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Abstract – The aim of this paper is to present an algorithm
for the tracking of two targets moving through a binary sen-
sor network. We previously developed a new deterministic
algorithm for the purpose with only one target, and we now
provide a improved version of that algorithm, considering
an association problem. In addition, we present some in-
teresting results on the mean square error of the position
estimation.

1 Introduction
Sensor networks are systems that can be made of many

small and simple sensors deployed over an area in an
attempt to sense events of interest within that particular
area. In general, the sensors have limited capacities in terms
of say range, precision, etc. The ultimate information level
for a sensor is a binary one, referring to its output. However,
it is important to make a distinction according to the nature
of this binary information. Actually, it can be related to a
0− 1 information (non-detection or detection) or to relative
{−,+} motion information. For example, if the sensors are
getting sound levels, instead of using the real sound level
(which may cause confusion between loud near objects
and quieter close objects), the sensor may simply report
whether the Doppler frequency is suddenly changing, which
can be easily translated in whether the target is getting
closer or moving away. Moreover, low-power sensors with
limited computation and communication capabilities can
only perform binary detection. We could also cite video
sensors, with the intuitive reasoning: the target is getting
closer if its size is increasing. The need to use that kind of
sensor networks leads to the development of a model for
target tracking in binary sensor networks.

There are several limitations in the use of such binary in-
formation, but we demonstrated that a rather good estima-
tion of both position and velocity of a target could be per-
formed by the use of a well-selected spatio-temporal infor-
mation. Even if the results where only obtained with a single
target, we will demonstrate in that paper that by adding two
prior steps to our algorithm, two targets can be tracked by

the binary sensor network. In the first part of the article, we
will recall all the issues that can be encountered with only a
single target, and what solution we previously proposed. We
will then present the new problem we try to face, and the al-
gorithm developed for that purpose. We will continue with
the presentation of simulation results before we conclude on
the efficiency of our solution.

2 Tracking with Binary Sensors
2.1 Target Motion Model

In the first paper [1], the target was assumed to evolve
with a Markov motion, given by:

xk|xk−1 ∼ N (Fkxk−1,Qk) (1)

for k = 1, 2... whereN (µ, σ2) is a gaussian distribution
with meanµ and varianceσ2. The starting position was
assumed to be unknown. Considering two targets for the
main purpose of that article, we decided that both of them
will have a trajectory that can be modeled as defined in eq.
1

2.2 Sensor Measurement Model and Analysis
At each time period, each sensor gives us a{+,−} infor-

mation, meaning that the target is getting closer or moving
away. Given all the sensors reports at the time-periodt, we
can easily define a space where the target is assumed to be
at this time-period. This is the fundamental uncertainty we
have at a time periodt, and the area of this domain is, of
course, directly related to the network parameters (sensor
number, network geometry, etc.).

2.3 Velocity Estimation
We can estimate the direction of the target based on the

simple information given by the sensors. Obviously, that
estimator will only be precise if the number of sensors is
significantly great. To perform that estimation, we can
use several methods, such as the Projection Pursuit Regres-
sion Method, or the Support Vector Machine Method. The
SVM method chosen for our algorithm is the most common



statistical-used method for classification, and is presented in
the next paragraphs.

2.3.1 Binary Sensor Network Observability Properties

Let us denotesi a sensor whose position is represented by
the vectorti. Similarly, the vectorxt represents the position
vector of the target at the time-periodt. Let us denotedi(t)
the (time-varying) distance from sensorsi to the target at
time t. Then, we have that:

di(t) ց⇐⇒ ḋi(t) < 0 , or: 〈xt − ti,vt〉 < 0 , (2)

wherevt is the instantaneous target velocity. We thus have
the following lemma.

Lemma 1 Letsi (resp.sj) a sensor whose target distance is
decreasing (resp. increasing) at the time-periodt, then we
have:

〈tj ,vt〉 < 〈x
t
,vt〉 < 〈ti,vt〉 . (3)

If we restrict to binary motion information, we consider that
the outputsi(t) of a sensor (at timet) is +1 or−1 according
to the distancedi(t) is decreasing or increasing, so that we
have:

{

si(t) = +1 if ḋi(t) < 0 ,

sj(t) = −1 if ḋj(t) > 0 .
(4)

Let us denoteA the subset of sensor whose output is
+1 and B the subset of sensors whose output is−1, i.e.
A = {si| si(t) = +1} and B = {sj | sj(t) = −1} and
C(A) and C(B) their convex hulls, then the following
property holds:

Proposition 2 C(A)
⋂

C(B) = ∅ and xt /∈
C(A)

⋃

C(B).

Proof: The proof is quite simple and is reproduced
here only for the sake of completeness. First assume that
C(A)

⋂

C(B) 6= ∅, this means that there exists an element
of C(B), lying in C(A). Let s be this element (andt its
associated position), then we have (t ∈ C(B)):

t =
∑

j∈B

βj tj , βj ≥ 0 and
∑

j∈B

βj = 1

so that we have on the first hand:

〈t,vt〉 =
∑

j∈B

βj 〈tj ,vt〉 < 〈xt,vt〉 (see eq. 3),

and, on the other one (t ∈ C(A)):

〈t,vt〉 =
∑

i∈A

αi 〈ti,vt〉 ≥
(

∑

i∈A

αi

)

min
i
{〈ti,v(t)〉}

> 〈xt,vt〉 .
(5)

Thus a contradiction which shows thatC(A)
⋂

C(B) = ∅.
For the second part, we have simply to assume thatx(t) ∈
C(A) ( xt =

∑

i∈A

αi ti, αi ≥ 0), which yields:

〈xt,vt〉 =
∑

i∈A

αi 〈ti,vt〉 ≥ min
i∈A
〈ti,vt〉, (6)

which is clearly a contradiction, idem ifXt ∈ C(B).
���

So, C(A) andC(B) being two disjoint convex subsets,
we know that there exists an hyperplane (here a line) sepa-
rating them. Then, letsk be a generic sensor, we can write
tk = λ vt + µ v⊥

t , so that:

〈tk,vt〉 = λ ‖vt‖2 > 0⇐⇒ λ > 0 . (7)

This means that the line spanned by the vectorv⊥
t separates

C(A) andC(B). Without considering the translation and
considering again the

{

vt,v
⊥
t

}

basis , we have :

{

tk ∈ A⇐⇒ λ ‖vt‖2 > 〈xt,vt〉 ,

tk ∈ B ⇐⇒ λ ‖vt‖2 < 〈xt,vt〉 .
(8)

Thus in the basis(vt,v
⊥
t ), the line passing by the point

(

〈xt,vt〉
‖vt‖2

, 0

)

and whose direction is given byv⊥
t is

separatingC(A) andC(B).

2.3.2 The Support Vector Machine (SVM) approach

As seen previously, the problem we have to face is to op-
timally separate the two classes of sensors (i.e. the+ and
−). So, we can use the general framework of SVM, widely
used in the classification context. The set of labeled patterns
{ (y1,x1), · · · , (yl,xl) } (yi ∈ {−1, 1} andxi sensor posi-
tions) is said to be linearly separable if there exists a vector
w and a scalarb such that the following inequalities hold
true:

{

〈w,xi〉+ b ≥ 1 if : yi = 1 ,

〈w,xi〉+ b ≤ −1 if : yi = −1 .
(9)

LetH(w, b)
∆
= {x|〈w,x〉+ b = 0} (w: normal vector) be

this optimal separation plane and define the margin (marg)
as the distance of the closest pointxi toH, then it is easily
seen thatmarg = 1

‖w‖ . Thus, maximizing the margin lead
to consider the following problem:

∣

∣

∣

∣

∣

∣

min
w,b

τ(w)
δ
= ‖w‖2 ,

s.t. :yi (〈w,xi〉+ b) ≥ 1 ∀ i = 1, · · · , l yi = ±1 .
(10)

DenotingΛ the vector of Lagrange multipliers, dualization
of eq. 10 leads to consider again a quadratic problem, but
with more explicit constraints, i.e. :

∣

∣

∣

∣

∣

∣

max
Λ

W (Λ) = −1

2
ΛT D Λ + ΛT 1 ,

s.t. :Λ ≥ 0 , ΛT Y = 0 ,

(11)

where1 is a vector made of1 andY T = (y1, · · · , yl) is the
l-dimensional vector of labels, andD is the Gram matrix:

Di,j = 〈yixi, yjxj〉 . (12)



The dualized problem can be efficiently solved by classical
quadratic programming methods. The less-perfect case con-
sider the case when data cannot be separated without errors
and lead to replace the constraints of eq. 10 by the following
ones:

yi (〈w,xi〉+ b) ≥ 1− ξi , ξi ≥ 0 , i = 1, · · · , l . (13)

Consider now a multiperiod extension of the previous anal-
ysis. Let us restrict first to a two-period analysis, we shall
consider two separating hyperplanes (sayH1,H2) defined
by:
{

〈w, x1
l 〉+ b1 ≷ ±c1 according to:y1

l = ±1 ,

〈w, x2
l 〉+ b2 ≷ ±c2 according to:y2

l = ±1 .
(14)

It is also assumed that these two separating planes are as-
sociated with time periodsT andT + ∆T , ∆T known. It
is easily seen that the margin for the separating planeH1 is

c1

‖w‖ , while for the planeH2 it is c2

‖w‖ . Thus, the problem
we have to solve reads:
∣

∣

∣

∣

∣

∣

∣

min
w,c1,c2,b1,b2

[

max
1,2

(‖w‖2
c2
1

,
‖w‖2

c2
2

) ]

,

s.t.: y1
l

(

〈w, x1
l 〉+ b1

)

≥ c1 , y2
l

(

〈w, x2
l 〉+ b2

)

≥ c2 ∀l.
(15)

At a first glance, this problem appears as very complicated.
But, without restricting generality, we can assume thatc1 <

c2. This means thatmax
1,2

(‖w‖2
c2
1

,
‖w‖2

c2
2

)

=
‖w‖2

c2
1

. Mak-

ing the changes1
c1

w → w
′

and b1
c1
→ b

′

1 then leads to
consider the classical problem:
∣

∣

∣

∣

∣

∣

min
w

′
,b

′

1,b
′

2

‖w‖2

s.t. : y1
l

(

〈w′

, x1
l 〉+ b

′

1

)

≥ 1 , y2
l

(

〈w′

, x2
l 〉+ b

′

2

)

≥ 1 ∀l.
(16)

Let w∗ be the (unique) solution of eq. 16, then a straightfor-
ward calculation yields the distanced(H∗

1,H∗
2) between the

two separating planes, i.e.:

d(H∗
1,H∗

2) =
|b∗1 − b∗2|
‖w∗‖ .

Finally, we deduce that the estimated velocity vectorv̂ is
given by:

v̂ = α w∗ and: v̂ =
1

∆T
d(H∗

1,H∗
2) . (17)

The previous analysis can be easily extended to an arbitrary
number of periods, as long as the target trajectory remains
rectilinear. Another definite advantage is that it can be
easily extended to multitarget tracking.

2.3.3 The effect of target acceleration

To illustrate the effect of velocity change for estimating
the target position, let us consider a very simple example.

Assume that the target motion is uniformly accelerated, i.e.
:

xt = x0 + t ẋ0 + t2 ẍ0 . (18)

We have now to deal with the following question: Is the tar-
get trajectory fully observable? To that aim, we first recall
the following result. Considering a dense binary network,
two target trajectories are said indistinguishable iff they pro-
vide the same (binary) information which is equivalent to the
following conditions:

{

ẋt = ẏt , 〈yt − xt, ẏt〉 = 0 ∀t . (19)

Explicating the second condition of eq 19, with the target
motion model 18, we obtain that the following condition
holds (∀t):

〈y0 − x0, ẏ0〉+ t〈ẏ0 − ẋ0, ẏ0〉+ 1
2 t2〈ÿ0 − ẍ0, ẏ0〉 ,

+t〈y0 − x0, ÿ0〉+ t2〈ẏ0 − ẋ0, ÿ0〉+ 1
2 t3〈ÿ0 − ẍ0, ÿ0〉 = 0 .

(20)
Thus, 〈yt − xt, ẋt〉 is a zero polynomial, which means
that all its coefficients are zero. For thet3 coefficients we
obtain the condition〈ÿ0 − ẍ0, ÿ0〉 = 0. Similarly with the
〈yt−xt, ẋt〉 = 0, we obtain〈ÿ0− ẍ0, ẍ0〉 = 0. Subtracting
these two equalities yield‖ÿ0 − ẍ0‖ = 0 , or ẍ0 = ÿ0.

Quite similarly, we obtain the equalitẏx0 = ẏ0 and the
last equality:

〈y0 − x0, ẏ0 + tÿ0〉 = 0 ∀t . (21)

Assuming that the couple{ẏ0, ÿ0} spans the sensor space
then we deduce thatx0 = y0. So, it has been shown that it
was the target acceleration which render the problem fully
observable. This reasoning can be extended to a wide variety
of target modeling.

2.4 Estimation of both velocity and position
The main issue with the SVM estimation is that it only

provides us the general direction of the target within a de-
terministic framework. Moreover, it is highly desirable to
develop a reliable algorithm for target tracking (velocityand
position). To solve this problem, we built a two-step algo-
rithm. In the first step, we performed a correction through
the estimated unitary velocity vector at each time-periodt,
calledλt. Then, in a second time, we performed a correction
through the orthogonal-estimated (unitary) velocity vector,
also at each time-period, calledθt. These two corrections
gave us a better estimation of both the velocity and the po-
sition of the target. We refer to fig. 1 for the presentation of
the rationale of the two correction factors.

2.4.1 Theλ factor

To build that correction factor, we started with a very sim-
ple assumption. At each periodt, the sensors provide binary
motion information. Thanks to the first part of this article,
we know that the target is in the (special) set lying between
the two same-sign-sensors set. Then, starting from the previ-
ous estimated position of the target, we move the estimated
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Figure 1:Correction scenario.

target through the estimated velocity vector direction until it
stands in that special set. We now define this operator in a
mathematical way:
Let v̂t the estimated normalized velocity vector at timet.
Moreover, let{t(−)

i }i (respectively{t(+)
i }i) the coordinates

of the sensors (si) giving a{−} (respectively a{+}) at time
t.
We sort vs

(−)
i = 〈v̂t, t

(−)
i 〉 (respectively vs

(+)
i =

〈v̂t, t
(+)
i 〉). Then, following a very simple geometrical rea-

soning, we note that〈v̂t; X̂t〉 should be betweenvs
(−)
max and

vs
(+)
min. To ensure that property, we define the following cor-

rection factor:

λt =
vs(+,−)

moy −〈v̂t,x̂t−1〉

〈v̂t,v̂t−1〉
,

with the following definition ofvs
(+,−)
moy :

vs
(+,−)
moy =

vs(−)
max+vs

(+)
min

2 ,

(22)

To calculate this factor, we consider the projection equality:

〈v̂t, (x̂t−1 + λt v̂t−1)〉 = vs(+,−)
moy (23)

which means that the projection of the corrected value is
equal to the mean value of the projection. Geometrically,

this means that the position of the target is estimated to be
in the center of the special set defined by the sensors. The
value of the correction factorλt (see eq. 22) is then straight-
forwardly deduced from eq. 23. Similarly, the target posi-
tion is updated via:

x̂corr
t = x̂t−1 + λt v̂t−1 . (24)

Here the correction factorλt has been calculated via the av-
erage value of the projection. This is an arbitrary choice and
we can consider the lower or the upper bound of the pro-
jection with no significant difference on the results of the
algorithm.
Obviously, if the estimation of the position is not very good,
the estimated velocity value (clearly based onλt) will be
quite different from the real value of the velocity. The next
correction factor is based on the assumption that the target
velocity changes are upper and lower bounded.

2.4.2 Theθ correction factor

We assume that the velocity of the target has bounded ac-
celeration. Then, if the velocity estimated at a certain time t
is too different from the velocity estimated at timet−1, this
means that the estimated position of the target is far from the
right one. Then, in that precise case, we consider an orthog-
onal correction, througĥvt

⊥.
For that deterministic algorithm we decided to perform a
very simple modeling of the velocity. Indeed, we take as a
right value for the velocity the simple mean of thek previ-
ous values of the estimated velocity (mt,k). We calculate in
addition the variance (σt,k), and the factorθt can be non-
zero iff the estimated value of the velocity at timet is not
in the interval given by[mt,k − σt,k;mt,k + σt,k]. We then
look for θt such that:

〈x̂corr
t + θt v̂⊥

t − (x̂t−1 + θt v̂⊥
t−1); v̂t−1〉 = mt,k . (25)

The previous equation needs some explanation. Given
that x̂t is the estimated target position at timet, we would
like to correct the value to be closer to the right position.
The only way we can deal with it, is to correct the estimated
value of the velocity.̂xcorr

t − x̂t−1 is the previous calculated
correction. If the difference between that estimation and the
valuemt,k is too important, we try to reduce that difference
with a translation of the positions at time periodst andt−1.
As we want the positions to stay in the special set defined by
the sensors, the direction of that translation is given byv̂⊥

t

for the position at timet, andv̂⊥
t−1 for the position at time

t− 1.
Performing straightforward calculation, leads to consider
the following correction factor:

θt =
mt,k − λt

〈v̂⊥
t ; v̂t−1〉

. (26)

Obviously, as we could expect when presenting the
method, if the target motion is rectilinear and uniform , no
correction factor can be calculated. Then, the final estimated
position is given by:

x̂
fin
t = x̂corr

t + θt v̂⊥
t . (27)



2.4.3 The final correction step

Noticeably the most important step of the algorithm, i.e.
theθ correction factor, is based on the estimation of the ve-
locity change. Indeed, the best the estimation of the velocity
is, the best we can estimate the position. Then, our aim is
to perform a better analysis of the target motion. Consid-
ering that from time to time, the estimation of the position
increases in quality, a promising way should be to perform a
feedback of the newest corrector to the oldest position esti-
mation. We denotêzt the updated estimated position of the
target at timet. Then, according to the previous paragraph,
the estimated position is updated via:

∀j < t : ẑj = x̂
fin
j +

t
∑

i=j+1

θiv̂
⊥
i . (28)

With this new estimator we will be able to perform a bet-
ter analysis of the target motion (position and velocity).

3 Track two targets
We want to use our first work as a real support to the

multi-target tracking. We then are back to association prob-
lems that are solved with different algorithms. However, it
is not exactly a classical association problem given that we
consider that each sensor can give us the number of targets
getting closer, but not which targets are getting closer. Then,
the first step is to classify the scenario. The last difference
with the one-target case is that the sensors are supposed re-
liable, and no false information is processed.

3.1 Classification of the situation
Considering the set of sensors as a closed convex space,

there are only two possibilities for velocity-orthogonal
straight lines of the targets. Whether the have a common
point, whether they don’t. These two particular situations
needs two different approaches.

3.1.1 Crossing lines

If the two lines have a common point, this means we will
have theoretically four different kinds of information, but
practically three. We have for each sensor{+,+}, {−,−}
or {+,−} = {−,+}. Given that a+ gives to each sensor
counter a+1 and a− gives0, we have three different sets:
A0, A1 andA2. Both targets are getting closer toA2, and
are moving away fromA0. The aim of that part is then to
determine the all4 different sets given only3 of them.

To find the4 different sets, we purpose to start by sepa-
rating A0 andA2. But instead of using the classical SVM
classification, the equation we want to solve is:

mini[yi(〈w,xi〉+ b)] = 0 (29)

wherew andb are unknown. As a matter of fact, solving
this equation will lead to a line separatingA0 andA2, and
will also separateA1 into two different sets, which appear to
be on one hand{+,−} (A+

1 ) and on the other hand{−,+}
(A−

1 ).

2 getting closer targets 1 getting closer target 0 getting closer target target velocity

A 2

A
0

A
1

+

A1

-

2 getting closer targets 1 getting closer target 0 getting closer target target velocity

A1

A2

A0

2 getting closer targets 1 getting closer target 0 getting closer target target velocity 2 getting closer targets 1 getting closer target 0 getting closer target target velocity

Figure 2:Situation 1 (on the top left hand), Situation 2 (on
the top right hand) ans Situation 3 (On the bottom hand).

Proposition 3 The straight line defined by eq. 29 converges
as the number of sensors grows to the right line, and then to
the right separation ofA+

1 andA−
1 .

Proof: Let beL the straight line defined by eq. 29. As
the number of sensors grows, the distance between the right
line andA0 and A2 decreases to0. See [2] for a more
complete proof.
���

We then have the four different sets, that we can now
easily separate (A2

⋃

A+
1 vs A0

⋃

A−
1 and A2

⋃

A−
1 vs

A0

⋃

A+
1 ) with the SVM method.

3.1.2 No-crossing lines

There exist two different situations for that purpose.
Whether the two targets are moving through the same
direction, whether they are facing. In the first case, you
just have to separate (still with the SVM)A0 from A1

and thenA1 from A2. The second case is a little bit more
complicated.
We will consider the cases presented in fig. 2 for simplicity.



Our main problem is here to discriminateAl
1 andAr

1. We
will perform this by building a straight line separating the
two. A0 is a convex hull, and the straight line crossing all
that set will separateAl

1 andAr
1. As the sensor network is

known, we also have the knowledge of the border-sensors
positions. Then, we take each of these, and we separate
the zeros and the ones. Given the convex property of each
set, we have the insurance that the sequence of sensors will
give us two chains of zeros, separated by two series of ones.
Then, taking one sensor in each zero-zone, and building the
straight line joining the two sensors, we have the wanted
separation.

1 getting closer target 0 getting closer target

First bordure

Second Bordure 1 getting closer target 0 getting closer target

First border

Second Border

Sequence of sensors of the first border

Sequence of sensors of the second border

Different-side-same-set sensors

Figure 3:Situation 3: Trouble with the first border.

However, there can be a case that cannot be solved. In-
deed, we can assume the case in fig. 3. We can see that
the first border (i.e. the external) has only one sequence of
zeros. We then have to perform the second border, then the
next one, until we get two sequences of zeros separated by
sequences of ones. Obviously, the bigger the number of bor-
der we need to calculate is, the biggest care we have to take
by building the line. Indeed, the line drawn by joining two
inside sensors can leave the convex hull. Then the separation
appears to be less reliable.

3.1.3 Decision Rule

As described, there are not two different situations, but
three, with three different solutions. Then, to perform our
tracking, we need to decide in which case we are.
The first decision rule to be taken, is the difference between
the greater encounter and the lower one. If the difference
is 2, we then are in the third described situation. If it’s3,
we are in situation1 or 2. Unfortunately, we haven’t been
able yet to find an efficient decision rule to classify the two
situation. The solution we then chose is based on the fact
that the sensors are perfect. We separateA0 from A1 and
A1 from A2, and if no misclassification appears, we are in
case 2. If there are errors, we will consider situation 1.

Algorithm 1 Binary Sensor Network Bi-Target Tracking
Algorithm
Require: ∀t, St

1: X̂0 ∼ U(S0)
2: V̂ ← N (m,σ2)
3: for t = 1 to T do
4: St ← Decision Rule
5: (wi,t, v̂t, x̂t)← SV M(St)

6: λ(ij,t) ← vs(V̂ )−〈v̂t,x̂t−1〉
〈v̂t,v̂t−1〉

7: θ(ij,t) ← |V̂ |−λt

〈v̂⊥

t ;v̂t−1〉

8: p̃ij ← 1
ση2π

e
−

(λij,t)
2

η2 −
(w(i,t)−w(j,t−1))

2

σ2

9: (λ∗
t , θ

∗
t )← p̃ij

10: X̂t ← λ∗
t v̂t + θ∗t v̂⊥

t

11: V̂ ← X̂t − X̂t−1

12: end for
13: return X̂, V̂

3.2 Association Problem
At a certain timet, we have two trajectories estimated

until time t− 1, and an information for the position of both
targets at timet. We then need to know what target can be
associated with which trajectory.
We first build an association matrix, such that:

∀(i, j) ∈ [1, 2], pij =
1

σ
√

2π
e−

(w(i,t)−w(j,t−1))
2

σ2 (30)

where w(i,t) is the SVM-calculated parameter of the
separating line, for the targeti, at timet.
We then associate the trajectories and the one-time estima-
tion with the greatest probability. However, there can be a
mistake if the two targets are moving with the same global
behavior. We need then one more verification. We calculate
for all the possible associations theλt correction. And as
we want the correction to be as small as possible, this leads
to that expression:

∀(i, j) ∈ [1, 2], p̃ij =
pij

η
√

2π
e
−

(λij,t)
2

η2 (31)

whereη is the variance of(λ)(1..t).

3.3 The final bi-target tracking algorithm
Given all the improvements, we can provide a complete

algorithm. See Alg.1 for the algorithm.

Assuming the initial position of the targets are unknown,
we will initialize the positions in the sets defined by the
original measurements. We then perform the step-by-step
estimation.
First of all, we need to perform the decision rule to recog-
nize the situation. After that, we can apply the solutions
proposed to estimate the separating straight lines, which



solutions strongly depends on the situation. That leads us to
the estimation of the two corrections factor, calculated for
each possible association, to perform the best choice pos-
sible for each trajectory. Eventually, after the association,
comes the final estimation of the positions and the velocity
of the two targets.

4 Simulation Results
We tested our algorithm for two targets, moving through

a 120mx120m space, during 40 seconds. The number of
sensors is 100, (10x10) and are regularly distributed (likea
grid). The targets follow the trajectory defined in the first
section of the paper. The final assumption we made is that
we know the initial sets of each sensors. Then, the initial-
ization of the algorithm is made by a simple shoot on an
uniform law. The starting velocity vectors are assumed to
be known too.
As we can see in fig. 4, our algorithm tracks the two targets
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Figure 4:Bi-Target Tracking with the algorithm.

pretty well, even if the corrections are not that efficient. Af-
ter a quite good estimation in the beginning, the algorithm
tracks the two targets pretty well until they cross. Then, it
seems we have an association trouble, and the two targets
seem to be inverted. After a little time, the tracking seems to
work again. Despite the crossing, we didn’t lose the track-
ing, and even the simplest behaviour learning seems to be
efficient for our tracking issue. This will certainly be out-
lined in the mean square error calculation through the track-
ing time. The main difference between the kind of sensors
we use and the proximity ones, is that we do not have much
trouble is the targets are too close. And if the targets have
the same velocity, the association problem is solved by the
limitation on the correctionλ. Then, the biggest problem
comes when the targets are closeand the velocity vectors
are similar. That problem is not handled by the current al-
gorithm.

The next figure (fig. 5) is about the probability of associa-
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Figure 5:Probability of association.

tion, its maximum value, and the differences between two
probabilities representing two different associations. The
first conclusion we can make is that the maximum isn’t that
important. It’s definitely not a problem, given that we have
to choose a scenario. It could be bad if we admitted some
false or no detection, in which case a too low probability will
leads us to no association and no tracking. This is another
problem that has to be solved, but which is not considered
yet. Then, what matters is only the biggest probability rel-
atively to the others, and that (most of the time) ends with
some very good association decision through the tracking
period.
There is also no importance in the label of each probability.
Indeed, given an estimated trajectory from the initial timeto
time (t − 1), we estimate two separation lines. Each of this
line is randomlylabeled, before being associated to the most
probable trajectory.
More specifically about the results, we can see that very
close probability are calculated, and sometimes the decision
taken is about very few more probable event. Moreover, we
notice a kind of lag of time betweenp12 andp21. It is be
very specific to the choosen scenario, given the very similar
value of the two velocity vectors.
The last figure (fig. 6) is about the evolution of the mean

square error of the position estimation of the two targets
through the tracking time. The first simple conclusion is that
it seems decreasing. Which is a good new for our algorithm.
However, it’s not decreasing as fast as it is for a simple tar-
get. The reason must be the uncertainty of the association
that can sometimes (when the target are crossing) associate
target1 and trajectory1 until the crossing time, and target1
and trajectory2 after it. That event occurs, but quite rarely,
which is an explanation on our MSE behavior.
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5 Conclusion
We presented in that paper a very new algorithm to track

two targets moving through a space guarded by a sensor net-
work. Each of these sensors have the particularity to give at
each time only one bit of information, quite reliable. De-
spite the poverty of each separated information, we have
been able to present a method that dealt with the problem,
and provided us a rather good tracking. That algorithm can
be divided into four different parts, all of each have the same
great importance in the processing, given the dependencies.
The first part can be untitled “classification part”, becauseit
has to separate3 or 4 for instances, given sometimes only
2! We developed some very specific classification methods,
completely scenario-adapted, and we finally obtain quite
satisfying solutions on that purpose.
The second part is also the less original one, with no new
improvement, but is based on classical association method
to perform a link from time to time between the past esti-
mated trajectory and the actual estimation of both position
and velocity.
The third part is the final tracking part, when we are back
to a “classical” one target tracking algorithm given a binary
sensor network.
The final part always remain the same, which is perform a
backward correction of all the past estimation to increase
the velocity estimation (and then, indirectly, the position es-
timation).
Many improvements can be (and will be) made to increase
the quality of the estimation. First of all, instead of consid-
ering a very simple “mean-modeling” for the velocity, we
could be tempted to perform a more complicated markov
model, and estimate the transition probability. Moreover,
the association technic remains very simple. There could
certainly exist some best-adapted method for the kind of
problem we have to face. Especially when the two targets
are close, with very similar behaviors. As underline in the

simulation results part, we assume that each sensor gives us
an information (assumed correct) at each time period. And
what if we hadn’t the informations about the second target?
Finally, we have a quite efficient deterministic tracking al-
gorithm, able to track two targets with quite low errors. The
next promising evolution will naturally be a (stochastic?)
multitarget tracking algorithm for binary sensors.
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