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1. INTRODUCTION

In mobile robotics, we often need to estimate a robot state
based on a known map of the environment. The map based
localization is made from data collected correlated with the
prior map. The choice of the appropriate localization al-
gorithm depends on the system dynamics and observation
models (Kalman, particle filters...). Before path execution
the mission planner has to design trajectories with ex-
pected “good localization” performance. In this paper, we
introduce a framework to select paths for a mobile robot
state (postion and heading) estimation from range and
bearing data of features in a given 2D uncertain map. One
of the main challenges is to choose a relevant metric for
the optimization. The first interesting result of this work is
the derivation of a closed-form expression for the proposed
metric based on the Fisher Information Matrix (FIM) (Van
tree [1968]). The impact of the robot constaints (dynamics,
limited Field Of View (FOV)...) and the map uncertainty
are also dealt with to derive a risk utility function. Then,
we formulate the problem as an optimal control problem
with integral cost and solve it using an meta-heuristic
approach (Rubinstein et al. [2004]). Finally, the paper ends
with one illustrative example.

2. PROBLEM FORMULATION

2.1 The system models

We consider a mobile system which evolves in a 2D
environment. Its state Xt is a three dimensional vector
composed of its 2D position (xt, yt) ∈ D ⊂ R

2 and its
orientation ϕt ∈ (−π, π] in a global frame Rg:= (O,−→u ,−→v )
(see Fig. 1). To navigate and get its location in the
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environment, an embedded map of salient features are
available to “correlate” range and bearing measurements
provided by its sensor (e.g. camera, laser rangefinders...).
Its motion is governed by a continuous dynamic system

ẋt = vt cosϕt, ẏt = vt sin ϕt, ϕ̇t = ωt. (1)

where ut:= [vt, ωt] accounts for the control input at time
t with ut ∈ U

U := {(v, ω) , ‖v‖ ≤ v & ‖ω‖ ≤ ω} .

During execution, the motion is not perfect and a filtering
method based on the map and the acquired measurements
has to be used to estimate Xt. The map C is composed
of NC point features fi, 1 ≤ i ≤ NC with known but
uncertain global 2D position

(
xi, yi

)
in Rg. More often,

they are obtained from a previous mapping stage with
variable accuracy (for instance, Simultaneously Localiza-
tion And Mapping SLAM in robotics). We assume that a
mean position

(
xi, yi

)
and a 2× 2 covariance matrix E(fi)

which characterizes the uncertainty are given for fi. Due
to the sensor limitations (maximum and minimum range
and aperture see Fig.1) and some processing steps of the
localisation procedure, only a few features are visible and
detected at each epoch. We define

δi
t =

{
1 if fi are used for state estimation at time t,

0 else.

Therefore at time t, we have the associated vector of

noisy measurements Zt =
[

zt
i1

, . . . , zt
imt

]

where zt
il
, ∀l ∈

{1, . . . , mt} , il ∈ {1, . . . , NC} is the range and bearing
of fil

from the robot state. Then, the observation model
stands as follows

Zt = Ht(Xt, C) + Wt.

Zt is a 2×mt vector where the 2lth and 2l + 1th elements
of Ht(Xt, ft) are the components of h(Xt, fil

)

Preprints of the
15th IFAC Symposium on System Identification
Saint-Malo, France, July 6-8, 2009

1475



d+

d−

x1

y1
f1

f2

2φm

z1

xt

yt

ϕt

Fig. 1. sensor model (d+, d− max and min detection range,
φm half aperture). A visible (red) and non visible
(green) landmark.

h(Xt, fil
):=







√

(xt − xil )2 + (yt − yil)2,

atan2(
yil − yt

xil − xt

) − ϕt.
(2)

The noise vector Wt is obtained by stacking the noise of
each individual measurements wil

t which are supposed to

be i.i.d. Gaussian noises with zero mean and Σil

t covariance

matrix. Moreover, wj
t and wl

t are independent for l 6= j and

∀t, ∀il ∈ {1, . . . , mt} , Σil

t =

(
σ2

d 0
0 σ2

α

)

. (3)

In light of the previous assumptions, the observation
probability density is

p (Zt|Xt) ∝ exp

(

−1

2

mt∑

l=1

‖zil
− h(Xt, fil

)‖2

Σ
il
t

)

. (4)

where ‖B‖2
Σ = B∗Σ−1B, B ∈ R

2.

2.2 Localization performance

If X̂t is one estimate based on the measurement Zt, for
example the maximum likelihood estimate, the covariance
of the error of estimatation is lower bounded by the inverse
on the well-known Fisher Information Matrix (FIM) (Van
tree [1968]).

(Xt − X̂t)(Xt − X̂t)
∗ ≻ F−1.

with F in our case given by the relation,

F =

NC∑

i=1

δi
t

(
∂h(Xt, fi)

∂Xt

)

Σ−1

(
∂h(Xt, fi)

∂Xt

)∗
. (5)

Let us introduce δpi(t):=
[
xi − xt, yi − yt

]∗
the “mobile-

feature fi” vector and ρi:=||δpi(t)||, αi(t):=∠
−→u δpi(t),

ci:= cosαi and si:= sinαi. We can easily show that

∂h(Xt, fi)

∂Xt

=

(
ci si 0

− si

ρi

ci

ρi

−1

)

,

and using matrix product properties, we can rewrite F as
F (t) = G(t)G(t)∗ where

G(t) =
(
Gd

1 · · · Gd
NC

Gα
1 · · · Gα

NC

)
. (6)

∀1 ≤ i ≤ NC vectors (Gd
i ) and (Gα

i ) are given by

Gd
i = δi

tσ
−1
d (ci si 0)

∗
, Gα

i = δi
tσ

−1
α

( si

ρi

− ci

ρi

1
)∗

.(7)

The FIM is a valuable quantity to derive a relevant mea-
sure of information to design paths with good expected

estimate accuracy performance. Indeed, several matrix
operators can be used. In particular the determinant which
can be linked to the volume of the ellipsod uncertainty is
of high interest. In the next section, we quickly remind the
closed form expression for the determinant introduced in
(Celeste et al. [2008]). It is interesting to note that this
expression directly implies the norms and arguments of
vectors δpi(t).

2.3 A closed form performance criteria expression

We are now concerned with the derivation of the function
L(t, C) defined by

L(t, C) = det (G(t)G(t)∗). (8)

The closed form expression for L(t, C) can be obtained
by applying the algebra property Binet-Cauchy formula 1

with B = A = G and m = 3, n = 2NC . Indeed,

L(t, C) =
∑

1≤i<j<r≤2NC

{det(Gi(t), Gj(t), Gr(t))}2
. (9)

Therefore, we have to compute determinants of three di-
mensional matrices by enumerating the different configu-
rations made from groups of three columns given by (eq.
7). By applying determinant computation properties and
relations between trigonometric functions Celeste et al.
[2008]

L(t, C) = a1 L1(t, C) + a2 L2(t, C) + a3 L3(t, C)

with a1 = σ−4
d σ−2

α , a2 = σ−2
d σ−4

α , a3 = σ−6
α and

L1(t, C) =

NC∑

i=1

NC∑

j>i

NC∑

r=1

δi
tδ

j
t δ

r
t g

(1)
ijr(t), (10)

L2(t, C) =

NC∑

i=1

NC∑

j=1

NC∑

r>j

δi
tδ

j
t δ

r
t g

(2)
ijr(t), (11)

L3(t, C) =

NC∑

i=1

NC∑

j>i

NC∑

r>j

δi
tδ

j
t δ

r
t g

(3)
ijr(t), (12)

and ∀ i, j, k,

g
(1)
ijr(t) = sin2(αi − αj) (13)

g
(2)
ijr(t) =

(
cos(αi − αr)

ρr

− cos(αi − αj)

ρj

)2

g
(3)
ijr(t) =

(
sin (αi − αr)

ρiρr

+
sin (αi − αj)

ρiρj

+
sin (αj − αr)

ρjρr

)2

.

We can remark that the first term only depends on in-
formation provided by range measures, the third one only
on bearing measurements, whereas the one in the middle
takes into account combinations of both kind of measure-
ments. In (Celeste et al. [2008]), we make a geometric
analysis to determine the optimal placement of the fea-
tures for a given mobile position in order to maximize the
information linked with L1(t, C), in particular for sensors
with limited FOV. Based on this performance criteria,

1 det(A B) =
∑

S
det(As) det(Bs), S ⊂ {1, · · · , n} is a subset of

size m, A is a m × n matrix and B a n × m matrix, AS (BS ) is a
m×m matrix whose columns (rows) are those of A (B) with indices
in S
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derive an integral cost for our path planning problem.
From now on and for the sake of clarity, we only consider
the component L1 but the reasoning can be generalized to
L2 and L3.

3. THE PATH PLANNING PROBLEM

3.1 An optimal control problem

We suppose that motion is made between t0 and tf with
t0 < tf from the start position qs ∈ D to the target
set B(qf , Rf ) 2 ⊂ D. The main goal is to design the
path (Xt)t∈[t0,tf ] (or equivalently sequence of ut) which
maximizes

Ψ([t0, tf ]) =

∫ tf

t0

L(t)dt.

The problem can be formalized in the optimal control
framework with two boundary constraints. Thus, the
Hamiltonian and also the Euler-Lagrange conditions can
be derived. Unfortunately, due to the cost expression, it
is rarely possible to get an analytic formulation of the
optimal path. Moreover, we have to deal with the limited
sensing capabilities (FOV). Consequently, the proposed
more tractable approach is restricted to the set of paths of
sequences of motions with constant velocity and constant
heading.

3.2 Description of the path space

First we consider a graph G(V, E) composed of |V | nodes
(sq, 1 ≤ q ≤ |V |) and |E| edges {epq = (sp, sq) ∈ V 2, q ∈
V(p)}, where V(sp) is the set of reachable nodes from p.
Each node sp corresponds to a 2D position (xsp

, ysp
) ∈ D.

The robot moves on the edges with constant velocity ve

and ϕe heading the argument of e in Rg. We also denote
∆

sq
sp the travel time between two nodes (sp, sq). As the

velocity is bounded, ∆
sq
sp is also bounded and depends on

the length lpq of epq. An admissible path τ is composed
of nτ + 1 nodes (sik

)k=0,··· ,nτ
with sik

= qs and sinτ +1 ∈
B(qf , Rf ). The mobile reaches node sik

at time tk and

the total duration of the travel is ∆τ =
∑nτ

k=0 ∆
sik+1
sik

=
∑nτ

k=0

likik+1

vk
, vk is the velocity on the edge eikik+1

.

3.3 The cost associated to a path

The cost of a path τ is calculated straightforwardly :

Ψ(τ, C) = a1

nτ∑

k=0

Γ1(k)
︷ ︸︸ ︷
∫ tk+1

tk

L1(t, C)dt . (14)

Now, we need to compute each elementary term Γ1(k)
depending on the visible part of the map during the motion
on eikik+1

. Using (10), we have

Γ1(k) =

NC∑

i=1

NC∑

j>i

NC∑

r=1

Γ1
ijr(k)

︷ ︸︸ ︷
∫ tk+1

tk

δi
tδ

j
t δ

r
t g

(1)
ijr(t)dt . (15)

2 B(a, r) is the ball with center a and radius r
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Z2

Z3

Z1 Z2

Z1

Z2
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S2

S3

S4

S′
1

S′
2

S′
3

S′
4
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P i
−
P i

+

d+

d−

ul
vl

Fig. 2. Sensor coverage for one elementary motion.

3.4 Sensing coverage along an edge

We suppose that the sensing area of the sensor is char-
acterized by three parameters d−, d+ and φm ≤ π

2 which
are the minimum and maximum range detection and the
half aperture angle. So, during a displacement on one edge
from Ps to Pa the area visible by the sensor is the union
of the regions Z1, Z2, Z3, Z1/Z1,Z2/Z2 and Z3 made
from point (Si)1≤i≤4, (S′

i)1≤i≤4, Ps and Pa (see Fig. 2).
For each fi, 1 ≤ i ≤ NC , it is possible from geometric
reasoning to deduce the positions P i

− and P i
+ where it is

seen for the first and last time. Finally, it is possible to get
for all groups of three features (fi, fj, fr) the points P ijr

−
and P ijr

+ which define the part of the edges where they are

simultaneously visible. We are going to show that Γ1
ijr(k)

can be explicitly deduced from these points.

3.5 Γ1
ijr(k) derivation

As the motion is made with constant vk and ϕk, we have
the relation between infinitesimal displacement and the
associated infinitesimal duration

dt =







dx

vk cos(ϕk)
if ϕk 6= π

2
[π] (non vertical motion),

±dy

vk

else (vertical motion).

Moreover, we have the parameterization along the edge

y = β + γx, ∀x ∈
[

xsik
, xsik+1

]

if ϕk 6= π

2
[π] (16)

x = xsik
, ysik

≤ y ≤ ysik+1
else. (17)

We can also express ρl and sin(αm − αn) as functions of
the position coordinates. Indeed, whatever the value of ϕk,
we have ρl = pl(u):=alu

2 + blu + cl and

sin2(αm − αn) =
p2

mn(u)

pm(u)pn(u)
(18)

with pmn(u):=amnu + bmnu. The coefficients of the poly-
nomials depend on the orientation of the edge and are
computed from relation (16). The cost Γ1

ijr(k) can then be
computed using relevant change of variables and are in fact
obtained by integration of rational functions. The integra-
tion is done with the x and y variables respectively for non
vertical motion and vertical motion. More precisely 3 ,

3 we can note that Γ
(1)
e ∝ 1

ve
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Γ
(1)
ijr(k) =







1

vk cos(ϕk)

∫ x
ijr

+

x
ijr

−

p2
ij(x)

pi(x)pj(x)
dx if ϕk 6= π

2
[π]

±1

vk

∫ y
ij

+

y
ijr

−

p2
ij(y)

pi(y)pj(y)
dy else.

(19)
To complete the computation, we have to proceed to
partial expansion of the rational functions. It is not the
same if pi(y) = pj(y) or not, so we have to pay attention
to whether the edge support corresponds to the perpen-
dicular bisector of [fi fj].

(1) If esik
sik+1

is on the perpendicular bisector

(aiju + bij)
2

pi(u)pj(u)
=

r1u + s1

pi(u)
+

r2u + s2

p2
i (u)

. (20)

(2) else

(aiju + bij)
2

pi(u)pj(u)
=

r1u + s1

pi(u)
+

r2u + s2

pj(u)
. (21)

Identification of both side numerators yields the linear
systems to deduce the vector χ = [r1 s1 r2 s2]

∗,

M
(c)
ij χ = Bij , for c = 1, 2 (22)

with

M
(1)
ij =






ai 0 0 0
bi 0 ai 0
ci 1 bi 0
0 0 ci 1




 , M

(2)
ij =






aj 0 ai 0
bj aj bi ai

cj bj ci bi

0 cj 0 ci




 (23)

and
Bij =

(
0 a2

ij 2aijbij b2
ij

)∗
. (24)

Hence, Γ1
ijr(k) is derived from integrals like (n ∈ {1, 2},

l ∈ {i, j}):

H(n)(l, r, s, x−, x+) =

∫ x+

x−

rx + s

pn
l (x)

dx (25)

Such integrals can be computed using classic primitives
and integration by parts and we have the final result

H(1)(.) = ν
(1)
l ln

(
pl(x+)

pl(x−)

)

(26)

+µ
(1)
l arctan(

2al

√
Dl(x+ − x−)

Dl + (2alx+ + bl)(2alx− + bl)
),

H(2)(.) =
1

Dl

(

ν
(2,1)
l x+ + ν

(2,2)
l

pl(x+)
− ν

(2,1)
l x− + ν

(2,2)
l

pl(x−)

)

+µ
(2)
l arctan

2
√

Dlal(x+ − x−)

Dl + (2alx+ + bl)(2alx− + bl)
(27)

with Dl = 4 al cl− b2
l , ν

(1)
l = r

2al
, µ

(1)
l = 2 als− bl r

al

√
Dl

, ν
(2,1)
l =

(2 al s−bl r), ν
(2,2)
l = (bl s−2 r cl) and µ

(2)
l =

2 ν
(2,1)

l

D
3
2
l

. More

precisely, we have finally

Γ1
ijr(k) = γk(H(1)(i, r1, s1, uijr

−

, uijr
+ ) + H(m)(j, r2, s2, uijr

−

, uijr
+ )).

(28)

with m = 1 for a displacement on the perpendicular
bisector and m = 2 else, (r1, s1, r2, s2) are obtained via
the linear systems introduced above, and u = x and
γk = 1/vk cosϕk for non vertical motion and u = y and
γk = ± 1

vk
for vertical motion. To sum up, we can notice

that in order to compute Γ1(k), it is necessary to compute
the quantities Γ1

ijr(k), (i, j, r) ∈ {1, · · · , NC}3, j > i for
the edge traversed at stage k. So we have to consider a cube
matrix with N3

C elements equal to Γ1
ijr(k). It is important

to understand that a great part of those elements are equal
to zero as we must have j > i.

4. UNCERTAINTY MANAGEMENT

4.1 A risk utility function for the optimization

All the materials introduced in the previous section con-
sider that the map C is perfect. Nevertheless the features’
coordinates positions are uncertain and the cost Ψ(τ, C) is
therefore a random variable. So, we are facing a stochastic
optimization problem that we propose to solve by mod-
ifying the original cost function. Indeed, we consider the
following risk function (Ruszczyńki et al. [2006])

r(Ψ(τ, C)) = EC {Ψ(τ, C)} − λ DC {Ψ(τ, C)} . (29)

with λ > 0 and DC {Ψ(τ, C)} a measure of dispersion. Some
hints on the choice of the DC {Ψ(τ, C)} and their associated
properties on the optimization problem can be found in
(Ruszczyńki et al. [2006] and Artzner et al. [1999]). For
our problem, we investigate the standard deviation as the
measure of dispersion (mean-deviation risk function) :

DC {Ψ(τ, C)} =
(

EC
{

(Ψ(τ, C) − EC {Ψ(τ, C)})2
}) 1

2

(30)

It seems difficult to get a closed-form expression of the
mean and standard deviation of the cost, so we proceed
by Monte Carlo or an equivalent method such as the
Unscented Transformation (UT) (Julier et al. [1996]) to
get estimates of those quantities.

4.2 Approximation using the UT

The UT approach consists in defining a minimal set of de-
terministically chosen points to represent the uncertainty
associated to a random vector. These particular points
called sigma vectors completely capture the two first mo-
ments (mean and covariance). Based on these points the
two first moments of the random vector obtained via a
nonlinear transformation can be estimated. In our partic-
ular case, we consider the stacked vector (also denote C)
of size 2NC composed of coordinates of the map features,
i.e.

C =
(
x1, y1, · · · , xNC , yNC

)
.

The mean and the covariance of C are respectively

C =
(
x1, y1, · · · , xNC , yNC

)
(31)

and E(C) = diag (E(f1), · · · , E(fNC)). The “sigma vectors”

Cl, 0 ≤ l ≤ 2 (2 NC) and their respective weights W
(l)
m and

W
(l)
c (Julier et al. [1996]) are

C0 = C, (32)

Cl = C +
√

2NC + κ
√

E(C)l, l = 1, · · · , 2NC

Cl = C −
√

2NC + κ
√

E(C)l−2NC
, l = 2NC + 1, · · · , 4NC

with W
(0)
m = κ/

√

(2NC + κ), W
(0)
c = W

(0)
m + (1 − c2

1 + c2)

and W
(l)
c = W

(l)
m = 1/2(2NC + 1), l > 0. κ, c1 and c2 are

three real parameters.
√

E(C)
j
, 1 ≤ j ≤ 2NC is the jth
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column of the square root of the matrix E(C) obtained
from Cholesky factorization. For a given edge esik

sik+1
,

we can compute the elementary cost Γ
(1)
l (k) for each new

map Cl using the algorithm introduced in section 3 and
estimates of the first two moments of Γ(1)(k)

Γ̂(1)(k) =

2NC∑

l=0

W (l)
m Γ

(1)
l (k),

σ̂2
Γ(1)(k) =

2NC∑

l=0

W (l)
c

(

Γ
(1)
l (k) − Γ̂(1)(k)

)2

.

We can then deduce the estimate of the mean and the
variance of the cost for a path τ with edges e traversed
with velocity ve

4

Ψ̂(τ, C) =

nτ∑

k=0

Γ̂(1)(k):=
∑

e∈τ

1

ve

c(e),

σ̂2
Ψ(τ,C) =

nτ∑

k=0

σ̂2
Γ(1)(k):=

∑

e∈τ

1

v2
e

σ2
c(e).

5. A SOLUTION BASED ON THE CROSS ENTROPY
METHOD

Given G(V, E) with the mean cost c(e) and the variance
σ2

c(e) for each edge e traversed with velocity ve, the source

node si0 , the set of final nodes Bf , the maximum delay
∆m = tf − t0, and a given λ decision parameter. The
constrained optimization problem is

max
τ∈P (s0,Bf ),(vi)0≤i≤nτ −1

∑

e∈τ

1

ve

c(e) − λ

√
∑

e∈τ

1

v2
e

σ2
c(e) (33)

where P (s0, Bf ) is the set of paths starting in s0 and
ending in Bf which satisfy

∑

e∈τ

l(e)

ve

≤∆m (34)

∀e, f(e, succ(e)) = 1 (35)

∀e, v− ≤ ve ≤ v+ (36)

So we need to solve a hierarchical optimization problem,
ones the path is chosen it is necessary to optimize the
sequence of velocities. This second level constrained non-
linear optimization problem is very hard to solve. In this

paper, we suppose that the travel time l(e)
ve

is constant

and equal to ∆T for all arcs. That is to say the nodes and
the velocities are automatically adjusted to satisfy those
conditions. We continue to investigate the original problem
in future works. Due to the nature of the cost function, it
is not possible to use a classic optimization approach such
as dynamic programming, therefore we propose to apply
the Cross Entropy method (Rubinstein et al. [2004]).

5.1 The Cross Entropy method

Consider the following optimization problem:

φ(x∗) = γ∗ = max
x∈X

φ(x) (37)

4 we showed that Γ(1)(k) for edge e can be written as c(e)/ve

The principle of the CE for optimization is to translate
(37) into an associated stochastic problem and then solve
it adaptively as the simulation of a rare event. If γ∗ is the
optimum of φ and x random, Fγ∗ = {x ∈ X|φ(x) ≥ γ∗} is
generally a rare event. The main idea is to learn iteratively
a probability density function in a suitable parameterized
family π(., η)|η ∈ Υ, to draw samples around γ∗. The
learning stage consists in solving an optimization prob-
lem to minimize the Kullback-Leibler “pseudo-distance”
for improving the performance simulation in the tail of
the underlying density. Unlike other local random search
algorithms like simulated annealing which assume local
neighborhood hypothesis, the CE method tries to solve
the problem globally. Given a selection rate ρ ∈ [0, 1[, a
well-suited family of pdf. π(., η)|η ∈ Υ, the algorithm for
the optimization proceeds as follows :

(1) Initialize ηt = η0 (here t is different from the time
index in previous section).

(2) Generate a sample of size N (xt
i)1≤i≤N from π(., ηt),

compute (φ(xt
i))1≤i≤N and order them from smallest

to biggest. Estimate γt as the (1 − ρ) sample per-
centile.

(3) update λt with :

ηt+1 = argmax
η

1

N

N∑

i=1

I
[
φ(xt

i) ≥ γt

]
lnπ(xt

i, η)

(38)

(4) repeat from step 2 until “convergence”.
(5) assume convergence is reached at t = t∗, an optimal

value for φ can be obtained from a sampling made
with π(., ηt∗).

This is the main version of the CE algorithm, but in prac-
tice the update stage (3) includes a smoothing procedure.
If η̃t+1 is the solution of (3) and 0 ≤ ν ≤ 1 fixed, then it
holds

ηt+1 = ν η̃t+1 + (1 − ν) ηt (39)

5.2 Application to the path planning task

To apply the CE, we need to define a family of pdfs to
generate admissible trajectories. We introduce the family
of probability matrices Pss′ = (pss′ ) with (s, s′) ∈ V × V .
pss′ is the probability to decide to go towards node s′

from nodes s. These matrices are often sparse as many
nodes have limited neighborhood V(s) due to the map
configuration (border, forbidden areas...) and bounded
motion velocity.

Pss′ =






ps1s1 ps1s2 · · · ps1s|V |−1
ps1s|V |

...
...

...
...

...
s|V |s1 ps|V |s2 · · · ps|V |s|V |−1

ps|V |s|V |




 (40)

with ∀s, Pss′(s, .) is a discrete probability law such as :

Pss′(s, si) = pssi
, i = {1, · · · , |V |}, with

|V |
∑

i=1

pssi
= 1

At each iteration of the CE algorithm, we can generate
N admissible trajectories τ with travel time Tτ ≤ ∆m in
accordance with Pss′ and an authorized transition matrix
δ for constraint to satisfy (35). Let us denote sik

and
ek−1 the node reach at step k − 1 and the edge used to
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reach it. We introduce Ek,k−1 the set of possible edges for
displacement at step k in sik

knowing that edge ek−1 was

taken and P̃ ˜sik
(.) is the normalized restriction of P ˜sik

(.)
to Ek,k−1. During this generation procedure, due to the
maneuver constraints, the set Ek,k−1 may be empty or the
final state may be not attainable, so the associated value
to that trajectory is set to −∞, else the associated cost is
evaluation of the risk function. Given N {τj}N

j=1 samples

of path with associated cost {r(τj)}N
j=1 at iteration t, the

update stage for the elements of Pss′ is given by the
following expression Celeste et al. [2008]:

pss′ =

∑N
j=1 I [{r(τj) ≥ γt}] · I

[
{τj ∈ χss′}

]

∑N

j=1 I [{r(τj) ≥ γt}] · I [{τj ∈ χs}]
(41)

where {τj ∈ χs} means that the trajectory contains a
visit to state s and {τj ∈ χss′} means that the trajectory
contains a visit to state s to reach s′. For the first iteration,
∀s, Pss′(s, .) is taken as a uniform probability density
function on admissible nodes.

6. EXPERIMENT

We introduce a short example with a map composed of
several features with different level of accuracy on their
coordinates. The best part of the map is on the upper left
side of the environment in D = [−10,−10, 110, 110] (see
Fig. 3). The graph is a regular grid (red crosses on the
figure) with the same resolution in x and y equal to dx =
dy = 20. The sensor FOV is limited and characterized
by a minimum and maximum range detection d− =
10 and d+ = 40 and a half aperture angle φm = 90 deg..
Moreover, the headings variation between two following
time steps must be bounded by π/2. For the optimization,
the path must be composed of K = 20 elementary
branches and the CE algorithm is run with 5000 trajectory
samples at each of the 200 iterations. The selection rate is
ρ = 0.2, therefore the 2000 best paths contributed to the
update stage of the Pss′ matrix. The smoothing parameter
is ν = 0.4. We compute the optimal path for λ = 0, 3 and
8. The first case is the path obtained from the maximum
mean cost. The results are plotted on figures (Fig.3) and
(Fig.4). On the mean cost path, the mobile tries to see
a maximum number of features located on each side of
its current trajectories without taking into account the
level of uncertainty on their position. This behavior seems
coherent as maximizing Γ(1)(.) is equivalent to improve
covage and triangulation performance. On the opposite
side, when λ increases, we can notice that the optimized
robot maneuvers to sense a maximum number of features
but with high accurate positions (located on the right side)
in order to reduce the uncertainty (or the risk) on the
localization metric.

7. CONCLUSIONS AND PERSPECTIVE

In this paper, we investigated a framework to design the
optimal path for a mobile robot for map-based localization.
A closed form measure of performance directly linked with
the Fisher Information Matrix is derived and adapted
to take into account the map probabilistic uncertainty.
Classical optimization method like Dynamic programming
is useless to solve the derived stochastic optimization prob-
lem. As a consequence, a learning based approach using
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Fig. 3. path planning for λ = 0 (red) and λ = 3 (magenta).
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Fig. 4. path planning for λ = 0 (red) and λ = 8 (green).

the CE algorithm was used. One example was presented
to illustrate the global reasoning. It confirms that the
approach is a valuable one to select paths based on the
trade-off between maximum mean and limited risky local-
isation performance. Future work will concentrate on the
evaluation of more experiments and on the generalization
of the approach to optimized also the sequence of velocities
which was not tackled here.
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