive mode then
PauseTracking( );

automatic mode = false;

if layout distortion is adjudged true then
n = n− F ← RetractFrames(F ); /* Requires bookeeping of past layout estimates

*/

θn−F ← RetrievePrior(F ); /* Requires bookeeping of past prior parameters */

θn−F ← UpdatePriorInteractively(θn−F ); /* Mean update can also include feature

point replacements in modified vertices

end

else

θn ← UpdatePriorInteractively(θK
n );

if partial occlusion is adjudged true then
Vertex indices ← BlockMeasurements( ); /* Measurements from atmost half the

vertices can be blocked */

end

end

interactive mode = false;

output : Interactively modified layout;

end

else if automatic mode then

for i ∈ V do

if found outliers then
ReplaceOutliers( );

end

end

output : Layout ≡ E
[
p
(
Xn|Yn, I0:n; θK

n ,PR
)]

;

end

end



154 6. MULTI-PART LAYOUT BASED OBJECT TRACKING

choice. For instance, if the prior is in the form of a Gaussian, as in Eqn. 6.3.1, then

only the sufficient statistics (mean and co-variance) need to be interactively controlled

to affect the entire prior. In general, exponential distributions are convenient as they

can be fully specified by a finite number of moments.

While viewing the results of multi-part layout based tracking online the operator can

interactively control the co-variance of the Gaussian prior via a simple graphical inter-

face (a single sliding bar is enough if the Gaussian is symmetric or a graphic equalizer

otherwise) to directly balance the contributions of the measurements versus the layout

prior. For instance, the operator could reduce the inertia to change introduced by

the layout prior to follow scale changes of the target at the correct rate. Differently,

the operator could sustain the rigidity of the layout by tilting the balance in favour of

the layout prior to avoid unnecessary distortions (example, in the case of rotations in

depth).

If the layout begins to distort unnecessarily, then the operator can stop the tracking

process, reset a vertex of the layout and recommence tracking. This would directly

change the mean of the Gaussian prior. Indeed these operations are simple and could

be applied to almost any tracking scheme, but it is more fruitful to apply these in a high

dimensional tracking setup like the one proposed here as several target attributes like

position, scale, orientation or even a rough shape can be extracted together. In addi-

tion under partial occlusions which pose a difficult challenge to most tracking schemes,

measurements from occluded parts can be interactively ”blocked” from the inference

process via a single click for as long as it is deemed necessary and re-included at a later

period. Overall these highlights argue in favour of interactive multi-part tracking as an

attractive proposition. To summarise the discussions so far in this section, a pseudo

code for interactive multi-part tracking is presented in Algorithm 5.

6.3.4 Results and discussions

The result samples in Fig.6.10 give an insight into the possible form of tracks that

could be obtained from ”operator in the loop” multi-part tracking. This non-standard

geometrical layout track is generated with 15 mouse clicks and captures the variations

of the layout throughout the sequence. The red boxes around the new location of the

vertices in Figs. 6.10(c),(d), (f), (j) indicate user interaction used to modify the vertex

from its existing position (the position of the layout before this modification is also

superimposed on the samples for comparison). The blue box in Figs.6.10 indicates the



6.3. INTERACTIVE TRACKING WITH EVOLVING PATCHES AND COLOR 155

(a). Frame 0 (b). Frame 38

(c). Frame 101 (d). Frame 121

(e). Frame 149 (f). Frame 156

(g). Frame 247 (h). Frame 290

(i). Frame 338 (j). Frame 362

Figure 6.10: Interactive multi-part layout based tracking on the Butch Cassidy sequence. A
red box around a vertex represents the interactively modified location of the vertex. A blue
box around a vertex implies the measurements arising from that vertex is temporarily not
considered during inference. In all there were 15 clicks used to generate this layout track of
length 370 frames.
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fact that the user signals to the inference mechanism to disregard the measurements

arising from these vertices. It can be noticed that the vertices which require maximum

interaction lie roughly on the feet of these cowboys which are quite often disturbed

by splashes of water from the river, thus hightening the confusion. Hence blocking

the measurements from these vertices (equivalent to tracking these vertices) is often

advantageous and due to belief propagation predictions of the location of these vertices

can be obtained.

6.4 Conclusion

Traditionally, multi-part tracking is associated to tracking, say, different parts of the

human body, such as the limbs, torso, head and hands. In contrast, the contributions

of this chapter equates multi-part tracking to multiple local patch tracking, wherein

the patches need not necessarily correspond to semantic parts of an object. In doing so,

the tracking problem is brought into a more general setup where it becomes necessary

to somehow update online the prior on the hidden states. This is indeed a difficult

problem but nevertheless one having very broad implications for several applications.

The multi-part tracking scheme presents a Monte Carlo simulation based technique

for both layout tracking and prior update. The results of experiments on this tracker

encourages further work in this direction. To start with, the graphical model from

which this multi-part scheme is derived is a simple one, lacking a kinematic prior on

the hidden states and a prior on the parameter θ. Alternately, the θ update problem

can indeed be turned into a filtering problem by including θ as a hidden variable in

the model with suitable priors. In a similar vein a kinematic prior can be imposed on

the hidden states to smooth the variations of the layout, but this carries an additional

burden for inference due to the inclusion of temporal loops. Attempting message passing

[Yedidia et al., 2001] for inference on such models is not viable due to a combinatorial

explosion in the number of message paths introduced by sequential addition of layers of

hidden states. Some other alternatives like variational approximations must be invoked

to simplify the inference in such cases. Thereby this multi-part tracking problem is also

an active platform to attempt different inference techniques.

The second prospective development comes from the direction of interactive tracking.

An insight into fruitful possibilities arising from interactions with multi-part tracking

was provided in this chapter. The interaction directly modifies the layout prior to steer

the layout when necessary and control its distortion. The layout tracks can be quickly
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obtained without any preprocessing of the input sequence and this utility is handy

for many vision tasks. Therefore, it is hoped that all these prospects would motivate

further research into these and related directions.
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Conclusion

This manuscript presented several probabilistic graphical models for visual tracking in

low and higher dimensional spaces. A highlight of the tracking schemes based on these

models was their genericity, that is, no knowledge of the kind or class of the tracked

object was used, thereby broadening their scope. The requirements of the industry

too demanded that the algorithms be kept general enough to be moulded into various

applications. It is of the belief now that the algorithms presented in this thesis indeed

can be applied for tasks such as color correction, matting, object highlighting and for

developing video collages. Aside from the specific vision related applications the more

abstract graphical models proposed in this thesis are themselves of sufficient interest.

For low dimensional tracking, the probabilistic message switching and combination

strategy has met with considerable success for tracking generic objects in complex

videos. Based on the use of parametric priors, these models are able to discard incon-

sistent measurements via consensus arguments and reinclude them whenever necessary

to achieve stable long duration tracking. The algorithms based on these two strate-

gies outperformed several well known tracking methods in current day literature. The

success of these models emphasizes the need to integrate not just multiple (complemen-

tary) cues but also multiple filters. It demonstrated the need to leverage the benefits

of both an enhanced, part wise evolving target reference model and various kinematic

priors.

A part of this work also bridged the gap between key deterministic tracking approaches

like point trackers and probabilistic filters by casting them as psuedo simulation filters.

In the process a tracker termed the randomized feature point tracker was developed,

which in essence embodies the idea behind the fusion of multiple filters through mes-

sage switching. This pseudo generative viewpoint can lead to new and more robust

159
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formalisms of point tracking itself in the near future.

The multi-part tracking scheme presented here is an example of tracking in higher

dimensional spaces. The filtering problem tackled in this context is a very general

one: filtering in high dimensional state space with partially unknown process model

(the parameters are unknown). Several difficulties need to be overcome to present a

solution to this problem. First is to simulate the high dimensional state since analyti-

cal approaches are rendered intractable due to the structure of interconnections. The

second problem is to update the process prior (that is, the layout prior) online in an

unsupervised fashion. Third is to design a local patch tracker which is flexible enough

to accomodate changing appearances of parts of the target. A solution based on a

combination of importance sampling and a Monte Carlo iterative conditional estimate

technique was proposed to deal with these problems. Although the results were promis-

ing it revealed the need to solve this problem in an entirely Bayesian setting (without

resorting to heuristic parameter update techniques) and develop message passing tech-

niques for sequential loopy Bayesian networks. Several prospects exist in this direction,

including the introduction of interactive aid, as discussed in this thesis, to obtain quick

and reliable tracks of arbitrarily shaped (including semantically complex) targets.

In the current day visual tracking is an active research problem, either studied individ-

ually or in conjunction with other problems such as video object segmentation. The

tracking problem has wide scope and applications and contrary to some ill-conceived

beliefs that trackers can be replaced by detectors, it must be researched further, incor-

porating new developments in computer vision. It is hoped that techniques, methods

and models presented in this thesis have spawned some new avenues of research into

visual tracking which will be actively pursued in the near future.
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Prospects

A brief description of some prospective extensions to the graphical models presented

in this thesis are presented below.

Figure 8.1: Graphical model for multi-cue fusion. λn is the fused hidden state with kinematic
priors.

Tracking in low dimensional state spaces

Some interesting propositions are briefly enumerated below.

1. Extending multi-cue message switch/combination based tracking

The graphical model shown in Fig. 8.1 is an extension of the multi-cue switch-

ing/combination model introduced in Chapter 5. In comparison, additional links

connect the fused hidden state λn from one instant to the next, thereby adding a

kinematic smoothness prior to it. A similar kinematic smoothness prior is added

to the hidden state x0
n, along with a measurement y0

n of some convenient (and

complementary) form. Due to the form of this graph, the posterior distribution

161
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of x0
n is composed by a product of its predictive prior, y0

n and the sum of messages

sent from the individual feature point trackers. This has the effect of guiding the

randomized feature point tracker (RFT-filter) globally. The smoothness prior for

x0
n can be parameterized by, say, local optic flow measurements to prevent un-

warranted tracking drift causing erroneous replacement of feature point trackers.

An interesting fact to note from this model is that inclusion of additional links do

not affect the messages sent from the point trackers to x0
n. Here again the idea is

to take a balanced risk when introducing a new prior and measurement at x0
n in

parallel with the existing point tracker measurements. In contrast, an hierarchical

approach to controlling the kinematic prior of point trackers by, say, global optic

flow measurements may lead to undesirable results if the control measurement

(optic flow) is itself inconsistent.

Although a prospective model, a few questions need to be answered to create

a robust tracker from this extended model: what should be the nature of the

measurement y0
n which makes it complementary to both color and local tem-

plate based measurements?. Can local optic flow measurements be relied upon

to parameterize the smoothness prior for x0
n?. If not, then can other forms of

measurements be used to develop the smoothness prior.. The answers to these

questions can help enhance the robustness of tracking schemes.

2. Pseudo Data Association Based Approach

This approach has the flavor of a typical multi-target tracking method. In that,

let a target be sensed by N observers, each with possibly a different way (cue)

to sense. Denote Yn =
{
y1
1:n, . . . y

N
1:n

}
, the collection of measurements from all

the observers. Consider the following filtering law, assuming the measurements

at each observer is independent from the rest.

p
(
xn|Yn

)
∝

N∏
i=1

[
βi

occ + βi
valp

(
yi

n|xn

)]
p
(
xn|Yn−1

)
; (8.0.1)

where βi
occ is the probability that the target is undetected or occluded at observer

i (this can be seen as a prior, see [Vermaak et al., 2005] for an example) and βi
val

is the posterior probability of a valid measurement at observer i. This posterior

probability can be evaluated as shown below.

p
(
βi

val|Yn

)
∝ p
(
βi

val

) ∫
pβi

val

(
yi

n|xn

)
p
(
xn|Yn−1

)
dxn. (8.0.2)
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It can be seen from the equation above that the first term in the proportionality

is the model evidence of the observation model (cue) at that observer. As a note

of interest, this method is a pseudo multi target tracking and data association

formulation, wherein a single target is sensed by several observers each making

only one measurement.

This formulation is an advancement over likelihood factorisation (see Chapter

5) as the filtering distribution is effectively evaluated on hindsight taking into

account the balancing probabilities (model evidence), thereby maintaining the

possibility to down weight diffuse measurements. It is however simplified (all

the fusion is subsumed in the likelihood stage itself) as compared to a more

general model utilising multiple interconnected hidden states, each associated

with a different cue and belonging to different subspaces.

3. Co-dependent particle filters

In this thesis two robust trackers were developed on the basis of the graphical

model presented in Sec. 5.2. Setting aside their differences, there methods share

some commonalities. To recapitulate, all point trackers utilise their own prior as

proposal densities. When the RFT-filter is consistent, outlier point trackers are

replaced with draws from the filtering distribution of x0
n (or λn) or when incon-

sistent, all point trackers are replaced with draws from the filtering distribution

of ξn. In the same spirit, when consistent, the color based particle filter utilises

its effective prior as the proposal density for importance sampling and if not,

the filtering distribution of λn is used as the guiding proposal density. In these

trackers, interactions between the RFT-filter and the color based particle filter

only occur when an inconsistency is signalled in one of the filters. This abrupt

form of interaction can, in principle, be replaced by a more subtle form of con-

tinuous interaction between the constituent filters. Such a strategy is termed the

co-dependent particle filter.

The co-dependent particle filtering strategy is based on a proposal density level

interaction between filters. This approach has the virtue of hindsight for impor-

tance sampling which is very useful to disassociate or weigh down uninformative

models instantaneously. This is key to robust tracking. In contrast to the multi-

cue switch tracker or multi-cue combination tracker the filters interact at each

instant. At any instant, the level of dependence of a filter on another depends on

their figures of merit at that instant. Depending on the figure of merit, the filter
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lets itself be guided, partially by its own prior and partially by the other filter.

This manifests as a continuous correction process, instead of a correct-at-failure

strategy used in the earlier propositions. The reader is referred to Appendix 9

for relevant mathematical formulations.

If trackers based on this co-dependent particle filtering strategy are to be con-

structed, it demands an ability to evaluate posterior distributions at arbitrary

sample locations. This is indeed difficult when such distributions are represented

as sample sets. Kernel based representations of posteriors [Han et al., 2005] are

more suited to such a task.

Tracking in high dimensional state spaces

The graphical model shown in Fig. 8.2 is a generalization of the multi-part model

Figure 8.2: Graphical model for multi-part tracking. θn is the hidden variable parameterizing
the layout prior.

introduced in Chapter 6. The parameter θn controlling the process prior, equivalently

the layout prior, is now introduced as a hidden variable in the model. This is moti-

vated by the fact that heuristic parameter update of θn (based on maximum likelihood

formulations) leads to inconsistent updates and secondly, it is prudent to introduce a

smoothness prior on the parameter itself to avoid drastic changes. In doing so, the

filtering problem is extended to include the parameter θn as an additional hidden state

with its own process model, thus increasing the dimensionality of the problem.

The potential advantage of this model over the earlier one (see Chapter 6) is the com-

plete Bayesian formulation of the multi-part tracking problem with online update (fil-

tering) of the process model parameters. Formulated as such, inconsistencies such as



165

θn → 0 which arise in maximum likelihood updates (see [Minka, 2001]) can be avoided

by introducing a prior on the parameter θn. This in turn can avoid unwarranted up-

dates of the layout prior which could lead to inconsistent updates of the patch reference

models (by feature point replacement). Overall it is safe to expect a better performance

over the tracker proposed in Chapter 6.
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Appendix

Co-dependent particle filters - general formulation

Consider the following two state space models in space S.

M1 : xn ∼ d1

(
xn|xn−1

)
yn ∼ l1

(
yn|xn

)
; (9.0.1)

M2 : xn ∼ d2

(
xn|xn−1

)
yn ∼ l2

(
yn|xn

)
, (9.0.2)

where d1, d2 are first-order Markovian kinematic priors and l1, l2 are data likelihoods

of models M1 and M2 repectively. At instant n − 1, let the posterior distributions

tracking the evolution of the state xn with each of the above models be approximated

by sample-sets as shown below.

p1

(
x0:n−1|y1:n−1

)
≈
{
wi

1,n−1, x
i
0:n−1

}
, i ∈ 1 . . . N1

p2

(
x0:n−1|y1:n−1

)
≈
{
wj

2,n−1, x
j
0:n−1

}
, j ∈ 1 . . . N2, (9.0.3)

where N1, N2 are the number of samples (particles) in each approximation respectively.

Associate two normalized measures of certainty or figures of merit {ϕ1
n, ϕ

2
n}ε[0, 1] to

each of the above posteriors respectively. These measures could, for instance, be derived
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in some empirical fashion, a general form of which is indicated below.

ϕ1
n =

C1

[
p1

(
x0:n−1|y1:n−1

)]
C1

[
p1

(
x0:n−1|y1:n−1

)]
+ C2

[
p2

(
x0:n−1|y1:n−1

)]

ϕ2
n =

C2

[
p2

(
x0:n−1|y1:n−1

)]
C1

[
p1

(
x0:n−1|y1:n−1

)]
+ C2

[
p2

(
x0:n−1|y1:n−1

)] , (9.0.4)

where C1, C2 are some scalar measures of peakedness (determinant or trace of covariance

matrix is an example) of the two densities respectively. With these definitions, the

evolution of the posterior distributions is considered in the following.

Filtering

The evolution of the density p1 is studied as a demonstration. Let p1 be expressed in

a partitioned form as a two component mixture shown below.

p1

(
x0:n−1|y1:n−1

)
≈

2∑
m=1

πn−1,mpm,1

(
x0:n−1|y1:n−1

)
, (9.0.5)

where πn−1,m are the normalized mixture weights and their respective component den-

sities are approximated by sample-sets as shown below.

pm,1

(
x0:n−1|y1:n−1

)
≈
{
wi

n−1, x
i
0:n−1

}
, i ∈ Im, (9.0.6)

with the cardinality of the partitions satisfying |I1| = ϕ1
nN1 and |I1|+ |I2| = N1. With

the arrival of data at instant n, each of the partitions Im is subject to a different

importance sampling based filtering procedure. The weight update for the importance

samples in each of the partitions is carried out as follows.

w̃i
n ∝


wi

n−1

l1
(
yn|xi

n

)
d1

(
xi

n|xi
n−1

)
q11
(
xi

n|xi
n−1, yn

) ; iεI1

l1
(
yn|xi

n

)
d1

(
xi

n|xi
n−1

)
p1

(
xi

0:n−1|y1:n−1

)
q21
(
xi

0:n

) ; iεI2,
(9.0.7)

where the proposal densities are developed as shown below.

q11 ∼ d1

(
xn|xn−1

)
,

q21 ∼ d2

(
xn|xn−1

)
p2

(
x0:n−1|y0:n−1

)
. (9.0.8)
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Given the unnormalized weights for each partition, consistent mixture weights πn,m are

computed as follows:

πn,m =
πn−1,m

∑
iεIm

w̃i
n

πn−1,1
∑

iεI1
w̃i

n + πn−1,2
∑

iεI2
w̃i

n

(9.0.9)

With these mixture weights the posterior is as shown below.

p1

(
x0:n|y1:n

)
≈

2∑
m=1

πn,mpm,1

(
x0:n|y1:n

)
, (9.0.10)

with each of the mixture components approximated as follows;

pm,1

(
x0:n|y1:n

)
≈
∑
i∈Im

w̃i
n∑

iεIm
w̃i

n

δxi
0:n

(x0:n) . (9.0.11)

Following this the measure ϕ1
n can be computed using any one of the chosen forms. For

the form described in Eqn. 9.0.4, the certainty measure is computed using unnormalized

importance weights as follows.

ϕ1
n ∝ C1

[{
w̃i

n∑
i=1:N1

w̃i
n

, xi
0:n

}
, i = 1 : N1

]
. (9.0.12)

A similar partition respective sampling based scheme is adopted to evolve the density p2

over to instant n, following which the measure ϕ2
n is computed appropriately. In accor-

dance with these measures the posterior distributions are repartitioned (demonstrated

for p1 only) as demonstrated below.

pm,1

(
x0:n|y1:n

)
≈

2∑
m=1

πn,m

∑
i∈Im

wi
nδxi

0:n

(
x0:n

)
=

N1∑
i=1

πn,c(i)w
i
nδxi

0:n

(
x0:n

)
=

2∑
m=1

π̂n,m

∑
iεÎm

ŵi
nδxi

0:n

(
x0:n

)
, (9.0.13)

where |Î1| = ϕ1
nN1 , |Î1| + |Î2| = N1, c(i)ε{1, 2} and the mixture and particle weights

are recomputed as shown below.

π̂n,m =
∑
iεÎm

πn,c(i)w
i
n, (9.0.14)

ŵi
n =

πn,c(i)w
i
n

π̂n,m
. (9.0.15)
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Note that the partitioning is independent of the particle index, meaning it is arbitrary.

Equivalently, the repartioning could also be performed after resampling the posteriors

[Arulampalam et al., 2002] to retain particles with large weights.

At instant n− 1;

xi
0:n−1 ∼

N1∑
i=1

πn−1,c(i)w
i
n−1δxi

0:n−1

(
x0:n−1

)
, i ∈ 1 . . . N1,

p1

(
x0:n−1|y1:n−1

)
≈ 1
N1

N1∑
i=1

δxi
0:n−1

(
x0:n−1

)
. (9.0.16)

Repartitioning the above approximation;

p1

(
x0:n−1|y1:n−1

)
≈

2∑
m=1

π̂n−1,m

∑
iεIm

δxi
0:n−1

(
x0:n−1

)
, (9.0.17)

where π̂n−1,1 = ϕ1
n−1 and π̂n−1,1 + π̂n−1,2 = 1. From this approximation onwards the

filtering steps are on the same lines as described earlier.
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