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Abstract. The joint analysis of motions and deformations is crucial in
a number of computer vision applications. In this paper, we introduce
a non-linear stochastic filtering technique to track the state of a free
curve. The approach we propose is implemented through a particle fil-
ter which includes color measurements characterizing the target and the
background respectively. We design a continuous-time dynamics that al-
lows us to infer inter-frame deformations. The curve is defined by an im-
plicit level-set representation and the stochastic dynamics is expressed
on the level-set function. It takes the form of a stochastic differential
equation with Brownian motion of low dimension. Specific noise mod-
els lead to traditional evolution laws based on mean curvature motions,
while other forms lead to new evolution laws with different smoothing
behaviors. In these evolution models, we propose to combine local mo-
tion information extracted from the images and an incertitude modeling
of the dynamics. The associated filter we propose for curve tracking thus
belongs to the family of conditional particle filters. Its capabilities are
demonstrated on various sequences with highly deformable objects.

1 Introduction

Tracking deformable structures delineated by free curves, with no prior on their
possible shapes, is a very challenging problem. As a matter of fact, the shape of
a deformable object or even of a rigid body may change drastically when visu-
alized from an image sequence. These deformations are due to object apparent
motion, to perspective effects and to 3D shape evolution. This difficulty is am-
plified when the object becomes partially or totally occluded during even a very
short time period. The presence of cluttered background and ambiguities con-
stitutes other difficulties for tracking. For curve tracking numerous approaches
based on the level set representation have been proposed [1–7]. These techniques
mainly addressed the problem as a succession of instantaneous detection or seg-
mentation problems. At best only discrete snapshots of the location of the object
of interest are provided and no dynamical or morphological consistency can be
really enforced. Implausible growing/decreasing or merging/splitting cannot be
avoided without resorting to shape priors [8–10]. This reduces considerably the
generality of the tracker and restrains its use to very specific applications [8, 10].



Such deterministic approaches have also great difficulties to cope with ambigu-
ities and noise. The explicit introduction of a dynamics in the curve evolution
law has been considered in [4]. However, the proposed technique, although much
more satisfying from the point of view of the forecasting of the curves, is not
embedded into a tracking framework. In [11], an approach based on a group
action mean shape and a moving average has been proposed. This tracking is
restricted to simple motions. Recently an optimal control strategy has been de-
fined for curve tracking [12]. This technique permits to cope with non linear
differential evolution laws. It is nevertheless a deterministic technique that only
involves Gaussian incertitude on the dynamical system. It is also a batch tech-
nique which relies on the entire image sequence. It can hardly be used for on-line
tracking.

The extraction of state trajectories relying on past measurements and on a
dynamical model, as done with stochastic filtering, permits to handle naturally
partial occlusions, cluttered noise and ambiguities. It enables also to rely on an
approximate knowledge of the underlying dynamics. However, the state dimen-
sion constitutes the Achille’s heel of recursive Bayesian filter such as the particle
filter. Due to this so called curse of dimensionality, only few works attempted to
mix stochastic filtering and level set representation for curve tracking [13, 14].
These works have to face a high dimensional sampling problem and as a con-
sequence rely on a crude discretization of the non linear curve dynamics which
may be problematic in some situations.

The approach we proposed for curve tracking is also implemented through a
particle filter and a level set representation. This approach includes color mea-
surements characterizing the target and the background respectively [15]. The
dynamics involved is formulated as a stochastic differential equation. This allows
us to get a continuous-time representation of the curve trajectory and, thus, to
infer inter-frame deformations. This gives access to richer dynamics on curves. It
would also permit the use of continuous time physical evolution laws in specific
contexts. The stochastic dynamics is expressed on the level-set function and takes
the form of a stochastic differential equation with Brownian motion of low dimen-
sion. Although such an attempt has been done to build stochastic dynamics for
image segmentation in [16], our approach is different, as it integrates naturally
the contribution of noise in the dynamics derivation. It also allows interpreting
additional smoothing terms on the curve as a consequence of the incertitude we
have on the curve dynamics. Conceptually, this yields a rigourus derivation of
the curve dynamics, enabling to handle topological changes occuring between
two frame instants, and also to cope with the propagation of possibly irregu-
lar curves driven by noisy motion fields. No adhoc, additional filters are here
needed to propagate the curve. Such a smoothing is expicitly handled within the
expression of the stochastic expression of the level set dynamics. The evolution
models we propose combines local motion information extracted from the image
and the modeling of dynamics uncertainty. The associated filter thus belongs to
the family of conditional particle filters [17].



2 Stochastic filtering and particle filter

Before introducing in detail the stochastic evolution laws on which we will rely
in this work we present in this section the generic problem of continuous time
stochastic filtering in presence of discrete-time measurements.

Stochastic filters constitute well known procedures to estimate the posterior
pdf p(xk|z1:k) (called the filtering distribution) of a state variable of interest
at any measurement instant k, given the discrete measurements series z1:k =
(z1· · ·zk) until instant k, and an initial distribution p(x0). In the following, we
consider a continuous time state xt. We will denote by xt=k or xk its value at
the measurement instant k. At each time instant k, the measurement equation
relates the observation zk to the state xk. In this work the general system we
are dealing with is described by:

{

dxt = f(xt)dt + σ(t)dBt,
zk = g(xk) + vk,

(1)

where Bt is a Brownian motion and vk is a noise variable. Functions f and g
are non linear in the general case.

Assuming there exists a transition distribution p(xt|xr<t) (which should for-
mally be written as p(xt|F(xr<t)) where F(xr<t) denotes the filtration generated
by Brownian motion up to time r), the inference of the posterior pdf may be
obtained in two successive stages: a prediction step and a correction step. The
prediction uses the transition distribution p(xk|xr<k) to make a first approxi-
mation of the next state. Then, the correction step updates the posterior pdf
through the likelihood p(zk|xk) of the new observation zk obtained at instant
k. Both steps involve integral terms that can be analytically computed only for
linear systems with additive Gaussian noise. This case corresponds to the famous
Kalman-Bucy filter [18].

2.1 Particle filter

Particle filtering is a sequential Monte Carlo framework that yields an approxi-
mate solution of the general stochastic filtering problem (non linear likelihood,
non additive and non Gaussian noises). The filtering distribution p(xk|z1:k) is
recursively approximated by a finite weighted sum of N Diracs centered on hy-
pothesized locations in the state space – called particles – of the initial system

x0. At each particle, x
(i)
k (i = 1 : N), is assigned a weight γ

(i)
k describing its

relevance. This approximation reads:

p(xk|z1:k) ≈

∑

i=1:N

γ
(i)
k δ

x
(i)
k

(xk). (2)

Assuming that the approximation of p(xk−1|z1:k−1) is known, the recursive
computation of the filtering distribution is done by propagating the swarm of

weighted particles {x
(i)
k−1, γ

(i)
k−1}i=1:N . At each time instant (or iteration), the



set of new particles {x
(i)
k }i=1:N is drawn from an approximation of the true

distribution p(xt≥k−1|z1:k), called the importance function and here denoted

π(xt|x
(i)
0:k−1, z1:k). The closer the approximation to the true distribution, the

more efficient the filter. The importance weights, w
(i)
k , account for the devia-

tion w.r.t. the unknown true distribution. To maintain a consistent sample, the
importance weights are updated according to a recursive evaluation as the new
measurement zk becomes available:

γ
(i)
k ∝ γ

(i)
k−1

p(zk|x
(i)
k ) p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1, z1:k)

,
∑

i=1:N

γ
(i)
k = 1. (3)

Different choices are possible for this proposal density [17]. The most common
one consists in setting the proposal distribution to the dynamics:

π(xt|x
(i)
0:k−1, z1:t) = p(xt|x

(i)
k−1). (4)

In this case the weight update in (3) is greatly simplified: it amounts to mul-

tiplying by the data likelihood p(zt|x
(i)
t ). This version of the particle filter is

known as the bootstrap filter. This is the kind of filter which we are dealing with.
In our case the two steps of the filter reads:

– Prediction step : x
(i)
k ∼ p(x

(i)
k |x

(i)
k−1)

– Correction step : w
(i)
k ∝ w

(i)
k−1 p(zk|x

(i)
k ).

The prediction step consists in sampling trajectories {x
(i)
t : k − 1 6 t 6

k}i=1:N from the stochastic differential equation describing the continuous evo-
lution of the state:

dx
(i)
t = f(x

(i)
t )dt + σ(t,x

(i)
t )dB

(i)
t , (5)

from the initial condition {x
(i)
k−1}i=1:N and where {B

(i)
t }i=1:N are independent

Brownian motions. The simulation of the sde (5) can be done through the Euler
scheme:

x
(i)
t+∆t = x

(i)
t + f(x

(i)
t )∆t + σ(t)(B

(i)
t+∆t − B

(i)
t ), (6)

where the increments B
(i)
t+∆t − B

(i)
t are independent Gaussian noises with zero

mean and variance ∆tI. Let us note that the discretization step is much smaller
than the inter measurement time interval (∆t ≪ 1).

In order to avoid degeneracy of the particle swarm, a resampling step must
be applied sufficiently often [19]. This process consists in drawing, with replace-
ments, a new set of particle from the current one according to a probability
distribution that depends on importance weights. The particles associated to
low weights will tend to disappear whereas the ones with larger weights are
likely to be duplicated.

In this work the state variables will consist in closed curves represented by
implicit surfaces. Their associate dynamics will be defined in section 3. Before
that let us define the likelihood on which we will rely.



2.2 Likelihood definition

In bootstrap filters, the likelihood associated to each particle directly determines
its weight. It is therefore crucial for the likelihood to be sufficiently discriminant
in order to discard curves which are too distant from the intended result. To this
end, we choose to define a likelihood that depends on the similarity between the
color distributions inside the curve at times t = 0 and t = k respectively. For
each particle, it reads:

p(zt|x
(i)
t ) ∝ exp−λd(h0, h

(i)
k ), (7)

where d is related to the Bhattacharyya distance between h0 the reference inte-

rior color histogram instantiated at time 0 and h
(i)
k the interior color histogram

associated to the i-th level-set sample at time k, and λ is a positive parameter.
For discrete probability distributions p and q defined over the same domain X ,
the Bhattacharyya distance is defined as:

d(p, q) =
(

1 −
∑

√

p(x)q(x)
)1/2

(8)

3 A Stochastic evolution laws for level sets

As mentioned in the introduction, the curve that we want to track is defined
by an implicit level-set representation. The stochastic dynamics has thus to be
defined on this level-set function which is of infinite dimension (or at least of
very high dimension in its discrete form). In order to cope with the curse of
dimensionality that makes inefficient any sampling in high dimension, the model
we consider relies on a low dimension Brownian motion. To this end we introduce
next three different evolution laws and explain how they are related to evolution
laws of level sets.

Let Ct denote a closed Jordan curve Ct : [0, 1] → R
2 at time t ∈ [t0, τ ] of the

image sequence. Let us first assume that this curve evolves in time according to
the following evolution law:

dCt = wnndt + σ1ndB
(1)
t + σ2n

⊥dB
(2)
t , (9)

where dB
(1)
t and dB

(2)
t are two independent Brownian motions, n is the unit

vector normal to the curve and wn = w · n is the projection of some velocity
field w on this normal. In this model, a deterministic drift associated to velocity
field w is mitigated with an isotropic Gaussian incertitude that grows linearly
in time. As a matter of fact, let us recall that the quadratic variation of the
Brownian motion, on the real line for sake of simplicity, is:

< σdBt, σdBt >t=

∫ t

0

(σdBs)
2 = lim

∆t→0

t
∑

0

|Bt+∆t − Bt|
2 = σ2t. (10)

Contrary to differentiable deterministic functions, Brownian motion does not
have a bounded variation (i.e., its total variation on [0, t] is infinite).



Level set representation As we wish to focus in this work on the tracking of
non parametric closed curves that may exhibit topology changes during the time
of the analyzed image sequence, we will rely on an implicit level set representation
of the curve of interest [5, 7]. Within this framework, the curve Ct enclosing a
region D we wish to track is described at time t through a higher dimensional
surface Φ : R

2 → R and the implicit equation:

Ct = (xt(p) : Φ(xt(p)) = 0) , (11)

where p stands for a parameter of the curve and x ∈ Ω denote image positions.
This representation constitutes an Eulerian representation of a curve and enables
a natural topology adaptivity. The implicit representation is defined from an
initial surface such as a signed distance function to the contours of interest, and
evolves according to the curve evolution law. The curve at time t is defined by
construction through its implicit representation at time t:

Φt = Φ0 +

∫ t

0

dΦs. (12)

Assuming the level set representation is uniquely defined from an initial sur-
face and the curve evolution (9), the surface, Φ, constitutes a function of the
stochastic process Ct. Its differential must be calculated using the so called Îto
formula from stochastic calculus [20, 21].

Stochastic level set evolution law Let us apply Îto formula to the implicit
representation of the curve Φ(Xt) where Xt = (Xx

t Xy
t )T ∈ Ω, is driven by an

Îto diffusion defined as an extension of the curve velocity:

dXt = w∗
nndt + σ1ndB

(1)
t + σ2dB

(2)
t n

⊥. (13)

In this equation, the drift term w∗
n is an extension to the whole image domain of

the curve deterministic drift along the curve normal n = ∇Φ/‖∇Φ‖. Following
Îto formula, the process ϕt = Φ(Xt) is an Îto process defined as

dϕt = w∗
n‖∇ϕ‖dt + σ1‖∇ϕ‖dB

(1)
t +

1

2

∑

i,j=x,y

∂2ϕ

∂xi, xj
< dX i

t , dXj
t > . (14)

The associated quadratic variation reads:

< dXx
t , dXx

t > =
σ2
1ϕ2

x+σ2
2ϕ2

y

‖∇ϕ‖2 dt,

< dXy
t , dXy

t > =
σ2
1ϕ2

y+σ2ϕ2
x

‖∇ϕ‖2 dt,

< dXx
t , dXy

t > =
(σ2

1−σ2
2)ϕxϕy

‖∇ϕ‖2 dt.

(15)

Introducing the surface normal expression, the Îto diffusion [21] driving the im-
plicit surface evolution reads finally:

dϕt = w∗
n‖∇ϕ‖ +

1

2‖∇ϕ‖2
(ϕxx(σ2

1ϕ2
x + σ2

2ϕ2
y) + ϕyy(σ2

1ϕ2
y + σ2

2ϕ
2
x)

+2(σ2
1 − σ2

2)ϕxϕyϕxy))dt + σ1‖∇ϕ‖dB
(1)
t .

(16)



Recalling that the mean curvature can be expressed as:

κ = curv(ϕ) =
1

‖∇ϕ‖
(∆ϕ − ∇ϕT

∇
2ϕ ∇ϕ), (17)

where ∇
2ϕ denotes the Hessian matrix and ∆ϕ the Laplacian, the surface evo-

lution law may be written in a more compact form as:

dϕ = (w∗
n‖∇ϕ‖+

σ2
2

2
κ‖∇ϕ‖+

σ2
1

2‖∇ϕ‖2
∇ϕT

∇
2ϕ ∇ϕ)dt+σ1‖∇ϕ‖dB

(1)
t . (18)

It can be observed from (18) that if both incertitudes have the same strength
(i.e. σ1 = σ2) this model takes a particular simple form:

dϕt = (w∗
n‖∇ϕ‖ +

1

2
σ2

1∆ϕ)dt + σ1‖∇ϕ‖dB
(1)
t . (19)

The dynamical model (2) constitutes a general stochastic process allow-
ing to guide a curve through an implicit surface. This stochastic process will
enable us to draw samples of curves in our tracking process. Before turning
to the experiments, it is interesting to see to what corresponds the expecta-
tion of these stochastic processes. It can be shown, through Kolmogorov back-
ward equation (the adjoint of the Fokker-Planck equation) that the expectation
u(x, t) = E

x(Φ(Xt)) evolves as:

∂u

∂t
= (w∗

n +
σ2

2

2
κ)‖∇u‖ +

σ2
1

2‖∇u‖2
∇uT

∇
2u ∇u, and u(x, 0) = Φ0(x), (20)

where Φ0 denotes the initial surface, built from an initial value of the contour.
This equation gives us the evolution law of the expectation on a fixed grid of
an implicit surface driven by a stochastic dynamical model of form (9). This
dynamical model includes two independent Brownian uncertainty on the curve
motion directed along the curve’s tangent and normal respectively. The first term
corresponds to the traditional deterministic evolution law of a level set function.
The curvature term is here introduced due to the effect of the motion incertitude
along the curves tangent. The second term is less usual and corresponds to an
uncertainty directed along the surface normal. If both uncertainties are set to
the same amplitude then the previous equation simplifies as:

∂u
∂t = w∗

n‖∇u‖ + σ2

2‖∇Φ‖2 ∆u,

u(x, 0) = Φ0(x).
(21)

4 Experiments and results

Motion information extracted from the images The evolution laws intro-
duced in the previous section are based on a stochastic force w calculated from



the image. We now introduce the force we use in our experiments. It is a linear
combination of two main components:

w
∗(i)
n = β(t)vT

n + (1 − β(t))∂ϕF (ϕ(i)) (22)

with proportions β(t) ∈ [0, 1] and 1− β(t) respectively. The first component is a
motion component obtained from an optical flow computation, while the second
corresponds to a photometric edge component obtained from a generalized Chan-
Vese operator [12].

Optical-flow component The motion component v = (vx, vy)T is provided by
a robust and fast optical-flow estimator. It is defined as the minimizer of the
objective function:
∫

Ω

f(‖∇IT
v + I(t + dt)− I(t)1p(zt|ν(x))<1−ǫ‖)dx + λ

∫

Ω

(‖∇vx‖2 + ‖∇vy‖2)dx.

(23)
Function f is a robust function whose role is to discard data that significantly
deviates from the brightness constancy assumption. This function together with
the characteristic function defined from a local likelihood computed over a neigh-
borhood ν(x) of x ∈ Ω (eq. 7) provides a smooth motion field on the whole image
plane that represents only the motion of data points that likely correspond to the
object of interest. This motion component is a rough description of the curve’s
motion. It is reasonable to combine it with a photometric edge force.

Fig. 1. Tracking of a skier; first row: drift term with only the photometric edge compo-
nent; second row: drift term defined as a combination of a photometric edge components
and a motion component

Photometric edge component The second component is derived from an operator
[12] that corresponds to Chan and Vese operator [22] applied to histograms. It
is thus defined from the derivative w.r.t. the unknown level set of the following
objective function:

F (ϕ, I)(x, t) = d(h(ν(x)), h0)
21ϕ(x)<0 + d(h(ν(x)), hb)

21ϕ(x)≥0, (24)



Fig. 2. Tracking cyclone Vince in infrared channel of Meteosat satellite.

where d is the Bhattacharyya distance, ho and hb denote respectively the ref-
erence interior and exterior color histograms instantiated at time 0, h(ν(x))
represents the local color histogram at point x. The gradient of this objective
function reads:

∂ϕF = (d(h(ν(x)), ho)
2 − d(h(ν(x)), hb)

2)δ(ϕ), (25)

where δ(.) is the Dirac function.
Both components have their own advantages in the time interval between

measurement instants k and k + 1. For our tracking purpose, the photometric
component is especially helpful in the temporal vicinity of the second images,
whereas the optical-flow component is more likely to be meaningful as a rough
component of the motion only in the temporal vicinity of the first image. As a
consequence we choose to change gradually the proportion of each according to:

β(t) =
2t

∆k
− 1, t ∈ [0, ∆k]. (26)

In order to illustrate the role of each component we show first results on
a sequence of 21 frames depicting a skier in action. On Fig. 1, the first row
exhibits the results obtained when considering only the photometric component
with a constant weight. The second row shows the results obtained from the
combination of the optical-flow and the photometric components. Between t = 13
and t = 15, the skier moves rapidly to the right of the image. It can be observed
that in the first case, the tracker quickly focuses on the skier’s shadow only. In the
second case, the optical flow term allows us to cope with this large displacement
and to improve the result.

Let us outline that for visualisation purposes, we have centered all the images
on the skier.

The second sequence on which we present results is composed of 100 mete-
orological images (Meteosat infra-red image) showing the evolution of cyclone



Vince over North Atlantic. In Fig. 2 we show in red the level set associated to
the mean of all implicit function particles (after resampling) and the standard
deviation of the estimate. As can be observed from these pictures or from the
companion video the results are of good quality. The method allows a robust
tracking of the regions of interest. When the cyclone collapses at the end of the
sequence, the tracking becomes less certain and the variance of the estimation
grows. Such an assessment of estimate confidence is another great advantage of
probabilistic techniques.

We finally present results on 30 frames of a video showing a lion running in
the savanna. The results obtained are shown in Fig. 3.

Fig. 3. Tracking of lion running in the savanna with our particle filter on the space of
implicit functions.

We can observe on this sequence that for regions where background color
is a source of high ambiguities (i.e., around such as the legs), the uncertainty
is important. The top of the lion is clearly distinct from the background, it is
therefore segmented with better accuracy and confidence. Beside the quality of
the results local confidence assessment via variance vizualisation (or analysis)
is an interesting feature of our approach. This could probably be of practical
interest in medical image applications.

In order to show the advantage of our method, we present in Fig. 4 the same
sequence with successive segmentations obtained using the Chan-Vese operator
only. We can observe the lack of continuity in the tracking, and the selection of
several portions of the background due to color ambiguities. Our method avoids
these problems by favoring a continuous evolution of the implicit surface.

Fig. 4. Successive segmentations of lion running in the savanna.



Our method involves two main parameters, which are related to the incer-
tainty we have on the curve dynamics. The estimation of these parameters is
not addressed in this paper but will be investigated in future researches. We
have observed that better results were obtained for a noise along the curve tan-
gent that is slightly larger than for the one directed along the normal. For the
sequences shown in this paper we chose σ1 = 3 and σ2 = 4.

5 Conclusions and future work

In this paper we have described a probabilistic filtering method for the track-
ing of level sets. The technique we propose is implemented through a particle
filter and combines discrete-time image measurements with a continuous-time
stochastic dynamics. This continuous dynamics relies on two different incertain-
ties on the curve motion, directed respectively along the curve normal and along
the curve tangent. The considered curve dynamics has been built from the image
data by considering a drift term that combines in varying proportions a motion
component and a photometric component. The measurement considered in this
filter are built from color histograms of the object delineated by the user at the
initial time.

The first perspective concerns the automatic estimation of the two noise
variances. The first one is related to the incertainty on the motion whereas the
second one corresponds to the level of noise in the image. Another perspective
concerns the management of occlusions. To that end, an idea would be to modify
the coefficient of the normal noise according to the average of all likelihoods of
particles. Thus, in case of loss of the object, the uncertainty would grow, resulting
in a spread and expansion of the level sets and, as a consequence, in a more likely
recovery of the tracker when the object reappears. Finally, it could be interesting
to investigate the use a Brownian motion of higher dimension to capture a larger
set of deformations between two consecutive frames.
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