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Abstract: Implementations of the Bayes filtering for vision based aircraft tracking suffer
fundamental difficulties in the Cartesian coordinate. This is because of the uncertainty of
the noise model in the flight dynamic equation when the aircraft state is described in these
coordinates. Recently, the Logarithmic Polar Coordinate (LPC) framework has been successfully
applied in the bearings-only tracking context, with the ability of estimating the variance to range
ratio (Brehard and Le Cadre [2004]). In this paper, we design an aircraft tracking method using
LPC. This method can adapt with changes of the noise model in the flight dynamic equation.
Hence, it is more robust than methods for vision based aircraft tracking using the Cartesian
Coordinates.
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1. INTRODUCTION

This paper addresses the problem of estimating the posi-
tion and velocity of an aircraft by using projections of cor-
ner points of the runway in the image plane. The camera
is attached to the aircraft. When the aircraft moves, in-
formation from the projections of interest points will help
to estimate the aircraft state. These interest points can
be detected by runway tracking or runway detection that
can be done by using image processing methods (Hough
transform, active contour (Barat and Lagadec [2008]), seg-
mentation methods (Kolmogorov and Zabih [2004]), etc.).
This is an important task for automatic landing system,
or navigation system.

Vision based aircraft tracking has been considered in sev-
eral papers (Dobrokhodov et al. [2006], Stepanyan and
Hovakimyan [2008], Bryson and Sukkarieh [2005], Tisdale
et al. [2008], Kaminer et al. [2001], Hespanha et al. [2004]).
Most of them defined a flight dynamic model and a mea-
surement model. The flight dynamic is corrupted by a pro-
cess noise. In (Hespanha et al. [2004], Kaminer et al. [1999],
and Kaminer et al. [2001]), filtering methods are designed
for aircraft tracking. They applied the linear parametri-
cally varying system theory to prove the regional stability
in the performance when the time goes to infinity. Based
on these works, Dobrokhodov et al. [2006] included the loss
target tracking event in the system model to have a more
robust system. Some other methods rely on the extended
Kalman filter, the unscented Kalman filter, or the parti-
cle filter to obtain the aircraft state estimation (Bryson
and Sukkarieh [2005], Tisdale et al. [2008]). Bryson and
Sukkarieh [2005] assume that the feature detection method
can find multiple points of interests in the image. So, the
observability of the aircraft state in this method is higher
than other methods (Hespanha et al. [2004], Kaminer et al.
[1999], and Kaminer et al. [2001]) that assume only one
interest point is available. When the aircraft is very far

from interest points or the number of interest points is
small, the observability of the aircraft state is reduced.
This will affect the tracking performance. Moreover, when
the aircraft moves, parameters in the state space model
can be changed with the time, for example the noise in
the flight model. These problems enhance the uncertainty
in the estimation and cause challenges for aircraft tracking.

Rather than using Cartesian coordinate in tracking, the
polar coordinate is applied successfully in bearings-only
tracking (Aidala and Hammel [1983], Allen and Blackman
[1991], Karlsson and Gustafsson [2001], Brehard and Le
Cadre [2004], Brehard and Le Cadre [2007]). It makes
the tracking method be more robust because of taking
into account the poor observability of the radial distance.
Especially, in (Brehard and Le Cadre [2004], Brehard and
Le Cadre [2007]), the variance to range ratio is proved
to be observable under the modified polar coordinate or
logarithm polar coordinate. So, the uncertainty of the
noise model in the state equation can be reduced during
the tracking period.

In this paper, we apply LPC for vision based aircraft track-
ing. An LPC state space model for the 3D aircraft tracking
system is derived. Then the particle filter (Arulampalam
et al. [2002]) with LPC state space is used to obtain the
aircraft state. Describing the aircraft state in LPC results
in a dramatic improvement of the tracking performance.

Section 2 provides formulations of the problem in the
Cartesian coordinate and describes the aircraft tracking
system. Section 3 details formulations of LPC state space
in 3D. Section 4 describes the particle filter algorithm for
aircraft tracking. Finally, section 5 and 6 show our results,
comparisons, and conclusions.
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2. PROBLEM FORMULATIONS IN CARTESIAN
COORDINATE

The aircraft is equipped with a camera. The inertial
reference frame {G} is described in the north east down
(NED) coordinate. Let {B} be the aircraft body frame,
and {C} be the camera frame. The aircraft state in {G}
at time k is described by Xk = {xk, yk, zk, ẋk, ẏk, żk}. It is
the position and velocity of aircraft at time k in {G}. We
assume that the aircraft moves with the following flight
dynamic equation

Xk = Fk−1Xk−1 + σwk−1 (1)
where wk−1 ∼ N (0, Q) is the process noise,

Fk−1 =
[
Id3 ηk−1Id3

0 Id3

]
(2)

where ηk−1 is the time interval between k − 1 and k, Idn
is the n× n identity matrix. There are some assumptions:

i. Euler angles
{
φCB , θ

C
B , ψ

C
B

}
and the translation

{
tCB
}

between camera and the aircraft are known.
ii. Aircraft Euler angles

{
φBG, θ

B
G, ψ

B
G

}
and the altitude of

the aircraft are known.

The coordinate system is presented in Figure 1. The
definitions of Euler angles

{
φBG, θ

B
G, ψ

B
G

}
are shown in

Figure 2 (it is similar for Euler angles
{
φCB , θ

C
B , ψ

C
B

}
).

They are rotation angles with x, y, z axis, respectively. The
order of rotations is as follows: first, rotate around z-axis
by the angle ψBG, then rotate around the new y-axis by
angle θBG, and finally rotate around the newest x-axis by
angle φBG. Assumption (i) is easy to understand because
we can setup these parameters. Assumption (ii) can be
obtained by attitude estimation instruments and pressure
altitude sensors (Hespanha et al. [2004]).

Fig. 1. Coordinate system

When the aircraft moves, the camera captures images from
the runway area. Some of methods to detect and track
the runway with image data are performed to obtain the
projections of corner points of the runway. One possible
method is to detect the runway by using Hough transform
and track the runway by segmentation or energy minimiza-
tion methods (Kolmogorov and Zabih [2004], Barat and

Fig. 2. Euler angles to transform from {G} to {B}

Lagadec [2008]). Figure 3 shows the detected runway by
red lines. Hence, we can have corner points of the runway
in the image plane.

Let MC
B = M

(
φCB , θ

C
B , ψ

C
B , t

C
B

)
be the homogeneous

transformation matrix with Euler angles
{
φCB , θ

C
B , ψ

C
B

}
and translation tCB from aircraft body to camera, and

MB
G

(
X1:3
k

)
= M

(
φBG, θ

B
G, ψ

B
G, X

1:3
k

)
be the homogeneous

transformation matrix with Euler angles
{
φBG, θ

B
G, ψ

B
G

}
and translation X1:3

k (aircraft position X1:3
k = {xk, yk, zk})

from {G} to {B}. Let Zk =
{
z1
k, .., z

4
k, z

5
k

}
, where{

z1
k, .., z

4
k

}
are the positions of the four corner points of the

runway in the image and z5
k is the altitude measurement.

The measurement equation is defined as follows. First, we
consider the i-th corner point Pi. The projection from Pi
in {G} to {C} is xcyczc

1

 = MC
BM

B
G

(
X1:3
k

)
Pi (3)

Then,

zik =

 u0 + f
xc
zc

v0 + f
yc
zc

+ vik (4)

where (u0, v0) is the camera principal point, f is the focal
length, and vik is the measurement noise for observation
zik, vik ∼ N (0, R). The altitude measurement equation is

z5
k = X3

k + v5
k (5)

Therefore, the measurement equation can be written as
follows

Zk = h (Xk) + vk (6)

Let Z1:k = {Z1, Z2, ..., Zk} be the observations up to
time k. The aim of the Bayes filter is to estimate the
posterior density p (Xk|Z1:k) . Some implementations of
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the Bayes filter can be applied in this case such as extended
Kalman filter, unscented Kalman filter, or particle filter
(Arulampalam et al. [2002]).

Fig. 3. Runway detection

3. LPC FOR 3D AIRCRAFT STATE SPACE MODEL

The variance σ of the noise model in equation (1) is
usually not known in applications. Therefore, we usually
use the σmax value to deal with changes of aircraft motion
modes. This may affect the accuracy of the estimation.
Fortunately, Brehard and Le Cadre [2004] shows that the
variance to range ratio can also be estimated within the
LPC framework. Now, we extend this work to the 3D case
and apply it in the aircraft tracking.

The aircraft state vector in LPC is defined as follows

Yk =
[
αk, βk, ρk, α̇k, β̇k, ρ̇k, σ̃k

]
(7)

where αk is the angle from the x-axis, βk is the angle from
the z-axis, ρk is the logarithm of the distance from origin
to the target, and σ̃k = σ

rk
is the variance to range ratio,

rk is the distance from target to origin in {G}. Figure 4
shows more details about αk, βk, and ρk.

Fig. 4. Definition of logarithmic polar coordinate terms: α,
β, ρ

Let

Rk =

[ sinβk cosαk cosβk cosαk − sinβk sinαk
sinβk sinαk cosβk sinαk sinβk cosαk

cosβk − sinβk 0

]
(8)

We have the relation of the aircraft velocity in Cartesian
coordinate and LPC as follows[

ẋk
ẏk
żk

]
= Rk

 rkρ̇krkβ̇k
rkα̇k

 (9)

Let fCLPC be the transformation function from LPC to
Cartesian coordinate.

Xk = fCLPC
(
Y 1:6
k

)
(10)

= rk

[
Rk 0
0 Rk

]


1
0
0
ρ̇k
β̇k
α̇k


From (1), the flight dynamic equation can be written as

follows

Xk = Fk−1Xk−1 + σwk−1 (11)

= Fk−1rk−1

[
Rk−1 0

0 Rk−1

]


1
0
0

ρ̇k−1

β̇k−1
α̇k−1

+ σwk−1

= rk−1

[
Id3 ηk−1Id3

0 Id3

] [
Rk−1 0

0 Rk−1

]


1
0
0

ρ̇k−1

β̇k−1
α̇k−1

+ σwk−1

= rk−1

[[
1 ηk−1
0 1

]
⊗ Id3

]
[Id2 ⊗Rk−1]


1
0
0

ρ̇k−1

β̇k−1
α̇k−1

+ σwk−1

= rk−1 [Id2 ⊗Rk−1]


1 + ηk−1ρ̇k−1

ηk−1β̇k−1
ηk−1α̇k−1

ρ̇k−1

β̇k−1
α̇k−1

+ σwk−1

= rk−1


V1

V2

V3

V4

V5

V6


where

V1

V2

V3

V4

V5

V6

 = [Id2 ⊗Rk−1]


1 + ηk−1ρ̇k−1

ηk−1β̇k−1
ηk−1α̇k−1

ρ̇k−1

β̇k−1
α̇k−1

+
σ

rk−1
wk−1
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Let fLPCC be the transformation function from Cartesian
to LPC.

Y 1:6
k = fLPCC (Xk) (12)

=



S1,k

S2,k

ln
(√

(X1
k)2 + (X2

k)2 + (X3
k)2
)

Ṡ1,k

Ṡ2,k

∂

∂ t

(
ln
(√

(X1
k)2 + (X2

k)2 + (X3
k)2
))



=



S1,k

S2,k

ρk−1 + ln
(√

V 2
1 + V 2

2 + V 2
3

)
V1V5 − V2V4

V 2
1 + V 2

2
V1V3V4 + V2V3V5 − V 2

1 V6 − V 2
2 V6

(V 2
1 + V 2

2 + V 2
3 )
√
V 2

1 + V 2
2

V1V4 + V2V5 + V3V6

(V 2
1 + V 2

2 + V 2
3 )


where

S1 = atan2 (V2, V1) (13)

S2 = atan2
(√

V 2
1 + V 2

2 , V3

)
(14)

Moreover, the distance rk is obtained by

rk =
√

(X1
k)2 + (X2

k)2 + (X3
k)2 (15)

= rk−1

√
V 2

1 + V 2
2 + V 2

3

So,

Y 7
k =

Y 7
k−1√

V 2
1 + V 2

2 + V 2
3

(16)

From equations (12) and (16), the aircraft state equation
in LPC can be written as follows

Yk = f1 (Yk−1, wk−1) (17)

Furthermore, we know that the transformation of X1:3
k to

LPC is

X1:3
k =

[ exp (ρk) sinβk cosαk
exp (ρk) sinβk sinαk

exp (ρk) cosβk

]
(18)

Therefore, equation (6) can be written as

Zk = h1 (Yk) + vk . (19)

With the definitions in equations (17) and (19), the state
space model is transformed from Cartesian coordinate to
LPC. In LPC, the variance to range ratio σ̃k can be
estimated because of the proof in (Brehard and Le Cadre
[2004]). Hence, the noise in the flight model under LPC
can be adapted with the moving of aircraft. This is the
key to develop a robust method for vision based aircraft
tracking.

4. PARTICLE FILTER FOR AIRCRAFT TRACKING

We apply the particle filter (Arulampalam et al. [2002])
to track the aircraft. First, assuming that the density at
the beginning p (X0) is represented by a set of samples{
X

(i)
0

}N
i=1

and the variance of p (X0) is σ0. Then, we use

equation (12) and σ0 to create the initialization sample set

in LPC
{
Y

(i)
0

}N
i=1

, where

Y
7(i)
0 = σ̃

(i)
0 ∼

σ0

r
(i)
0

U (0, 1) (20)

where U (0, 1) is the uniform distribution in [0, 1]. At each

time step k, samples at time k−1,
{
Y

(i)
k−1

}N
i=1

, will be used

to predict samples at time k,
{
Ỹ

(i)
k

}N
i=1

, by using equation

(17). These samples are hypothesized aircraft states. Then,
runway corner points are projected on the image plane by
using hypothesized aircraft states to create a predicted
measurement set. After that, the weight for each sample
will be assigned based on the predicted measurement set
and detected measurements in image. This stage is imple-
mented by using equation (19). Sample weights are nor-

malized and we can obtain a set of sample
{
Y

(i)
k

}N
i=1

repre-
sented for the updated distribution. Resampling methods
can be applied to avoid sample degeneracy. Finally, the
state of aircraft is estimated by the updated distribution.
The details of the algorithm are described in Figure 5.

Step 1: Initialization step
For i = 1, ..., N
X

(i)
0 ∼ p (X0)

Y
1:6(i)
0 = fLPCC

(
X

(i)
0

)
, using eqs. (12)

Y
7(i)
0 ∼ σ0

r
(i)
0

U (0, 1)

EndFor
At time k ≥ 1,
Step 2: Sampling step

For i = 1, ..., N
Prediction Ỹ

(i)
k = f1

(
Y

(i)
k−1, w

(i)
k−1

)
, eqs. (17)

Detect observation Zk in the image Ik
Weighting w̃(i)

k = gk

(
Zk|Ỹ (i)

k

)
w

(i)
k−1, eqs. (19)

EndFor

Normalized weights:
∑N

i=1
w̃

(i)
k = 1.

Step 3: Estimation step

Resample
{
w̃

(i)
k , Ỹ

(i)
k

}N
i=1

to get
{
w

(i)
k , Y

(i)
k

}N
i=1

Estimate Ŷk, using eqs. (10)
to obtain aircraft state in {G}

Return step 2 for the next time k + 1

Fig. 5. Particle filter for vision based aircraft tracking

5. SIMULATION RESULTS

The algorithm is tested under the Pegase simulation sys-
tem. This simulation system is a study of a navigation sys-
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tem in Pegase project (http://dassault.ddo.net/pegase/ )
whose objectives are to prepare the development of an au-
tonomous (no external assistance or ground equipment re-
quired) in all weather conditions, localization and guidance
system based on vision sensor outputs. Some scenarios
are considered such as low resolution image (512× 640),
high resolution image (1024× 1280), frog, rain, etc. Some
parameters for the system are described in Table 1.

Parameters Value

σ0 100 m

N 800

σp
v 2

σa
v 10

ηk 0.1 s

Table 1. Parameters for particle filter

First, we compare the LPC approach with the particle
filter in Cartesian Coordinates (CC). The initialization
position error is [600, 300, 200] . In this scenario, the air-
craft is about 14000 m far from the runway. Figure 6
shows that the CC particle filter is diverging with time.
This is because the initialization is not good, the number
of particles is limited, and the flight model is not well
defined for bad initializations. Hence, the particle filter in
Cartesian coordinate cannot recover from a poor initial-
ization. Opposite, we can see in Figure 6 that our method
performs quite satisfactorily. The method can adapt well
with changes of aircraft motion mode. The state estimates
gradually converge to the true trajectory even it is badly
initialized. This is because of the ability of estimating the
variance to range ratio via LPC.

Figure 7 shows the performance of our method in the whole
tracking period. There are 2500 frames in about 5 minutes
before the aircraft lands to the runway. The figure shows
that the performance is quite stable throughout the whole
experiment.

Figure 8 shows the comparison of mean square error
(MSE) of our method and the particle filter in Cartesian
with good initializations. The figure shows that the MSE
of the particle filter in LPC is smaller and more stable
than the CC one. In most of time, the MSE of the
particle filter in LPC is close to the posterior Cramer
round bound (PCRB). The high errors from time steps
1500 to 2000 are because of high errors in the measurement
detection. In these time steps, there are some trees near the
runway and they affect the performance of measurement
detection; while the PCRB uses ”ideal” measurements.
However, LPC tracking is able to recover from these false
measurements.

6. CONCLUSION

In this paper, we developed the LPC framework in vision
based aircraft tracking. The algorithm is tested under the
Pegase simulation system. This method largely outper-
forms any filter using the classical Cartesian coordinates.
In LPC, we can estimate the variance to range ratio. The
noise model will change automatically according to the
aircraft motion mode. This is the key for a good behavior
of the tracking / navigation system. Moreover, this method

Fig. 6. Performance comparison between particle filter in
LPC and Cartesian coordinate

Fig. 7. Full trajectory estimation by particle filter in LPC

might be important for SLAM system such as unmanned
aerial vehicles, autonomous underwater vehicles etc. Fur-
thermore, it does not require additional computation re-
sources.
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Fig. 8. Comparison of mean square error of particle filter
in LPC and Cartesian
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APPENDIX A

Lemma 1. Given Fk−1 and Rk−1, defined in equations (2)
and (8), then

Fk−1 [Id2 ⊗Rk−1] = [Id2 ⊗Rk−1]Fk−1 . (21)

Proof.

Fk−1 [Id2 ⊗Rk−1] =
[[

1 ηk−1
0 1

]
⊗ Id3

]
[Id2 ⊗Rk−1]

=
[

1 ηk−1
0 1

]
⊗Rk−1

Moreover,

[Id2 ⊗Rk−1]Fk−1 = [Id2 ⊗Rk−1]
[[

1 ηk−1
0 1

]
⊗ Id3

]
=
[

1 ηk−1
0 1

]
⊗Rk−1

Hence,
Fk−1 [Id2 ⊗Rk−1] = [Id2 ⊗Rk−1]Fk−1

Lemma 1 is applied for step 4 in equation (11).
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