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Abstract. The study of protein dynamics is essential for understanding
the multi-molecular complexes at subcellular levels. Fluorescent Protein
(XFP)-tagging and time-lapse fluorescence microscopy enable to observe
molecular dynamics and interactions in live cells, unraveling the live
states of the matter. Original image analysis methods are then required
to process challenging 2D or 3D image sequences. Recently, tracking
methods that estimate the whole trajectories of moving objects have been
successfully developed. In this paper, we address rather the detection of
meaningful events in spatio-temporal fluorescence image sequences, such
as apparent stable “stocking areas” involved in membrane transport.
We propose an original patch-based Markov modeling to detect spatial
irregularities in fluorescence images with low false alarm rates. This ap-
proach has been developed for real image sequences of cells expressing
XFP-tagged Rab proteins, known to regulate membrane trafficking.

1 Introduction

To preserve the structure, cohesion and functions of the organism, the eukaryotic
cell exchanges information between its compartments and organelles: endosomes,
Golgi apparatus, endoplasmic reticulum (ER), ..., these intracellular exchanges
require physical supports or networks for communication, mainly cytoskeleton
elements such as microfilaments or microtubules. Membrane interactions with
microtubules are mediated by several classes of proteins, notably motor pro-
teins of the dynein and kinesin families. In our study, the transport interme-
diates/vesicles corresponding to small (less than 100nm) and almost spherical
elements in time-lapse fluorescence microscopy move along microtubules. Molec-
ular motors transform chemical energy with the mediation of Adenosine Tri-
Phosphate (ATP) to mechanical work and driving energy for propelling the
vesicles. We focus on the traffic between two cell compartments - the Golgi ap-
paratus and “peripheral structures” - presumably regulated by two isoforms of
the Rab6 GTPase (Rab6A and Rab6A’) [1]. Characterization of the latter struc-
tures is still elusive so far and a matter of debate. However, they are believed
to correspond to Endoplasmic Reticulum “entry points” in eukariotic cells. We
name them “end-points” since they correspond to areas where Rab6 labeled



transport intermediates appear to be delivered. Observation of protein dynam-
ics in live cells using XFP-tagging and time-lapse fluorescence microscopy is
routinely used to elucidate the roles of Rab proteins in membrane transport.
In particular, XFP-Rab6 proteins are either free (diffusion) in the cytosol, an-
chored to the moving transport intermediates, transiently attached to the Golgi
membranes (“origin” region) or present near the so-called “end-points” (“desti-
nation” regions).

Image processing methods have been developed to reliably and successfully
track the transport intermediates along microtubules over time [7]. The most
commonly-used tracking approach is based on motion correspondence [2, 3]: the
particles are detected independently in each frame in a first step, and then the
trajectories are computed by connecting the detected objects over time. Sophis-
ticated particle filtering techniques [4, 5], graph-theory based methods [6] or min-
imal paths methods [7] have been also developed to improve temporal matching.
In this paper, we address the problem of spatial detection of fluorescence irreg-
ularities in 2D images of temporal sequences obtained in time-lapse fluorescence
microscopy. Our idea is to robustly determine the “origin” and “destination”
regions (OD regions) involved in vesicular trafficking. Detection methods with
low false alarm rates are then required to provide new tools for investigation
in fluorescence bioimaging. Therefore, we propose here an original patch-based
Markov Random Field (MRF) modeling. It turns out that this method allows
to detect reliably the OD points unlike previous methods. The remainder of the
paper is organized as follows: in section 2, we describe the patch-based MRF
model. In section 3, we propose a statistical method to automatically threshold
the potential map. In section 4, we present experiments on real image sequences.

2 Patch-based Markov models for image representation

In our study, membrane transport correspond to vesicles moving from “origin”
to “destination” regions. In the background, fluorescence diffusion represents
the largest component and moves slowly when compared to the vesicle traffic
component. However, apparent stable “stocking” areas corresponding to areas
with accumulated fluorescence should be detected. Our idea is then to detect
pixels with meaningful fluorescence for several frames. A temporally cumulated
detection map will be derived further to detect the OD regions/“stocking” areas.

A first approach to measure the fluorescence regularity in each image is to
compute the gradient amplitude image. Since it is established that fluorescence
is proportional to the number of proteins, the higher the gradient amplitude
is, the bigger the concentration of small particles is. Nevertheless, the gradient
is also very sensitive to low signal-to-noise ratios and undesirable artifacts are
also detected (see Fig. 1b)). New statistical models are then required to improve
irregularity detection in each image.

In our approach, we adopt a MRF framework [8] to capture image regularity.
In contrast to the usual pixel-wise MRF models, a recent line of work consists in
modeling non-local interactions from image patches; in [9–11], the redundancy
property and patch-based representation can be exploited to detect unusual spa-
tial patterns seen in the scene. In our study, this property holds true and we also



propose an original patch-based Gibbs/MRF modeling to represent the more
regular image components. We detect further the locations where redundancy
is low, that is protein concentrations against a nearly uniform background ide-
ally. In the presence of noise, patch-wise Markov models produce potential maps
which are more regular than those obtained with pixel-wise Markov models. As
we shall see in our experiments, considering non-local interactions enables to
better describe the image contents.

More formally, consider a gray-scale image u = (u(x))x∈Ω defined over a
bounded domain Ω ⊂ R2 and defined at pixel x ∈ Ω as u(x) = u0(x) + ε(x),
where u0 is the true image and the errors ε(x) are assumed to be iid (inde-
pendent identically distributed) Gaussian zero-mean random variables with un-
known variance σ2. Note that the assumption of Gaussian noise holds true in
fluorescence microscopy provided the number of photons collected at each pixel
is large enough. In order to robustly detect redundancy in u, we focus on im-
age patches as non-local image features able to capture spatial regularities. Our
idea is to perform pairwise comparisons of n-dimensional patches u(x) within a
fixed-size semi-local neighborhood. For the sake of simplicity, a vectorized im-
age patch u(x) is defined as the

√
n × √

n square neighborhood of point x and
the pixels are ordered lexicographically. In [9], it has been confirmed that the
l2 distance ‖u(x) − u(y)‖2 is able to express the amount of similarity between
image patches u(x) and u(y). Intuitively, if the distance is large enough, we can
conclude that the patches centered at pixels x and y belong to different spatial
contexts. Besides, in homogeneous regions, the noise being assumed to be Gaus-

sian, the score z(x, y)
△
=

‖u(x)−u(y)‖2

2σ2 follows a central chi-squared distribution
with n degrees of freedom, i.e. z(x, y) ∼ χ2

n.
The key idea here is to combine the MRF framework with patch-based rep-

resentation. Instead of defining the underlying potential function by hand or
training [10], we exploit patch-based score statistics given in (??). Let G =
(V, E) be a graph where V denotes the nodes and E the edges connecting
the nodes. Moreover, a neighborhood system connecting all the nodes in the
square window (larger than patches) and centered at pixel x, is defined. The
Hammersley-Clifford theorem establishes that the pdf of the proposed graphical
model is a Gibbs distribution of the form p(u) ∝ exp−∑

<x,y> φ(x, y) where
< x, y > denotes the set of cliques in the neighborhood and φ(x, y) is the as-
sumed homogeneous local interaction potential function. We arbitrarily choose
φ(x, y) = log(p(z(x, y))) and write the pdf of u as

p(u) ∝ exp−
[

∑

<x,y>

(n − 2) log (‖u(x) − u(y)‖) − ‖u(x) − u(y)‖2

4σ2

]

. (1)

In what follows, all the pairwise comparisons between neighboring patches
wrt vertical and horizontal directions will be considered. This Gibbs model is
parametrized by only one parameter, i.e. the noise variance σ2, and will directly
estimated by Maximum Likelihood (ML) from data points belonging to the
background. As explained in [10], the normalization term involved in the Gibbs
model (1) is intractable but is not required for our purpose, as we shall see later.
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Fig. 1. a) Processing of a typical image (and zoomed-in views) extracted from a time-lapse mi-
croscopy image sequence where high fluorescence levels correspond to dark values (a gamma cor-
rection is applied for better visualization); b) gradient amplitude image; c) potential map using
pixel-wise MRF modeling; d) potential map using patch-wise MRF modeling. In figures b)-d), blue
regions correspond to low potential values and red regions to high potential values.

a) b)

Fig. 2. Approximation of the observed pdf (blue) of Φ by a mixture of two distributions (red) for
images #10 (a)) and #50 (b)) in the sequence shown in Fig. 1.

The proposed Gibbs distribution also includes spatial correlation in the modeling
since the neighboring patches overlap in the neighborhood.

For illustration, Fig. 1 shows respectively the gradient amplitude image (Fig. 1b)),
the potential map (Fig. 1c)) using the homogeneous pixel-wise Gibbs model de-
fined as p(u) ∝ exp−β

∑

<x,y>(u(x)−u(y))2, with β = (2σ2)−1, and the poten-
tial map using the patch-wise Gibbs model (Fig. 1d)) when applied to an input
fluorescence image shown in Fig. 1a) and extracted from a time-lapse microscopy
image sequence composed of 120 images. The gradient amplitude image shows
high values in areas corresponding to the Golgi region (image center) and in
smaller areas corresponding to potential “end-points”. In Fig. 1c-d), a potential
value Φ(x) ∝ − log p(u(x)|u(y), y ∈ ∆(x)) is computed at pixel x from local
interactions specified for both the pixel-wise and patch-wise MRF models as

Φ(x) =
∑

y∈∆(x)

(n − 2) log (‖u(x) − u(y)‖) − ‖u(x) − u(y)‖2

4σ2
, (2)



where ∆(x) is the neighborhood centered at pixel x. The patch-wise MRF model
enhances the presence of meaningful areas which could be labeled as “end-points”
and the related potential map is more regular and noiseless when compared to
the potential map obtained with the pixel-wise MRF model.

3 Irregularity detection and false alarm rate

Given the noise variance σ2, the patch-wise Gibbs model can be then used to
assess the regularity of an input image. Based on semi-local interactions (2),
a potential map Φ = (Φ(x))x∈Ω is computed as explained above. As expected,
in the presence of irregularities the potential is high, which means that the
proposed model cannot wholly capture all the spatial image features. To detect
irregularities, we then propose to automatically threshold the potential map.
Since the image is relatively homogeneous, only a few areas correspond to high
values. We want to test the hypothesis for each pixel x that the potential Φ(x)
is meaningful (hypothesis H0) or not (hypothesis H1). A very convenient way
to define this notion consists in assuming that the potential Φ(x) values are
independent and distributed according to the following mixture distribution:

f(Φ(x)) = δ(Φ(x) < ǫ)f0(Φ(x)) + (1 − δ(Φ(x) < ǫ))f1(Φ(x)), (3)

where δ(·) denotes the Kronecker, f0 denotes the pdf of the potential under
H0 and f1 is the pdf of the potential under H1. In the mixture model, f0 is
a Dirac function centered at “0” (ǫ = 0+ subject to ǫ > 0) and the tail f1

of the pdf is approximated by a Pareto distribution of the form f1(Φ(x)) =
kǫk

(Φ(x))k+1 , ∀ Φ(x) ≥ ǫ, with parameters k and ǫ > 0. A Maximum Likelihood esti-

mate for k can be easily derived, i.e. k̂ = N
(

∑

x∈Ω:Φ(x)≥ǫ log(Φ(x)) − log(ǫ)
)−1

where N = #{x ∈ Ω : Φ(x) ≥ ǫ}. The Pareto distribution is recommended to
describe the tails of pdfs and performs well as shown in Fig. 2. Accordingly, the
probability that Φ(x) is larger than a threshold τ ≥ ǫ is P{Φ(x) ≥ τ} = (τ/ǫ)−k.
Therefore, for a given false alarm probability PFA := P{Φ(x) ≥ τ} selected by
the user (and assumed to be constant in the whole image), one can compute the

corresponding threshold as τ = exp
(

log(ǫ) − log(PF A)
k

)

.

In practice, we compute first the ML estimate k̂ and, for a given false alarm
probability PFA, we derive the thresholds τ which are different for each image
in the sequence. We observed experimentally that the appropriate false alarm
probability PFA is the same for image sequences acquired in the same conditions.

4 Experimental results

First, we propose two typical experiments to illustrate the ability of our method
to detect OD regions from cumulated detections over time. High values corre-
spond to repeated detections in the same area. The image sequences correspond
to 3D+T time-lapse fluorescence wide-field microscopy. They are converted into
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Fig. 3. a) Image extracted from a second time-lapse microscopy image sequence where high fluores-
cence levels correspond to dark values; b)-d) cumulated detection maps using the patch-wise MRF
modeling with 3×3 patches and PF A = 0.15 b), 5×5 patches and PF A = 0.18 c), and 7×7 patches
and PF A = 0.22 d) (blue regions correspond to a small number of detections and red regions to a
large number of detections).
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Fig. 4. Processing of the image sequence shown in Fig. 1. a) MIP map; b) cumulated map corre-
sponding to the thresholded images of the sequence; c) cumulated detection map with patch-wise
MRF modeling (3×3 patches, PF A = 0.15) (blue regions correspond to a small number of detections
and red regions to a large number of detections).

2D+T sequences by averaging along the z axis. The images are coded in 2
bytes and the voxel size is 160 × 160 × 300nm3. The frame rate is equal to 1
frame/second. In all the experiments, the neighborhood size is (p + 2) × (p + 2)
if we consider p × p patches.

In the first experiment (Fig. 3), we compare the cumulated detection maps
obtained using the patch-wise MRF model (see (1)) with different patch sizes.
In this experiment, it turns out that 5× 5 and 7× 7 patches tend to oversmooth
and blur the cumulated detection map. Clearly, the “end-points” corresponding
to small areas with high values cannot be individually segmented. The expected
OD regions are satisfyingly extracted by using the patch-wise MRF model and
3 × 3 patches.

In the second experiment (Fig. 4), we compare the Maximum Intensity
Projection (MIP) map, the cumulated map of the thresholded images of the
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Fig. 5. a) Image extracted from a spinning disk confocal microscopy image sequence where high
fluorescence levels correspond to dark values; b) MIP map; c) cumulated detection map using the
patch-wise MRF modeling (blue regions correspond to a small number of detections and red regions
to a large number of detections).
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Fig. 6. a) Image extracted from a spinning disk confocal microscopy image sequence where high
fluorescence levels correspond to dark values; b) MIP map; c) cumulated detection map using the
patch-wise MRF modeling (blue regions correspond to a small number of detections and red regions
to a large number of detections).

sequence where each frame is thresholded independently, and the cumulated
detection map obtained using the patch-wise MRF approach. The MIP map
(in the direction of time axis) is a commonly-used tool to give an insight of
both the traffic support and “stocking areas”. At each pixel x ∈ Ω, we de-
fine MIP(x) = maxt∈{1,...,T} ut(x), where ut(x) is the intensity observed at
pixel x and time t in the image ut and T is the number of images in the se-
quence. In Fig. 4a), the Golgi apparatus (central bright region) and several
potential “end-points” (bottom left hand-side) are relatively well contrasted wrt
the background. Nevertheless, several frequently used paths are also contrasted
and detecting reliably the meaningful “stocking areas” is not an easy task. The
thresholded frames are disturbed by the high level of fluorescence observed in
the Golgi region. This implies that either the major part of the cell is detected or
only the Golgi is. Finally, the patch-wise MRF model is more relevant to detect
additional “end-points” in the expected areas (see Fig. 4c)). This map is also
more regular and the contours of “stocking areas” are better delineated.



Finally, we propose two other original experiments corresponding to 3D+T
spinning disk confocal microscopy. In these experiments, the cell shapes are
constrained to have a predefined pattern (crossbow in the first sequence, cercle
in the second one). This compels the cytoskeleton to have a specific spatial
topology, and consequently influence the locations of the suspected “end-points”.

In the first experiment (Fig. 5), the main detected regions are the Golgi
and three other areas located at the left, the right and the bottom of the cell
(PFA = 0.2). Additional OD regions are detected at the superior periphery of the
cell. Hence, the detected areas correspond to specific points of the constrained
cell shape. On the contrary, in the second experiment (Fig. 6), the detected areas
seem to be uniformly distributed at the cell periphery. These two experiments
tend to confirm that the cell shape influences the locations of the “end-points”.

5 Conclusion

In this paper, we have proposed a general probabilistic and patch-based frame-
work for irregularity detection in time-lapse fluorescence microscopy imaging.
New methods are needed to detect “stocking” areas and OD regions in traffic
image sequence. The cumulated detection maps enable to extract more reliably
the regions of interest. In practice, this method only requires the setting of the
false alarm probability. For future work, we also plan to valid this method for a
large number of image sequences and to investigate this methodology for motion
detection in time-lapse fluorescence microscopy.
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