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Abstract — The aim of this paper is to present an algorithnthe binary sensor network. In the first part of the article, we
for the tracking of two targets moving through a binary serwill recall all the issues that can be encountered with only a
sor network. We previously developed a new determinissimgle target, and what solution we previously proposed. We
algorithm for the purpose with only one target, and we nowill then present the new problem we try to face, and the al-
provide a improved version of that algorithm, consideringorithm developed for that purpose. We will continue with
an association problem. In addition, we present some ithe presentation of simulation results before we conclude o
teresting results on the mean square error of the positighe efficiency of our solution.

estimation.

2 Tracking with Binary Sensors

1 Introduction 2.1 Target Motion Model

Sensor networks are systems that can be made of manyn the first paper [1], the target was assumed to evolve
small and simple sensors deployed over an area in whh a Markov motion, given by:

attempt to sense events of interest within that particular
area. In general, the sensors have limited capacitiesrirster Xilxk-1 ~ N(Frxi-1, Q) (1)
of say range, precision, etc. The ultimate information lleve
for a sensor is a binary one, referring to its output. Howevder & = 1,2... where (i, 0?) is a gaussian distribution
it is important to make a distinction according to the natuMith meany and variances®. The starting position was
of this binary information. Actually, it can be related to @ssumed to be unknown. Considering two targets for the
0 — 1 information (non-detection or detection) or to relativéhain purpose of that article, we decided that both of them
{—,+} motion information. For example, if the sensors ar#ill have a trajectory that can be modeled as defined in eq.
getting sound levels, instead of using the real sound level
which may cause confusion between loud near objegis .
gind quiete)r/ close objects), the sensor may simply rép?nz Sensor Measurement Model and Analysis
whether the Doppler frequency is suddenly changing, whichAt each time period, each sensor gives ysra—} infor-
can be easily translated in whether the target is gettingation, meaning that the target is getting closer or moving
closer or moving away. Moreover, low-power sensors wittway. Given all the sensors reports at the time-petjade
limited computation and communication capabilities cagan easily define a space where the target is assumed to be
only perform binary detection. We could also cite videat this time-period. This is the fundamental uncertainty we
sensors, with the intuitive reasoning: the target is ggttifave at a time period, and the area of this domain is, of
closer if its size is increasing. The need to use that kind ofurse, directly related to the network parameters (sensor
sensor networks leads to the development of a model faxmber, network geometry, etc.).
target tracking in binary sensor networks. ) . .
2.3 Velocity Estimation

There are several limitations in the use of such binary in- We can estimate the direction of the target based on the
formation, but we demonstrated that a rather good estinsgmple information given by the sensors. Obviously, that
tion of both position and velocity of a target could be peestimator will only be precise if the number of sensors is
formed by the use of a well-selected spatio-temporal infasignificantly great. To perform that estimation, we can
mation. Even if the results where only obtained with a singlese several methods, such as the Projection Pursuit Regres-
target, we will demonstrate in that paper that by adding tvaion Method, or the Support Vector Machine Method. The
prior steps to our algorithm, two targets can be tracked I8¥M method chosen for our algorithm is the most common



statistical-used method for classification, and is preskint which is clearly a contradiction, idem X, € C(B).
the next paragraphs. 00O

2.3.1 Binary Sensor Network Obser_v-abll.|ty Properties S0, C(A) and C/(B) being two disjoint convex subsets,
Let us denote; a sensor whose position is represented Rye know that there exists an hyperplane (here a line) sepa-

the vectort,;. Slmllarly, the vecto; represents the pOSition rating them. Then, Iak: be a generic sensor, we can write
vector of the target at the time-periodLet us denotel;(t) t, = X\ v, +  vi-, so that:

the (time-varying) distance from sensgrto the target at
time¢. Then, we have that: (i, ve) = A|[veP > 0= A>0. (7)

di(t) = di(t) < 0,01 (x; —t;,vi) <0, (2 1hig means that the line spanned by the veetbiseparates
wherev, is the instantaneous target velocity. We thus haveé(A4) and C'(B). Without considering the translation and
the following lemma. considering again thév,, vi- } basis , we have :

Lemma 1 Lets; (resp.s;) a sensor whose target distance is
decreasing (resp. increasing) at the time-peripdhen we
have:

{ tr € A<=\ Hth2 > (X4, V) s (8)

tp € B \|vi||® < (x4, v¢)

t;, < , < (t;, . 3
(5, ve) (e, vi) (b, ve) @) Thus in the basigv;,v;"), the line passing by the point

<Xt, Vt> . . . . .
If we restrict to binary motion information, we considerttha( vl ,0] and whose direction is given by;" is
the outputs; (¢) of a sensor (attimé) is +1 or —1 according
. B).
to the distancel;(¢) is decreasing or increasing, so that Wseparatlng’J( ) andC(B)
have:
L 4) . :
(t) = —1if d;(t)>0. As seen previously, the problem we have to face is to op-
iimally separate the two classes of sensors (i.e.-thand
—). So, we can use the general framework of SVM, widely
used in the classification context. The set of labeled petter
(y,x1) } (yi € {~1,1} andx; sensor posi-

{ si(t) = +1 if di(t) <0, 2.3.2 The Support Vector Machine (SVM) approach
Sj

Let us denoteA the subset of sensor whose output i
+1 and B the subset of sensors whose output-is, i.e.
A = {s;| s;(t) =+1} and B = {s;| s;(t) = —1} and

C(A) and C(B) their convex hulls, then the following { (V12 %1)
tions) is sald to be linearly separable if there exists aarect

property holds: w and a scalab such that the following inequalities hold
true:

Proposition2 C(A)NC(B) = 0 and x; ¢ (w,x;) +b>1 ifry; =1, ©

C(AUC(B). (w,x;) +b< =1 if:y, =—1.

Proof: The proof is quite simple and is reproduced
here only for the sake of completeness. First assume th&f H(w, b) £ {x|(w,x) +b= 0} (w: normal vector) be
C(A)NC(B) # 0, this means that there exists an elemefftis optimal separation plane and define the margiarg)
of C(B), lying in C(A). Lets be this element (and its @S the distance of the closest pomtto H then it is eaS|Iy

to consider the foIIowmg problem.
t:ZBjtj,ﬂijand Zﬂj:l
j<B _jen min 7(w) £ [|wl|*
so that we have on the first hand: w,b
(t.ve) =Y B (t;,vi) < (xi, Vi) (seeeq. B Sty ((w,xi) +b) 21 Vi=1,--- 1 y;=£1.
JEB (10)
and, on the other one¢ € C(A)): DenotingA the vector of Lagrange multipliers, dualization

. of eq. 10 leads to consider again a quadratic problem, but
(6 ve) =D 0 (tive) > (Do min {{t;v())}  with more explicit constraints, i.e. :

i€A i€A
> (x¢, Vi) L7 T
(5) max W(A):_iA DA+A"1
Thus a contradiction which shows thaf A) " C(B) = 0. 11

. T _
For the second part, we have simply to assumexiigt € St:A>0, MY =0,

C(A) (x¢ = > a; t;, o; > 0), which yields:
€A

(x¢,ve) = Y a5 (b5, ve) > min(t,;, vy), (6)
;1 €A D; ;= (yixi, yjx;) - (12)

wherel is a vector made of andY” = (y;,--- ,y;) is the
[-dimensional vector of labels, ardd is the Gram matrix:



The dualized problem can be efficiently solved by classicAksume that the target motion is uniformly accelerated, i.e
quadratic programming methods. The less-perfect case con-
sider the case when data cannot be separated without errors X, = Xg 4+t X0 + 12 %o . (18)

and I(.ead toreplace the constraints of eq. 10 by the fOIIOW'We have now to deal with the following question: Is the tar-
ones: . : )
get trajectory fully observable? To that aim, we first recall

yi ((w,xi)+b)>1—&,&>0,i=1,---,1. (13) the following_resul'_[. Consid_eri_ng_a_den_se binar_y network,
two target trajectories are said indistinguishable iffitheo-
Consider now a multiperiod extension of the previous analide the same (binary) information which is equivalent & th
ysis. Let us restrict first to a two-period analysis, we shdtllowing conditions:
consider two separating hyperplanes ($&y, H-) defined

by: { %=y, (ye —x0,91) =0 Vt. (19)
(w,z!) + b = +¢; accordingto:y} = +1 , Explicating the second condition of eq 19, with the target
) ) ) (14) motion model 18, we obtain that the following condition
(w,xj) + by 2 £co according toy; = +1 . holds {t):

It is also assumed that these two separating planes are 0 — x0,¥0) + t(yo — X0, ¥o) + %tz (50 — %0, Y0) »
sociated with time period$’ andT + AT, AT known. It LH{yo — X0, 50) + £2(F0 — X0, Fo) + %ts (50 — %0, 50) = 0 .
is easily seen that the margin for the separating pldnés (20)
II%H' while for the planeH; it is HCTZH Thus, the problem Tpys (y: — X, %) is a zero polynomial, which means
we have to solve reads: that all its coefficients are zero. For th coefficients we
(||w2 |W||2> } obtain the condition(y’o — %o, ¥0) = 0. Similarly with the

min {max
w,c1,C2,b1,b2 1,2
s.t: oy} ((w,xll> + b1) >, y? ((w,x12> + bz) > ¢y VL.
(15)  Quite similarly, we obtain the equality, = y, and the
At a first glance, this problem appears as very complicatadst equality:
But, without restricting generality, we can assume that

(¥t — x4, %¢) = 0, we obtain(y, — X, Xo) = 0. Subtracting
these two equalities yielfflyo — %Xo|| = 0, orko = ¥o.

2 0 2
€1 553

: 2 2 2 —X0,y0 +tyo) =0 Vt. 21
co. This means thahax (”W2| , HW2H ) = HWZH . Mak- (yo =0, ¥0 + t§0) (21)
1,2 cq 3 cq

Assuming that the coupléy,, o} spans the sensor space
then we deduce thaty, = yo. So, it has been shown that it
was the target acceleration which render the problem fully

ing the changes- w — w' and% — b, then leads to
consider the classical problem:

min ||W||2 observable. This reasoning can be extended to a wide variety
w' b’ b} of target modeling.
. . ! 2 "2 ! . . . .
sty (<W )+ bl) =1,y <<W ) + b2) > 1Vh 4 Estimation of both velocity and position

(16) _ . o .
Letw* be the (unique) solution of eq. 16, then a straightfor- The main issue with the SVM estimation is that it only

ward calculation yields the distandéH;, ;) between the provides us the general direction of the target within a de-
two separating planes, i.e.: b2 terministic framework. Moreover, it is highly desirable to

develop a reliable algorithm for target tracking (veloctyd

b3 — b3 position). To solve this problem, we built a two-step algo-
Wl rithm. In the first step, we performed a correction through

the estimated unitary velocity vector at each time-petiod
Finally, we deduce that the estimated velocity veatois called),. Then, in a second time, we performed a correction
given by: through the orthogonal-estimated (unitary) velocity vect
1 also at each time-period, calléy. These two corrections
— d(Hi, H5) . (17) gave us a better estimation of both the velocity and the po-
AT sition of the target. We refer to fig. 1 for the presentation of
The previous analysis can be easily extended to an arbitrémg rationale of the two correction factors.
number of periods, as long as the target trajectory rema@all The factor

rectilinear. Another definite advantage is that it can bé _ _ . .
easily extended to multitarget tracking. To build that correction factor, we started with a very sim-

ple assumption. At each periegthe sensors provide binary
) motion information. Thanks to the first part of this article,
2.3.3 The effect of target acceleration we know that the target is in the (special) set lying between
To illustrate the effect of velocity change for estimatinghe two same-sign-sensors set. Then, starting from theé prev
the target position, let us consider a very simple examplaus estimated position of the target, we move the estimated

d(H1, H3) =

=aw" and: ¢ =

<>



Step 1 : Estimating the direction of the velocity Step 2 : Correction through the velocity direction

this means that the position of the target is estimated to be

Legend in the center of the special set defined by the sensors. The
P - st pmaamdsee value of the correction factoy, (see eq. 22) is then straight-
, 4 ° ° 4 o ° forwardly deduced from eq. 23. Similarly, the target posi-
% e tion is updated via:
2. inest RS = Ry 1 4 Ag Vs (24)
o o G o Here the correction factoy; has been calculated via the av-
o o erage value of the projection. This is an arbitrary choia an
© © we can consider the lower or the upper bound of the pro-
N - N o | | jection with no significant difference on the results of the
S e | S o | algorithm.
R Bt - e Obviously, if the estimation of the position is not very good
5 ° 5 ° the estimated velocity value (clearly based xan will be
\ \ quite different from the real value of the velocity. The next
Step 3 : Correction through the orthogonal velocity Step 4 : Update the estimated trajectory correction factor is based on the assumption that the target
direction velocity changes are upper and lower bounded.

2.4.2 Thed correction factor

We assume that the velocity of the target has bounded ac-
celeration. Then, if the velocity estimated at a certairetim
is too different from the velocity estimated at tihe 1, this
means that the estimated position of the target is far fram th
right one. Then, in that precise case, we consider an orthog-
onal correction, througkfﬁ.
For that deterministic algorithm we decided to perform a
very simple modeling of the velocity. Indeed, we take as a
right value for the velocity the simple mean of therevi-
ous values of the estimated velociiy{ ;). We calculate in
addition the varianceot, ;), and the factod, can be non-
zero iff the estimated value of the velocity at timés not
in the interval given bym, , — oy x; My i + o1 k). We then

Figure 1:Correction scenario. look for ¢; such that:

(X 4 0, v — (Re1 0 Vi) Vil1) = my . (25)
target through the estimated velocity vector directionlint  The previous equation needs some explanation. Given
stands in that special set. We now define this operator iR %, is the estimated target position at timewe would
mathematical way: _ _ . like to correct the value to be closer to the right position.
Let v, the estimated normalized velocity vector attime  The only way we can deal with it, is to correct the estimated
Moreover, let{t{ '}, (respectively{t{"},) the coordinates value of the velocityxs"™™ —%,_, is the previous calculated
of the sensorss() giving a{—} (respectively g +}) attime correction. If the difference between that estimation dred t
L. valuem ; is too important, we try to reduce that difference
We sortvsi) = (v;,t{)) (respectivelyvs{™ = ith atranslation of the positions at time periddndt — 1.

(¥, t§+)>). Then, following a very simple geometrical reaAs we want the positions to stay in the special set defined by
soning, we note thav,; X;) should be betweens'.) and the sensors, the direction of that translation is givervpy

() To ensure that property, we define the following cofor the position at time, andv;- , for the position at time
’ t—1.

L time: t-1

VS mmin.:
rection factor: . . . .
Performing straightforward calculation, leads to conside

A = sty — (Ve Kio1) the following correction factor:
(Ve,Ve—1) ’
with the following definition ofus{iz, ) (22) o — A
(4) st O =7 - (26)
Usg;;;y*) _ Usmam;F”Smm , (ViiVie1)

Obviously, as we could expect when presenting the
method, if the target motion is rectilinear and uniform , no
Ve, (Ree1 4+ A V1)) = vstHm) (23) correction factor can be calculated. Then, the final eséthat

moy e A .
. L position is given by:
which means that the projection of the corrected value 'is

. . . 5C ~ 1
equal to the mean value of the projection. Geometrically, X =X 0 vy (27)

To calculate this factor, we consider the projection edyali



2.4.3 The final correction step . ° T . ° °© T

Noticeably the most important step of the algorithm, i.¢ . .
thed correction factor, is based on the estimation of the v| / * Az *
locity change. Indeed, the best the estimation of the vigloc
is, the best we can estimate the position. Then, our aim \ Y,
to perform a better analysis of the target motion. Consi \ .L
ering that from time to time, the estimation of the positio \ R | —
increases in quality, a promising way should be to perform o Y o
feedback of the newest corrector to the oldest position e
mation. We denote, the updated estimated position of thg
target at time. Then, according to the previous paragrap °
the estimated position is updated via:

t
) . . fi . ° \ ° A
Vi<t: z; = Xjf-m + Z 9iViL . (28) / j
Z:]+1 [ ] o o / [ ] o o /

With this new estimator we will be able to perform a bet
ter analysis of the target motion (position and velocity). °

3 Track two targets ° ° ° o

We want to use our first work as a real support to tt
multi-target tracking. We then are back to associationpro— — — — — — — —|— — — — T—O - — =
lems that are solved with different algorithms. However, o l
is not exactly a classical association problem given that \
consider that each sensor can give us the number of targ
getting closer, but not which targets are getting closeenTh . . o o
the first step is to classify the scenario. The last diffeeen /ﬁ < — ] s = ]
with the one-target case is that the sensors are suppose( — — - - Y
liable, and no false information is processed. ° °

3.1 Classification of the situation

Considering the set of sensors as a closed convex spaggure 2: Situation 1 (on the top left hand), Situation 2 (on

there are only two possibilities for velocity-orthogonajhe top right hand) ans Situation 3 (On the bottom hand).
straight lines of the targets. Whether the have a common

point, whether they don't. These two particular situations

needs two different approaches. Proposition 3 The straight line defined by eq. 29 converges
o as the number of sensors grows to the right line, and then to
3.1.1 Crossing lines the right separation ofA} and A; .

If the two lines have a common point, this means we will
have theoretically four different kinds of information,tbu  Proof: Let beL the straight line defined by eq. 29. As
practically three. We have for each senger, +}, {—, —} the number of sensors grows, the distance between the right
or {+,—} = {—,+}. Given that at gives to each sensorline and 4y and A, decreases t0. See [2] for a more
counter a+1 and a— gives0, we have three different sets:complete proof.
Ao, A; and A,. Both targets are getting closer #,, and U

are moving away fromd,. The aim of that part is then to )

To find the4 different sets, we purpose to start by sep&asily iepa.rate/b UAT vs 40U AT and A, U AT vs
rating Ay and A,. But instead of using the classical SVMAo U A7) with the SVM method.
classification, the equation we want to solve is: 3.1.2 No-crossing lines

ming[y;((w,x;) +b)] = 0 (29 There exist two different situations for that purpose.
Whether the two targets are moving through the same
wherew andb are unknown. As a matter of fact, solvingdirection, whether they are facing. In the first case, you
this equation will lead to a line separatinly and A,, and just have to separate (still with the SVMj, from A;
will also separate!; into two different sets, which appear toand thenA; from A,. The second case is a little bit more
be on one hand+, —} (A7) and on the other hang-, +}  complicated.
(A7) We will consider the cases presented in fig. 2 for simplicity.



Our main problem is here to discriminat8 and A7. We Algorithm 1 Binary Sensor Network Bi-Target Tracking
will perform this by building a straight line separating thélgorithm

two. Ag is a convex hull, and the straight line crossing alkequire: V¢, S,

that set will separatel} and A7. As the sensor network is 1. X, ~ 1/(S,)

known, we also have the knowledge of the border-sensors V — A/(m, 02)

positions. Then, we take each of these, and we separage for + = 1 to T do

the zeros and the ones. Given the convex property of each S, — Decision Rule

set, we have the insurance that the sequence of sensors vgill (w4, v;,%;) < SV M (S;)

give us two chains of zeros, separated by two series of ones. vs(V)—{(¥4,%_1)

Then, taking one sensor in each zero-zone, and building the (Veve1)

straight line joining the two sensors, we have the wanted:  0(j.¢) < (V‘:fl%

Alijit) <

separation. i ) D Oun? | e wiaen)?
. p” «— W@ n2 o2
* * ~
Fist border ° o (f‘t ’ 02&) — Dij
e+ SecondBorder 1 getting closertarget O getting closer target 10: )A(t — /\A: ’[]t _L_ 9: ,OtL
11: V—X; — X1
12: end for

13: return X,V

Sequence of sensors of the first border

o—0—0—0—0—0—0—0—0 . .
3.2 Association Problem

At a certain timet, we have two trajectories estimated
until time ¢ — 1, and an information for the position of both
targets at time. We then need to know what target can be

Sequence of sensors of the second border

O @@ Ornn @00 associated with which trajectory.
\/ T We first build an association matrix, such that:
1 _™en=wge-1))?

V(i) € [1,2], pyj — 2 (30)

(&
oV 2T
Figure 3:Situation 3: Trouble with the first border. where w(; ) is the SVM-calculated parameter of the
separating line, for the targétat timet.

However, there can be a case that cannot be solved. We then associate the trajectories and the one-time estima-
deed, we can assume the case in fig. 3. We can see that with the greatest probability. However, there can be a
the first border (i.e. the external) has only one sequencemistake if the two targets are moving with the same global
zeros. We then have to perform the second border, then tehavior. We need then one more verification. We calculate
next one, until we get two sequences of zeros separatedftayall the possible associations the correction. And as
sequences of ones. Obviously, the bigger the number of bae want the correction to be as small as possible, this leads
der we need to calculate is, the biggest care we have to té¢hat expression:
by building the line. Indeed, the line drawn by joining two
inside sensors can leave the convex hull. Then the separatio - (hage)?
appeatrs to be less reliable. Y(i,5) €[1,2], pi; = Pij  ——p (31)

2w

wheren is the variance of)) ;. 4.

3.1.3 Decision Rule

As described, there are not two different situations, byt . . . .
three, with three different solutions. Then, to perform 0&%'3 The final bi-target tracking algorithm
tracking, we need to decide in which case we are. Given all the improvements, we can provide a complete
The first decision rule to be taken, is the difference betwealgorithm. See Alg.1 for the algorithm.
the greater encounter and the lower one. If the difference
is 2, we then are in the third described situation. If s  Assuming the initial position of the targets are unknown,
we are in situationl or 2. Unfortunately, we haven't beenwe will initialize the positions in the sets defined by the
able yet to find an efficient decision rule to classify the tworiginal measurements. We then perform the step-by-step
situation. The solution we then chose is based on the fastimation.
that the sensors are perfect. We separhtdrom A; and First of all, we need to perform the decision rule to recog-
Ay from A,, and if no misclassification appears, we are inize the situation. After that, we can apply the solutions
case 2. If there are errors, we will consider situation 1.  proposed to estimate the separating straight lines, which



solutions strongly depends on the situation. That leads us The next figure (fig. 5) is about the probability of associa-
the estimation of the two corrections factor, calculated fo
each possible association, to perform the best choice pos-

sible for each trajectory. Eventually, after the assooigti P k). g ) B (50, e
comes the final estimation of the positions and the veloci o5y
of the two targets. sl
04F
4 Simulation Results

03

We tested our algorithm for two targets, moving throug
a 120mx120m space, during 40 seconds. The number
sensors is 100, (10x10) and are regularly distributed @ike
grid). The targets follow the trajectory defined in the firs
section of the paper. The final assumption we made is tt o15F
we know the initial sets of each sensors. Then, the initie
ization of the algorithm is made by a simple shoot on ¢
uniform law. The starting velocity vectors are assumed

0251

0.2

Probability of association

01f

0.05-

be known too. % 5 1 5 © s © ® )
As we can see in fig. 4, our algorithm tracks the two targe Timet
Tracking of two targets
o Red = Green and Bue = Velow Figure 5:Probability of association.
o] o] o] o] o] o] o] o] o] o]
120p o o o o o o o o o o
\ e e e e tion, its maximum value, and the differences between two
o0 probabilities representing two different associationshe T
° e e e first conclusion we can make is that the maximum isn’t that
oo o o o o important. It's definitely not a problem, given that we have
g o Y o o o to choose a scenario. It could be bad if we admitted some
o \ e e o . false or no detection, in which case a too low probability wil
leads us to no association and no tracking. This is another
oo °e e 0w problem that has to be solved, but which is not considered
o o o o o yet. Then, what matters is only the biggest probability rel-
T Y e o 6 o 6 o o o atively to the others, and that (most of the time) ends with
some very good association decision through the tracking
% z‘o 4‘0 5;0 . s‘o 180 1%0 110 pe ri Od .

There is also no importance in the label of each probability.
Indeed, given an estimated trajectory from the initial time
Figure 4:Bi-Target Tracking with the algorithm. time (¢ — 1), we estimate two separation lines. Each of this

line israndomlylabeled, before being associated to the most
pretty well, even if the corrections are not that efficient: A probable trajectory.
ter a quite good estimation in the beginning, the algorithiiore specifically about the results, we can see that very
tracks the two targets pretty well until they cross. Then, élose probability are calculated, and sometimes the dgtisi
seems we have an association trouble, and the two targatsen is about very few more probable event. Moreover, we
seem to be inverted. After a little time, the tracking seems hotice a kind of lag of time betweem, andps;. It is be
work again. Despite the crossing, we didn’t lose the trackery specific to the choosen scenario, given the very similar
ing, and even the simplest behaviour learning seems toadue of the two velocity vectors.
efficient for our tracking issue. This will certainly be out- The last figure (fig. 6) is about the evolution of the mean
lined in the mean square error calculation through the tracdquare error of the position estimation of the two targets
ing time. The main difference between the kind of sensattsrough the tracking time. The first simple conclusion i¢ tha
we use and the proximity ones, is that we do not have muitlseems decreasing. Which is a good new for our algorithm.
trouble is the targets are too close. And if the targets haMewever, it's not decreasing as fast as it is for a simple tar-
the same velocity, the association problem is solved by thet. The reason must be the uncertainty of the association
limitation on the correctiom\. Then, the biggest problemthat can sometimes (when the target are crossing) associate
comes when the targets are clasgd the velocity vectors targetl and trajectoryi until the crossing time, and target
are similar. That problem is not handled by the current and trajectory2 after it. That event occurs, but quite rarely,
gorithm. which is an explanation on our MSE behavior.



" O o e oKy period simulation results part, we assume that each sensor gives us
: ‘ ‘ ‘ an information (assumed correct) at each time period. And
what if we hadn't the informations about the second target?

251 ] Finally, we have a quite efficient deterministic tracking al
gorithm, able to track two targets with quite low errors. The
of 1 next promising evolution will naturally be a (stochastic?)

multitarget tracking algorithm for binary sensors.
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