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real clinical images are also reported.
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1. Introduction

Most image sequence processing and analysis tasks require an
accurate computation of image motion. However, classical
motion estimation methods fail in the case of image
sequences involving transparent layers. Situations of trans-
parency arise in videos for instance when an object is
reflected in a surface, or when an object lies behind a
translucent one. Transparency may also be involved in special
effects in movies such as the representation of phantoms
as transparent beings. Finally, let us mention progressive
transition effects such as dissolve, often used in video editing.
Some of these situations are illustrated on Figure 1.

In this paper, we are particularly concerned with
the transparency phenomenon occuring in X-ray image
sequences (even if the developed techniques can also be
successfully applied to video sequences [1]). Since the
radiation is successively attenuated by different organs, the
resulting image is ruled by a multiplicative transparency

law (i.e., turned into an additive one by a log operator). (
The physics of the X-Ray resulting in additively transparent
images are detailed in Appendix A.). For instance, the heart
can be seen over the spine, the ribs and the lungs on Figure 2.

When additive transparency is involved, the gray values
of the different objects superimpose and the brightness
constancy of points along their image trajectories, exploited
for motion estimation [2], is no longer valid. Moreover, two
different motion vectors may exist at the same spatial posi-
tion. Therefore, motion estimation methods that explicitly
tackle the transparency issue have to be developed.

In this paper, we deal both with transparent motion
estimation and spatial segmentation of the transparent layers
in the images. We mean that we aim at recovering both the
motion and the spatial support of each transparent layer.
Transparent layer segmentation is an original topic to be
distinguished from the transparent layer separation task: a
spatial segmentation aims at directly delimiting the spatial
support of the different transparent objects based on their
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Figure 1: Examples of transparency configuration in videos. (a) Different reflections are shown, (b) three examples of phantom effects,
and (c) one example of a dissolve effect for a gradual shot change.

motions, whereas a separation framework [3–5] leads to
recover the gray value images of the different transparent
objects. The latter can be handled so far in restricted
situations only (e.g., specific motion must be assumed for at
least one layer, the image globally includes only two layers),
while we consider any type of motions and any number of
layers. We aim at defining a general and robust method since
we will apply it to noisy and low-contrasted X-ray image
sequences.

We do not assume that the number of transparent layers
in the image is known or limited. In contrast, we will
determine it. We only assume a local two-layer configuration,
that is, the image can be divided into regions where at
most two transparent layers are simultaneously present. We
will call such a situation bidistributed transparency. This is
not a strong assumption since this is the most commonly
encountered configuration in real image sequences.

Finally, we derive from the proposed transparent motion
estimation method a general transparent motion compensa-
tion method compatible with any spatio-temporal filtering
technique. In particular, we propose a novel method for the
temporal filtering of X-ray image sequences that avoids the
appearance of severe artifacts (such as blurring), while taking
advantage of the large temporal redundancy involved by the
high acquisition frame rate.

The remainder of the paper is organized as follows.
Section 2 includes a state-of-the art on transparent motion
estimation and introduces the fundamental transparent
motion constraint. In Section 3, we present and discuss the
different assumptions involved in the motion estimation
problem statement. Section 4 details the MRF-based frame-
work that we propose, while Section 5 deals with the practical
development of our joint transparent motion estimation
and spatial layer segmentation method. In Section 6, we
present the proposed filtering method, involving a novel
transparent motion compensation procedure. We report
in Section 7 experimental results for transparent motion
estimation on realistic test images as well as on numerous real
clinical image sequences. Section 8 presents denoising results
on realistic test images and real clinical image sequences.
Finally, Section 9 contains concluding remarks and possible
extensions.

2. Related Work on Transparent
Motion Estimation

A first category of transparent motion estimation method
attempts to directly extend usual motion estimation strate-
gies to the transparency case [6, 7]. Approaches that are par-
ticularly robust to deviations from the brightness assumption
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are adopted, but the weak point is that transparency is not
explicitly taken into account. The method [8] focuses on the
problem of transparent motion estimation in angiograms to
improve stenosis quantification accuracy. The motion fields
are iteratively estimated by maximizing a phase correlation
metric after removing the (estimated) contribution of the
previously processed layer. However, it leads to interesting
results only when one layer dominates the other one (which
is not necessarily the case in interventional X-ray images).

Among the methods which explicitly tackle the trans-
parency issue in the motion estimation process, we can dis-
tinguish two main classes of approaches. The first one works
in the frequency domain [9–11], but it must be assumed that
the motions are constant over a large time interval (dozen
of frames). These methods are therefore unapplicable to
image sequences involving time-varying movements, such as
cardiac motions in X-ray image sequences.

The second class of methods formulates the problem in
the spatial image domain using the fundamental Transparent
Motion Constraint (TMC) introduced by Shizawa and Mase
[12], or its discrete version developed in [13]. The latter states
that, if one considers the image sequence I as the addition of
two layers I1 and I2 (I = I1 + I2), respectively, moving with
velocity fields w1 = (u1, v1) and w2 = (u2, v2), the following
holds:

r
(
x, y, w1, w2

) = I
(
x + u1 + u2, y + v1 + v2, t − 1

)

+ I
(
x, y, t + 1

)− I(x + u1, y + v1, t
)

− I(x + u2, y + v2, t
) = 0,

(1)

where (x, y) are the coordinates of point p in the image.
For sake of clarity, we do not make explicit that w1 and w2

may depend on the image position. Expression (1) implicitly
assumes that w1 and w2 are constant over time interval
[t − 1, t + 1]. Even if the hypothesis of constant velocity
can be problematic at a few specific time instants of the
heart cycle, (1) offers us with a reasonable and effective
Transparent Motion Constraint (TMC) since the temporal
velocity variations are usually smooth. This constraint can
be extended to n layers by considering n + 1 images while
extending the motion invariance assumption accordingly
[13].

To compute the velocity fields using the TMC given by
(1), a global function J is usually minimized:

J(w1, w2) =
∑

(x,y)∈I

r
(
x, y, w1

(
x, y

)
, w2

(
x, y

))2, (2)

where r(x, y, w1(x, y), w2(x, y)) is given by (1) and I denotes
the image grid.

Several methods have been proposed to minimize expres-
sion (2), making different assumptions on the motions.
The more flexible the hypothesis, the more accurate the
estimation, but also the more complex the algorithm. A com-
promise must be reached between measurement accuracy on
one hand and robustness to noise, computational load and
sensitivity to parameter tuning on the other hand.

Dense velocity fields are computed in [14] by adding
a regularization term to (2), and in [15] by resorting to

a Markovian formalism. It enables to estimate nontrans-
lational motions at the cost of higher sensitivity to noise
and of high algorithm complexity. In contrast, stronger
assumptions on the velocity fields are introduced in [16,
17] by considering that w1 and w2 are constant on blocks
of the image, which allows fast but less accurate motion
estimation. In [13], the velocity fields are decomposed on a
B-spline basis, so that this method can account for complex
motions, while remaining relatively tractable. However, the
structure of the basis has to be carefully adapted to particular
situations and the computational load becomes high if fine
measurement accuracy is needed.

3. Transparent Motion Estimation
Problem Statement

We consider the general problem of motion estimation in
bidistributed transparency. It refers to transparent config-
urations including any number of layers globally, but at
most two locally. This new concept, which suffices to handle
any transparent image sequence in practice, is discussed in
Section 3.1.

To handle this problem, we resort to a joint segmentation
and motion estimation framework. Because of transparency,
we need to introduce a specific segmentation mechanism
that allows distinct regions to superimpose, and to derive
an original transparent joint segmentation and motion
estimation framework.

Finally, to allow for a reasonably fast and robust method
(able to handle X-Ray images), we consider transparen-
cies involving parametric motion models as explained in
Section 3.2.

3.1. Bi-Distributed Transparency. We do not impose any
limitation on the number of transparent layers globally
involved in the image. Nevertheless, we assume that the
images contain at most two layers at every spatial position
p, which is acceptable since three layers rarely superimpose
in real transparent image sequences. We will refer to this
configuration as the bidistributed transparency.

Even in the full transparency case encountered in X-
ray exams, where acquired images result from cumulative
absorption by X-ray tissues, the image can be nearly
always divided into regions including at most two moving
transparent layers, as illustrated on Figure 2. The only region
involving three layers in this example is insignificant since the
three corresponding organs are homogeneous in this area.

Unlike existing methods, we aim at explicitly extracting
the segmentation of the image in its transparent layers, which
is an interesting and exploitable output per se and is also
required for the motion-estimation stage based on the two-
layer TMC.

3.2. Transparent Motion Constraint with Parametric Models.
We decide to represent the velocity field of each layer by
a 2D polynomial model. Such a parametric motion model
accounts for a large range of motions, while involving few
parameters for each layer. We believe that affine motion
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Figure 2: (a) One image of X-ray exam yielding a situation of bidistributed transparency. (b) The segmentation of the image in its different
regions: three two-layer regions (the orange region corresponds to the “heart and lungs”, the light blue one to “heart and diaphragm” and
the pink one to “heart and spine”), two single-layer regions (the lungs in green and spine in yellow), and a small three-layer region (“heart
and diaphragm and spine” in grey). (c) Its spatial segmentation into four transparent layers (i.e., their spatial supports, spine in orange,
diaphragm in blue, heart in red and lungs in white). By definition, the spatial supports of the transparent layers overlap. The colors have
been independently chosen in these two maps.

models offer a proper compromise since they can describe a
large category of motions (translation, rotation, divergence,
shear), while keeping the model simple enough to handle
the transparency issue in a fast and tractable way. Our
method could consider higher-order polynomial models as
well, such as quadratic ones, if needed. Let us point out that
in case of a more complex motion, the method is able to
over-segment the corresponding layer in regions having a
motion compatible with the considered type of parametric
model. Complex transparent motions can still be accurately
estimated at the cost of oversegmentation.

The velocity vector at point (x, y) for layer k is now
defined by wθk (x, y) = (uθk (x, y), vθk(x, y)):

uθk
(
x, y

) = a1,k + a2,kx + a3,k y,

vθk
(
x, y

) = a4,k + a5,kx + a6,k y,
(3)

with θk = [a1, . . . , a6]T the parameter vector. We then
introduce a new version of the TMC (1) that we call the
Parametric Transparent Motion Constraint (PTMC):

r
(
x, y, wθ1 , wθ2

) = I
(
x + uθ1 + uθ2 , y + vθ1 + vθ2 , t − 1

)

+ I
(
x, y, t + 1

)− I(x + uθ1 , y + vθ1 , t
)

− I(x + uθ2 , y + vθ2 , t
) = 0

(4)

with wθ1 and wθ2 given in (3).
The next section introduces the MRF-based framework

that concludes the problem statement.

4. MRF-Based Framework

4.1. Observations and Remarks. We have to segment the
image into regions including at most two layers to estimate
the motion models associated to the layers from the PTMC
(4). Conversely, the image segmentation will rely on the
estimation of the different transparent motions. Therefore,

we have designed a joint segmentation and estimation frame-
work based on a Markov Random Field (MRF) modeling.
A joint approach is more reliable than a sequential one (as
in [18]) since estimated motions can be improved using a
proper segmentation and vice versa.

Joint motion estimation and segmentation frameworks
have been developed for “classical” image sequences [19–
24], but have never been studied in the case of transparent
images. In particular, we have to introduce a novel
segmentation allowing regions to superimpose. Moreover,
the bidistributed assumption implies to control the number
of layers simultaneously present at a given spatial location.

The proposed method will result in an alternate
minimization scheme between segmentation and estimation
stages. To maintain a reasonable computational load, the
segmentation is carried out at the level of blocks. Typically,
the 1024 × 1024 images are divided in 32 × 32 blocks
(for a total number of blocks S = 1024). We will see in
Section 5.2 that this block structure will also be exploited in
the initialization step. According to the targeted application,
the block size could be fixed smaller in a second phase of
the algorithm. The pixel-level could even be progressively
reached, if needed.

The blocks are taken as the sites s of the MRF model
(Figure 3). We aim at labeling the blocks s according to
the pair of transparent layers they are belonging to. Let
e = {e(s), s = 1, . . . , S} denote the label field with e(s) =
(e1(s), e2(s)), where e1(s) and e2(s) designate the two layers
present at site s. e1(s) and e2(s) are given the same value when
the site s involves one layer only. The spatial supports of the
transparent layers can be straightforwardly inferred from the
labeling of the two-layer regions (i.e., from the elements of
each pair that forms the label).

Let us assume that the image comprises a total of K
transparent layers, where K is to be determined. To each
layer is attached an affine motion model of parameters θk (six
parameters). Let Θ = {θk, k = 1, . . . ,K}.
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4.2. Global Energy Functional. We need to estimate the
segmentation defined by the labels e(s), and the corre-
sponding transparent motions defined by the parameters
Θ. The estimates will minimize the following global energy
functional:

F(e,Θ) =
∑

s∈S

∑

(x,y)∈s

(
ρC
[
r
(
x, y, θe1(s), θe2(s)

)]− μη[s, e(s)]
)

+ μ
∑

〈s,t〉
((1− δ(e1(s), e1(t)))(1− δ(e1(s), e2(t)))

+(1− δ(e2(s), e1(t)))(1− δ(e2(s), e2(t)))).
(5)

The first term of (5) is the data-driven term based on the
PTMC defined in (4). Instead of a quadratic constraint, we
resort to a robust function ρC(·) in order to discard outliers,
that is, points where the PTMC is not valid [25]. We consider
the Tukey function as robust estimator. It is defined by:

ρC(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r6

6
− C2r4

2
+
C4r2

2
if |r| < C,

C6

6
otherwise.

(6)

It depends on a scale parameter C which defines the
threshold above which the corresponding point will be
considered as an outlier. To be able to handle any kind
of images, we will determine C on-line as explained in
Section 5.3.

The additional functional η(·, ·) is introduced in (5) to
detect single layer configurations. It is a binary function
which is 1 when s is likely to be a single layer site. It will be
discussed in Section 4.3.

The last term of the global energy functional F(e,Θ)
enforces the segmentation map to be reasonably smooth. We
have to consider the four possible label transitions between
two sites (involving two labels each). δ(·, ·) is equal to 1 if the
two considered elements are the same and equals 0 otherwise.

The μ parameter weights the relative influence of the two
terms. In other words, a penalty μ is added when introducing
between two sites a region border involving a change in one
layer only, and a penalty 2μ when both layers are different. A
transition between a mono-layer site s1 and a bilayer site s2
will also imply a penalty μ (as long as the layer present in s1
is also present in s2). μ is determined in a content-adaptive
way, as explained in Section 5.3.

4.3. Detection of a Single Layer Configuration. Over single
layer regions, (1) is satisfied provided one of the two
estimated velocities (for instance wθe1(s) ) is close to the real
motion of this single layer whatever the value of the other
velocity (wθe2(s) ). The minimization of (5) without the η(·, ·)
term would therefore not allow to detect single layer regions
because a “imaginary” second layer would be introduced
over these sites. Thus, we propose an original criterion to
detect these areas.

We define the residual value:

ν
(
θ̂e1(s), θe2(s), s

)
=

∑

(x,y)∈s
r
(
x, y, θ̂e1(s), θe2(s)

)2
. (7)

If it varies only slightly for different values of θe2(s) (while

keeping θe1(s) constant and equal to its estimate θ̂e1(s)), it
is likely that the block s contains one single layer only,
corresponding to e1(s). η(·, ·) would be set to 1 in this case
to favour the label (e1(s), e1(s)) over this site (and to 0 in the
other cases).

Formally, to detect a single layer corresponding to θe1(s),

we compute the mean value ν(θ̂e1(s), s) of the residual
ν(θe1(s), ·, s) by applying n motions (defined by θj , j =
1, . . . ,n,) to the second layer. We want to decide if ν(θ̂e1(s), s)
is significantly different from the minimal residual on

this block, ν(θ̂e∗1 (s), θ̂e∗2 (s), s), where (e∗1 (s), e∗2 (s)) are the
current labels at site s. This minimal residual is in practice
coming from the iterative minimization of (5) presented in
Section 5.1.

To meet this decision independently of the image texture,
we first compute a representative value for the residual of the
image, given by

νmed = med
s∈S

ν
(
θ̂e∗1 (s), θ̂e∗2 (s), s

)
, (8)

and its median deviation

Δνmed = med
s∈S

∣
∣∣ν
(
θ̂e∗1 (s), θ̂e∗2 (s), s

)
− νmed

∣
∣∣. (9)

(This assumes that the motion models have been well
estimated and the current labeling is correct on at least half
the sites). Then, we set

η(s, e1(s), e2(s)) = 1 if
∣
∣
∣ν
(
θe∗1 (s), s

)
− ν
(
θe∗1 (s), θe∗2 (s), s

)∣∣
∣

< αΔνmed,

e1(s) = e2(s),
(10)

η(s, e1(s), e2(s)) = 0 otherwise, (11)

where η(·, ·) is the functional introduced in (5). This way,
we favour the single layer label (e1(s), e1(s)) at site s when the
condition (10) is satisfied. The same process is repeated to
test for θe2(s) as the motion parameters of a (possible) single
layer. In practice, we fix α = 2.

5. Joint Parametric Motion Estimation and
Segmentation of Transparent Layers

This section describes the minimization of the energy func-
tional (5) along with its initialization. We also explain how
the parameters are set on-line, and how the number of layers
globally present is estimated. The overall joint transparent
motion estimation and layer segmentation algorithm is
summarized in Algorithm 1.
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(a) (b)

Figure 3: MRF framework. (a) A processed image divided in blocks (36 blocks for the sake of clarity of the figure). (b) The graph associated
with the introduced Markov model. The sites are plotted in blue and their neighbouring relations are drawn in orange.

(1) Initialization
(i) Transparent two-layer block-matching.
(ii) 3D Hough-transform applied to the computed pairs of displacements (simplified affine models). Each vote is

assigned a confidence value related to the texture of the block and the reliability of the computed displacements.
(iii) First determination of the global number of transparent layers and initialization of the affine motion models by

extraction of the relevant peaks of the accumulation matrix.
(iv) Layer segmentation initialization (using the maximum likelihood criterion).

Iteratively,
(2) Robust affine motion model estimation when the labels are fixed
Energy minimization using the IRLS technique. Multi-resolution incremental Gauss-Newton scheme.
(3) Label field determination (segmentation) once the affine motion parameter are fixed
Energy minimization using the ICM technique (Iterative Conditional Modes). Criterion (10) is evaluated to detect
single layer configurations in each block S.
(4) Update of the number of layers (merge process).
Finally,
(5) Introduction of a new layer if a given number of blocks verify relation (20). The overall algorithm is reiterated in
this case.

Algorithm 1: Joint transparent motion estimation and layer segmentation algorithm.

5.1. Minimization of the Energy Functional F. The energy
functional F defined in (5) is minimized iteratively. When the
motion parameters are fixed, we use the Iterative Conditional
Mode (ICM) technique to update the labels of the blocks:
the sites are visited randomly, and for each site the label that
minimizes the energy functional (5) is selected.

Once the labels are fixed, we have to minimize the first
term of (5), which involves a robust estimation. It can be
solved using an Iteratively Reweighted Least Square (IRLS)
technique which leads to minimize the equivalent functional
[26]:

F1(Θ) =
∑

s∈S

∑

(x,y)∈s
α
(
x, y

)
r
(
x, y, θe1(s), θe2(s)

)2, (12)

where α(x, y) denotes the weights. Their expression at the
iteration j of the minimization is given by:

αj
(
x, y

) =
ρ′C
(
r
(
x, y, θ̂

j−1
e1(s), θ̂

j−1
e2(s)

))

2r
(
x, y, θ̂

j−1
e1(s), θ̂

j−1
e2(s)

) (13)

with θ̂
j−1· the estimate of θ· computed at iteration j − 1, and

ρ′C the derivative of ρC .
Even if each PTMC involves two models only, their

addition over the entire image allows us to simultaneously
estimate the K motion models globally present in the image
by minimizing the functional F1(Θ) of (12) (which is defined
in a space of dimension 6K). If the velocity magnitudes were
small, we could consider a linearized version of expression
(12) (i.e., by relying on a linearized version of the expression
r). Since large motions can occur in practice, we introduce
a multiresolution incremental scheme exploiting Gaussian
pyramids of the three consecutive images. At its coarsest
level L, motions are small enough to resort to a linearized
version of functional F1(Θ) (12). The minimization is then
achieved using the conjugate gradient algorithm. Hence, first
estimates of the motions parameters are provided, they are

denoted θ̂Lk , k = 1, . . . ,K .

At the level L − 1, we initialize θL−1
i with θ̃L−1

i , where
ãL−1
i,k = 2âLi,k (i = 1, 4) and ãL−1

i,l = âLi,l (l = 2, 3, 5, 6). We
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then write θL−1
k = θ̃L−1

k +ΔθL−1
k , and we minimize F1(Θ) with

respect to the ΔθL−1
k , k = 1, . . . K , once r is linearized around

the θ̃L−1
k , using the IRLS technique. This Gauss-Newton

method, iterated through the successive resolution levels
until the finest one, allows us to simultaneously estimate the
affine motion models of the K transparent layers.

5.2. Initialization of the Overall Scheme. Such an alternate
iterative minimization scheme converges if properly initial-
ized. To initialize the motion estimation stage, we resort
to a transparent block-matching technique that tests every
possible pair of displacements in a given range [17]. More
specifically, for each block s, we compute

ζ(w1, w2, s) =
∑

(x,y)∈s
r
(
x, y, w1, w2

)2 (14)

for a set of possible displacements w1 × w2, where r is given
by (1). The pair of displacements (ŵ1, ŵ2) is the one which
minimizes (14). This scheme is applied on a multiresolution
representation of the images to reduce the computation time
(it would be higher than in the case of nontransparent
motions since the explored space is of dimension 4).

To extract the underlying layer motion models from the
set of computed pairs of displacements, we apply the Hough
transform on a three-dimension parameter space (i.e., a
simplified affine motion model):

u = a1 + a2x,

v = a4 + a2y.
(15)

Indeed, restricting the Hough space to a 3D space obviously
limits the computational complexity and improves the
transform efficiency, while being sufficient to determine the
number of layers and to initialize their motion models. Each
displacement w = (u, v) votes for the parameters:

a1 = a2x − u,

a4 = a2y − v,
(16)

defining a straight line. The Hough space has to be dis-
cretized in its three directions. Practically, we have chosen
a one pixel step for the translational dimensions a1 and a4,
and for the divergence term a2 a step corresponding to a one
pixel displacement in the center of the image. An example of
computed Hough accumulation matrix is given on Figure 4.

If the layers include large homogeneous areas (which
is the case in X-ray images), the initial block-matching is
likely to produce a relatively large number of erroneous
displacement estimates. To improve further the initialization
stage, we adopt a continuous increment mechanism of the
accumulation matrix based on a confidence value depending
on the block texture.

To compute the confidence value associated to a block
s and a displacement w1 (the other displacement being
fixed to ŵ2), we analyse the behavior of ζ(·, ŵ2, s). If it
remains close to its minimal value ζ(ŵ1, ŵ2, s), then the
layer associated to w1 is homogeneous and ŵ1 should be
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5

Figure 4: Accumulation matrix in the space (a1, a4, a2), built
from the displacements computed by a transparent block-matching
technique. These displacements are presented on the left of Figure 5.
The ground truth of the two motion models present in the image
sequences are plotted in green and blue.

assigned a low confidence value. Conversely, if ζ(·, ŵ2, s) has
a clear minimum in ŵ1, the corresponding layer is likely to
be textured, and ŵ1 can be considered as reliable.

More precisely, we compute in each block s:

c1(s) =
∣∣
∣
∣
∣∣

1
n

∑

Δw

ζ(ŵ1 + Δw, ŵ2, s)− ζ(ŵ1, ŵ2, s)

∣∣
∣
∣
∣∣

,

c2(s) =
∣
∣
∣
∣∣
∣

1
n

∑

Δw

ζ(ŵ1, ŵ2 + Δw, s)− ζ(ŵ1, ŵ2, s)

∣
∣
∣
∣∣
∣

,

(17)

where n is the number of tested displacements Δw. To
normalize these coefficients, we compute their first quartile c̃
over the image, and then assign to each block s and computed
displacement ŵi (i = 1, 2) the value ci(s)/c̃ (or 1 if ci(s)/c̃ >
1). Then, the 25% more reliable computed displacements are
assigned the value 1, whereas those that are less informative,
or which are not correctly computed, are given a small
confidence value.

The Hough transform allows us to cluster the reliable
displacement vectors. We successively look for the dominant
peaks in the accumulation matrix, and we decide that the
corresponding motion models are relevant if they “originate”
from at least five computed displacements that have not
been considered so far. Conversely, a displacement computed
by the transparent block-match technique is considered as
“explained” by a given motion model if it is close enough
to the mean velocity induced by this motion model over the
considered block (in practice, distant by less than two pixels).

This method yields a first evaluation of the number of
layers K and an initialization of the affine motion models.
Then, the label field is initialized by minimizing the first
term of (5) only (i.e., we consider a maximum likelihood
criterion). Figure 5 illustrates the initialization stage.

5.3. Content Adaptive Parameter Setting. Two parameters
have to be set for the functional F (5) to be defined: the scale
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(a) (b) (c)

Figure 5: Example if the initialization stage for a symbolic example. (a) The displacements computed by the transparent block-matching.
(b) The velocity fields corresponding to the affine models extracted by the Hough transform. Three layers are detected; they are plotted in
red, green and blue. The erroneous displacements are plotted in black. (c) The true displacements.

parameter C of the robust functional, and the parameter μ
weighting the relative influence of the data-driven and the
smoothing term. C is determined as follows:

r = med
p∈I

r
(

p, θ̂e1(s), θ̂e2(s)

)
,

Δr = 1.48×med
p∈I

∣
∣
∣r
(

p, θ̂e1(s), θ̂e2(s)

)
− r
∣
∣
∣,

C = 2.795× Δr

(18)

when p is a pixel position, I refers to the image grid and

where θ̂· is the estimate of θ· from the previous iteration of
the minimization.

The use of the medians allows to evaluate representative
values r andΔr of the “mean” and “deviation” residual values
without being disturbed by the outliers. The factor 1.48
enables to unbiase the estimator of Δr, and the factor 2.795
has been proposed by Tukey to correctly estimate C [27].

The μ parameter is determined in a content-adaptive
way:

μ = λmed
s∈S

∑

(x,y)∈s
ρC
(
r
(
x, y, θ̂e1(s), θ̂e2(s)

))
. (19)

According to the targeted application, λ can be set to favour
the data-driven velocity estimates (small λ), or to favour
smooth segmentation (higher λ). In practice, the value λ =
0.5 has proven to be a good tradeoff between regularization
and oversegmentation.

5.4. Update of the Number of Transparent Layers. To update
the number K of transparent layers, we have designed two
criteria. On one hand, two layers, the motion models of
which are too close (typically, difference of one pixel on
average over the corresponding velocity fields), are merged.
Furthermore, a layer attributed to less than five blocks is
discarded, and the corresponding blocks relabeled. On the
other hand, we propose means to add a new layer if required,
based on the maps of weights generated by the robust affine
motion estimation stage.

The blocks where the current labels and/or the associated
estimated motion models are not coherent with every pixel
they contain should include low weight values delivered by
the robust estimation stage for the outlier pixels. It then
becomes necessary to add a new layer if a sufficient number
of blocks containing a large number of pixels with low
weights are detected. More formally, we use as indicator
the number of weights smaller than a given threshold.
The corresponding points will be referred to as outliers. To
learn which number of outliers per block is significant, we
compute the median value of outliers N0 over the blocks,
along with its median deviation ΔNo. A block s is considered
as mislabeled if its number No(s) of outliers verifies:

No(s) > No + γ · ΔNo (20)

with No = med
s∈S

No(s), (21)

ΔNo = med
s∈S

|No(s)−No|. (22)

In practice, we set γ = 2.5. If more than five blocks are
considered as mis-labeled, we add a new layer. We estimate
its motion model by estimating an affine model from the
displacement vectors supplied by the initial block-matching
step in these blocks (using a least-square estimation), and
we run the joint segmentation and estimation scheme on the
whole image again.

6. Motion-Compensated Denoising Filter for
Transparent Image Sequences

In this section, we exploit the estimated transparent motions
for a denoising application. To do so, we propose a way to
compensate for the transparent motions, without having to
separate the transparent layers.

6.1. Transparent Motion Compensation

6.1.1. Principle. A first way of tackling the problem of trans-
parent motion compensation is to separate the transparent
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layers and compensate the individual motion of each layer,
layer per layer. However, the transparent layer separation
problem has been solved in very restricted conditions only
[5, 8]. As a result, this cannot be applied in general situations
as those encountered in medical image sequences.

Instead, we propose to globally compensate the trans-
parent motions in the image sequence without prior layer
separation. To do so, we propose to rearrange the PTMC (4)
to form a prediction of the image Ĩ at time t + 1, based on
the images at time instants t− 1 and t and exploiting the two

estimated affine motion models θ̂1 and θ̂2:

Ĩ
(

p, t + 1
) = I

(
p + wθ̂1

(
p
)
, t
)

+ I
(

p + wθ̂2

(
p
)
, t
)

− I
(

p + wθ̂1

(
p
)

+ wθ̂2

(
p
)
, t − 1

)
.

(23)

Equation (23) allows us to globally compensate for the
transparent image motions. It enables to handle X-ray images
that satisfy the bidistributed transparency hypothesis, that
is, involving locally two layers, without limiting the total
number of layers globally present in the image.

Any denoising temporal filter can be made transparent-
motion-compensated by considering, instead of past images,
transparent-motion-compensated images Ĩ given by (23). As
a consequence, details can be preserved in the images, and no
blurring introduced if the transparent motions are correctly
estimated.

However, relation (23) implies an increase of the noise
level of the predicted image since three previous images are
added. The variance of the noise corrupting Ĩ is the sum of
the noise variances of the three considered images. This has
adverse effects as demonstrated in the next subsection, if a
simple temporal filter is considered.

6.1.2. Limitation. Transparent motion compensation can be
added to any spatiotemporal filter. We will illustrate its
limitation in the case of a pure temporal filter. More precisely,
we consider the following temporal recursive filter [28]:

Î
(

p, t + 1
) = (1− c(p, t + 1

))
I
(

p, t + 1
)

+ c
(

p, t + 1
)
Ĩ
(

p, t + 1
)
,

(24)

where Î(p, t+1) is the output of the filter, that is, the denoised
image, Ĩ(p, t + 1) is the predicted image and c(p, t + 1) the
filter weight. This simple temporal filter is frequently used
since its implementation is straightforward and its behavior
well-known. Spatial filtering tends to introduce correlated
effects that are quite disturbing for the observer (especially
when medical image sequences are played at high frame
rates). This filter is usually applied in an adaptative way to
account for incorrect prediction, which can be evaluated by
the expression |I(p, t + 1) − Ĩ(p, t + 1)|. More specifically,
the gain is defined as a decreasing function of the prediction
error.

To illustrate the intrinsic limitation of such a transparent-
motion compensated filter, we study its behavior under ideal
conditions: the transparent motions are known as well as the

level of noise in the different images. Furthermore, we ignore
the low-pass effect of interpolations. The noise variances
σ2
Î

(t + 1), σ2
Ĩ

(t + 1), and σ2 (constant in time) of the images

Î(t + 1), Ĩ(t + 1), and I(t), respectively, are related as follows
(from (24)):

σ2
Ĩ

(t + 1) = (1− c(t + 1))2σ2 + c(t + 1)2σ2
Ĩ

(t + 1) (25)

under the assumption that the different noises are inde-
pendent. On the other hand, (23) implies (for a recursive
implementation of this filter):

σ2
Ĩ

(t + 1) = 2σ2
Ĩ

(t) + σ2
Ĩ

(t − 1). (26)

For an optimal noise filtering, one should choose c(t + 1) so
that σ̂2(t + 1) is minimized:

c(t + 1) = 2σ2
Î

(t) + σ2
Î

(t − 1)

2σ2
Î

(t) + σ2
Î

(t − 1) + σ2
. (27)

Equations (25) and (27) define a sequence (σ2
Î

(t))
t∈N . We

show in Appendix C that it asymptotically reaches a limit:

lim
t→∞σÎ(t) =

√
2
3
σ 	 0.816 σ. (28)

Even if we assume that the motions were known, transparent
motion-compensated recursive temporal filter cannot allow for
a significant denoising rate. Similarly, even if transparent
motion-compensated spatiotemporal filters do not exhibit
the exact same behavior, they denoise less efficiently that
their noncompensated counterparts.

6.2. Hybrid Filter

6.2.1. Problem Statement. Transparent motion compensa-
tion allows for a better contrast preservation since it avoids
blurring. However, it affects the noise reduction efficiency
by increasing the noise of the predicted image. We therefore
propose to exploit the transparent motion compensation
when appropriate only, to offer a better tradeoff between
denoising power and information preservation. We distin-
guish four local configurations:

(C0) Both layers are textured around pixel p. The global
transparent motion compensation is needed to pre-
serve details. The filter output will rely on Ĩ(p, t + 1)
and I(p, t + 1) only (instead of I(p, t) and I(p, t + 1)
for the case without motion compensation).

(C1) The first layer only is textured around pixel p. We will
just perform the motion compensation of this layer
but still applied to the compound intensity. The filter
will then exploit I(p, t + 1), Î(p + wθ̂1

(p), t), and

Ĩ(p, t + 1) (which still carries pertinent information
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here, but will be assigned a small weight because of
its noise level):

Î
(

p, t + 1
) = α

(
p, t + 1

)
I
(

p, t + 1
)

+ β
(

p, t + 1
)
Î
(

p + wθ̂1

(
p
)
, t
)

+
(
1− α(p, t + 1

)− β(p, t + 1
))
Ĩ
(

p, t + 1
)
.

(29)

Like in Section 6.1.2, explicit expressions can be
computed for the optimal weights (see Table 1 for
their expression in the case of a temporal hybrid
filter).

(C2) The second layer only is textured around pixel p. We
use a combination of I(p, t + 1), Î(p + wθ̂2

(p), t), and

Ĩ(p, t + 1).

(C3) Both layers are homogeneous around pixel p. The
four intensities can be used: I(p, t + 1), Î(p +
wθ̂1

(p), t), Î(p + wθ̂2
(p), t), and Ĩ(p, t + 1).

A fifth configuration is added w.r.t. the motion estimation
output.

(C4) The motion estimates are erroneous. In this case, we
duplicate I(p, t + 1) only. This fifth configuration
makes the hybrid filter adaptive, in the sense that
it will keep displaying coherent images even if
erroneous motion estimates are supplied.

6.2.2. Configuration Selection and Designed Hybrid Filtering.
This subsection deals with the detection of the local con-
figuration among the five listed above. Let us assume that
I1 only is textured around pixel p. Then, we can write (for
convenience, we will write w1 and w2 instead of wθ̂1

(p) and
wθ̂2

(p)):

I
(

p, t + 1
) = I1

(
p, t + 1

)
+ I2

(
p, t + 1

)

= I1
(

p + w1, t
)

+ I2
(

p + w2, t
)

	 I1
(

p + w1, t
)

+ I2
(

p + w1, t
)

	 I
(

p + w1, t
)
.

(30)

We have exploited in (30) the local lack of contrast of the
layer I2. As a result, we can compare I(p, t+1) and I(p+w1, t)
to decide whether I2 is uniform around p. To do so, we have
to establish if these two values differ only because of the
presence of noise, or if they actually correspond to different
physical points. This is precisely the problem handled by
adaptive filters.

We resort to the same mechanism. Rather than adopting
a binary decision to select one given configuration Ci, that
would be visually disastrous since neighboring pixels would
be processed differently,

(i) we first compute for each pixel p two factors:
f1(p) associated to “the layer1is uniform” and f2(p)
associated to “the layer2is uniform”. They are defined

as decreasing functions of |I(p, t + 1) − I(p + w2, t)|
(resp., |I(p, t+1)−I(p+w1, t)|). A third factor f12(p)
is associated to “Ĩ(p, t+1)is a good prediction of I(p, t+
1)”. It is a decreasing function of |I(p, t+ 1)− Ĩ(p, t)|.
This enables to associate each configuration (Ci), i =
0 · · · 4, an appropriate weighting factor, as shown in
(31).

(ii) we filter the image using relation (32) by considering
in turn each configuration Ci, i = 0 · · · 4, and we get
the output images Î(Ci)(p, t).

(iii) we combine linearly these five output images as
follows to yield the final denoised image:

Î
(

p, t
) = f12

(
p
)(

1− f1
(

p
))(

1− f2
(

p
))
Î(C0)

(
p, t
)

+ f12
(

p
)(

1− f1
(

p
))
f2
(

p
)
Î(C1)

(
p, t
)

+ f12
(

p
)
f1
(

p
)(

1− f2
(

p
))
Î(C2)

(
p, t
)

+ f12
(

p
)
f1
(

p
)
f2
(

p
)
Î(C3)

(
p, t
)

+
(
1− f12

(
p
))
Î(C4)

(
p, t
)
.

(31)

To summarize, the overall scheme comprises two modules:

(i) the first one filters the images based on different
(transparent or nontransparent) motion compensa-
tion schemes (Section 6.2.1).

(ii) the second module locally weights the five inter-
mediate images according to the probability of the
considered configuration (Section 6.2.2).

6.2.3. Temporal Hybrid Filter. In the case of a purely tempo-
ral hybrid filter, the expression for a given configuration is
defined by:

Î
(

p, t + 1
) = α

(
p, t
)
I
(

p, t + 1
)

+ β
(

p, t
)
Î
(

p + w1, t
)

+ δ
(

p, t
)
Î
(

p + w2, t
)

+ γ
(

p, t
)
Ĩ
(

p, t + 1
)
,

(32)

where α, β, δ, and γ are filter weights locally specified. β = 0
and δ = 0 for C0; δ = 0 for C1; β = 0 for C2; β = 0, δ = 0
and γ = 0 for C4. When the noise level of the input images
involved in (32) is known or estimated, one can analytically
set the other weights for an optimal filtering (Table 1).

7. Transparent Motion Estimation Results

7.1. Results on Realistic Generated Image Sequences. We have
tested our transparent motion estimation scheme on realistic
image sequences generated as described in Appendix B.2.
It supplies a meaningful quantitative assessment of the
performance of our method under realistic conditions. It
also allows us to compare the performance of different
settings of our algorithm in order to choose the optimal one
(Each parameter is either computed online (in particular the
crucial ones like the C parameter of the Tukey function (6),
or the μ parameter of the MRF function (5)), or set once for
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Table 1: Optimal filter weights for the five possible configurations. The noise standard deviation noise of the acquired image is denoted σ ,
the one of the previous denoised image σÎ and the one of the predicted image σĨ .

Configuration α β

(C0)
σ2
Ĩ

σ2 + σ2
Ĩ

0

(C1)
σ2
Î
σ2
Ĩ

σ2
Î
σ2
Ĩ

+ σ2σ2
Ĩ

+ σ2
Î
σ2

σ2σ2
Ĩ

σ2
Î
σ2
Ĩ

+ σ2σ2
Ĩ

+ σ2
Î
σ2

(C2)
σ2
Î
σ2
Ĩ

σ2
Î
σ2
Ĩ

+ σ2σ2
Ĩ

+ σ2
Î
σ2

0

(C3)
σ4
Î
σ2
Ĩ

σ4
Î
σ2
Ĩ

+ σ2σ2
Î
σ2
Ĩ

+ σ2
Î
σ2σ2

Ĩ
+ σ4

Î
σ2

σ2σ2
Î
σ2
Ĩ

σ4
Î
σ2
Ĩ

+ σ2σ2
Î
σ2
Ĩ

+ σ2
Î
σ2σ2

Ĩ
+ σ4

Î
σ2

(C4) 1 0

Configuration δ γ

(C0) 0
σ2

σ2 + σ2
Ĩ

(C1) 0
σ2
Î
σ2

σ2
Î
σ2
Ĩ

+ σ2σ2
Ĩ

+ σ2
Î
σ2

(C2)
σ2σ2

Ĩ

σ2
Î
σ2
Ĩ

+ σ2σ2
Ĩ

+ σ2
Î
σ2

σ2
Î
σ2

σ2
Î
σ2
Ĩ

+ σ2σ2
Ĩ

+ σ2
Î
σ2

(C3)
σ2
Î
σ2σ2

Ĩ

σ4
Î
σ2
Ĩ

+ σ2σ2
Î
σ2
Ĩ

+ σ2
Î
σ2σ2

Ĩ
+ σ4

Î
σ2

σ4
Î
σ2

σ4
Î
σ2
Ĩ

+ σ2σ2
Î
σ2
Ĩ

+ σ2
Î
σ2σ2

Ĩ
+ σ4

Î
σ2

(C4) 0 0

all based on tests on the realistic generated image sequence
(prepocessing, interpolation type, Block-Matching search
range, accumulation matrix structure. . .). The method is
therefore fully automatic.).

In this subsection, we focus on images containing two
layers only, each one spread over the full image. It is
indeed difficult to simultaneously assess the quality of
the motion segmentation and of the layer segmentation
(An erroneous segmentation that mislabels one block will
dramatically impact the global estimation error (33), even if
the considered block is low textured and little informative.
The residual error would be a better error metric, yet it is
much less intuitive.). The overall performance of the global
method is discussed over real experiments in Section 7.2.

More specifically, we have applied our method on 250
three-frame sequences, the first layer (abdomen image)
undergoing a translation and the second layer (heart image)
an affine motion. To generate the affine motion of the second
layer, we proceed in two steps. First, we randomly choose
the two translational and the scaling (denoted h) parameters
so that the resulting displacement magnitude lies in the
range of −8 to 8 pixels. Then, we convert the obtained
transformation into a set of affine motion models by allowing
the two pairs of affine parameters a2, a6 on one hand, and
a3, a5 on the other hand, to vary from their reference value
(resp., h and 0), in a range of respectively h ± 0.2h and
±0.2h. Consequently, the generated motions are similar to
anatomic motions, while not perfectly following the model
assumed by the Hough transform in the initialization step.
The two generated motions are also required to sufficiently
differ from each other, that is, from 2 pixels in average over
the image grid (An observer would not perceive two distinct
transparent layers otherwise!)

We have considered image sequences representative of
diagnostic (high dose) and fluoroscopic (low dose) exams
(with a noise of standard deviation σ = 10 (SNR: 34 dB) and
σ = 20 (SNR: 28 dB) resp.), at different scatter rates (a real
typical value being 20%). The images are coded on 12 bits,
and their mean value is typically 500. Running the overall
framework takes about 30 seconds for 288× 288 images on a
Pentium IV (2.4 GHz and 1 Go). The global estimation error
is formally estimated below (33).

Table 2 contains the the mean value (in pixels) of the
global estimation error ε computed from 250 tests, as well
as its standard deviation and its median value:

ε = 1
|I|

∑

p∈I

√∥∥
∥wθtrue

1
(p)−wθ̂1

(p)
∥∥
∥

2

+

√∥
∥∥wθtrue

2
(p)−wθ̂2

(p)
∥
∥∥

2

(33)

where wθtrue
i

(resp., wθ̂i
) refers to the velocity vectors (given

by the true (resp., estimated) models. We can observe that
very satisfactory results are obtained. The average error raises
to 0.36 pixels only for the most difficult diagnostic case.
For comparison, the best method from the state of the art
[8] reached a precision of about 2 pixels on similar data
(involving quadratic motion models though). The estima-
tion accuracy remains very good on the difficult fluoroscopic
image sequences (σ = 20), where subpixel precision is
maintained if the scatter rate is not too high. In this last case
(50% scatter rate), the motion estimation remains interesting
but is less accurate. The other indicators demonstrate the
repeatability of the method over the different experiments.

As for every method based on (1), our framework
assumes temporal motion constancy over two successive time
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Table 2: Performance evaluation of the proposed method for
different noise levels and scatter rates: average, standard deviation
and median value (in pixels) of the global error computed over 250
generated image sequences.

Metric on the global error Noise level
Scatter rate

0% 20% 50%

Mean
σ = 10 0.22 0.27 0.36

σ = 20 0.53 0.82 1.67

Standard deviation σ = 10 0.63 0.66 0.70

Median
σ = 20 0.78 0.93 1.65

σ = 10 0.08 0.10 0.14

σ = 20 0.25 0.41 1.00

Table 3: Average of the global estimation error for different noise
levels and different temporal motion variations (with 20% scatter
rate).

Noise level
Temporal motion variation

0% 10% 20% 30%

σ = 10 0.27 0.32 0.45 0.59

σ = 20 0.81 1.00 0.92 1.07

intervals. This hypothesis may be critical for clinical image
sequences at some time instants of the heart cycle. To test
the violation of this assumption, we have carried out the
following experiment.

We have randomly chosen two affine models (θ1
1, θ1

2) as
explained above, and applied them between time instants t−
1 and t. We have then computed a second transparent motion
field (θ2

1 , θ2
2), allowing each coefficient to vary from 10, 20, or

30% around (θ1
1 , θ1

2), and applied it between time instants t
and t+ 1. This way, a sequence of three images with temporal
motion variation is generated. We have evaluated the global
errors between the estimated motion field and (θ1

1 , θ1
2) on

one hand, and (θ2
1 , θ2

2) on the other hand. We report its mean
value computed over 250 generated sequences in Table 3.

We can note a progressive degradation of the estimation
accuracy with the amount of temporal motion change. Then,
it is not that critical that the temporal motion constancy
over two successive time intervals is not strictly verified.
The transparent motion estimation for fluoroscopic images
remains accurate, even if the two successive motions vary in
a range of 30%.

7.2. Results on Real Clinical Image Sequences. The previous
experiments are useful to study the behaviour of the pro-
posed method, to fix the options and the parameters, and to
quantitavely compare it to other motion estimation methods.
However, it does not validate the relevance of the two-layer
model per se, since the generated images themselves rely on
this model. In this section, we present results obtained on real
image sequences that demonstrate the bitransparency model
validity.

We present motion estimation results out of three real
clinical image sequences and one video. We display several

frames along with the estimated motion fields in Figures 6–
8, at some interesting time instants of the sequences. The
velocity fields are plotted with colored vectors, the length of
which is twice the real displacement magnitude for sake of
visibility.

The motion estimation quality is evaluated by visual
inspection since no ground truth is available, and since
the resulting displaced image differences are difficult to
interpret due to the lack of contrast. Anyway, the reliability
of the estimated motions is objectively demonstrated by
the convincing results of transparent-motion-compensated
denoising given in Section 8.

The image of Figure 6 corresponds to an area of about
5 cm×5 cm size, located between the heart (dark mass on the
right) and the lungs (bright tissues). It also contains a static
background where ribs are perceptible. In the considered
region, the heart carries the lungs tissues along, so that they
have the same apparent motion. The motions of the two
layers are correctly estimated: the red arrow field corresponds
to the static background (it is not plotted when it is exactly
equal to 0), and the green one to the estimated affine model
for the layer formed by the pair “heart and lungs”. Its motion
is coherent with the observation, both during the diastole
(first and third presented images) and the systole (second and
last images).

The sequence shown on Figures 7(a)–7(c) is a cardiac
interventional image sequence. It globally involves three
distinct transparent layers:

(i) the static background, which includes the contrasted
surgical clips.

(ii) the set “diaphragm and lungs”. The diaphragm is the
dark mass in the bottom left corner of the image, and
the lungs form the bright tissues in the other half of
the image. Their motions are close, so that they can
be considered as forming a single moving layer.

(iii) the heart is also visible, even if its layer is less textured:
it is the convex light-grey area on the right of the
image. It can be easily seen on the first displayed
image. A catheter (interventional tube) is inserted
in one of its coronary, which has an visible motion
different from the projected global motion of the
heart (i.e., mainly inferred from the cardiac boundary
perceptible in the image).

We first report results obtained at a time instant where the
three layers are static (Figures 7(a)–7(d)). Only one region is
detected, which is correct: our method is still effective when
no transparent motion is involved.

At a second time instant, the group “diaphragm and
lungs” is still static. The velocity field supplied by the
corresponding estimated motion model is plotted in red and
the estimated motion of the heart in green (Figure 7(e)).
Both motion models are correctly estimated. Interestingly,
the movement of the catheter in the upper part of the image
is properly segmented as well, even if it forms a thin structure
in a noisy image sequence.

The image content of the third considered time instant
(Figure 7(f)) is also of interest, since the three layers now
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(a) (b) (c) (d)

Figure 6: Four-estimated two-layer motion fields, along with the corresponding fluoroscopic image at four different time instants. One layer
corresponds to the static background (ribs) and its estimated affine model is plotted in red. The other layer involves the heart and the lung
tissues and its estimated affine model is plotted in green. (a), (c) instants are within in the diastole phase, (b), (d) ones in the systole phase.

appears to be undergoing independent visible motions.
In this borderline situation (since we have three moving
layers in some blocks), the method again proves to perform
well: it manages to focus on the two dominant layers in
the different regions. As a result, the red velocity field
corresponds to the static background layer, the green one
to the lungs layer, and the blue one to the heart motion
layer.

The sequence presented on Figures 8(a)–8(c) is a cardiac
interventional image sequence. It depicts an about 5 cm ×
5 cm area of the anatomy, where the heart (dark mass
filling three quarters of the image, nearly static under the
considered acquisition angulation) superimposes on the
lungs (bright tissues in the upper right of the image). We
give results for three distant instants of this sequence. The
velocity fields plotted on Figures 8(d)–8(f) are supplied by
the affine motion models estimated at the three considered
time instants.

A global two-layer transparency correctly explains the
observed motions at the first time instant (Figure 8(d)). The
green velocity vectors correspond to the group “lungs and
diaphragm”, animated by the breathing, and the red field
refers to the transparent layer of the heart (it is present all
over the image but is not plotted when it is perfectly null).
Let us also point out that the static background is merged
with the heart layer.

It is necessary to introduce a bidistributed transparency
configuration to explain the motions observed at the second
considered time instant (Figure 8(e)). The red velocity
field still refers to the (almost) static background, which
now includes the mass of the heart and the diaphragm
(motionless at this time). The blue velocity field corresponds

to the upward motion of breathing carrying along the
lungs. The green velocity field accounts for a supplementary
layer corresponding to the set of coronary arteries taken
as a whole, the motion of which becomes perceptible. It is
properly handled and correctly estimated. This demonstrates
the ability of the method to focus on the two dominating
motions even in situations of three-layer transparency (here,
static layer, lungs layer and coronary arteries layer).

The last reported result (Figure 8(f)) highlights the
performance of the method when situations of high com-
plexity are encountered. All the different motions are indeed
correctly estimated (by observing the sequence) even if
oversegmentation is noticeable. Let us mention that a
less fragmented spatial segmentation could be obtained by
increasing the value of the regularization factor λ (19), but at
the cost of a less accurate match between estimated motion
models and observed motions. The trade-off has to be met
according to the targeted application.

Finally, Figure 9 reports experiments conducted on a
sequence extracted from a movie, picturing a couple reflected
on an apartment window. To our knowledge, it is the first
time a real transparent video sequence is processed (we
mean a sequence which has not been constructed for that
purpose). The reflection superimposes to a panning view
of the city behind. The camera is undergoing a smooth
rotation, making the reflected faces and the city undergo two
apparent translations with different velocities in the image.
At some time instant, the real face of a character appears
in the foreground but does not affect our method because
of its robustness. The obtained segmentation and motion
estimation are satisfying.

More results on video sequences can be found in [1].



14 EURASIP Journal on Advances in Signal Processing

(a) (b) (c)

(d) (e) (f)

Figure 7: Second example of a X-ray interventional cardiac image sequence, (a)–(c): Images acquired at three different time instants, (d),
(e), (f): the corresponding velocity fields supplied by the estimated affine motion models, plotted in different colours according to the
transparent layer they are belonging to. (a) Illustration of the method ability to detect single layer situations; (b) correct segmentation and
estimation of the motions of small objects, even included in noisy images; (c) handling of a transparency situation with three simultaneous
transparent layers in some areas (see main text).

(a) (b) (c)

(d) (e) (f)

Figure 8: Example of a X-ray interventional cardiac image sequence, (a)–(c): image acquired at three different time instants, (d), (e), (f):
the corresponding velocity fields supplied by the estimated affine motion models, plotted in different colours according to the segmented
layer they are belonging to. (a) presents an example of global bitransparency; (b) illustrates the ability of the method to handle dominant
motions in case of three simultaneous transparent layers in some areas; (c) refers to a complex configuration in which a trade-off has to be
met between accurate motion estimates and clean segmentation maps.
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Figure 9: Example of a movie depicting two people reflected on an apartment window. From left to right and top to bottom: the first frame
of the sequence; one of the three images corresponding to the reported results later in the sequence; the obtained segmentation into the
transparent layer supports (the green polygonal line in the middle roughly encloses the reflected people); the velocity fields supplied by the
estimated affine motion models; displaced frame differences computed by compensating the motion of one of the two layers.

8. Denoising Results

We have tested the proposed denoising method in the
case of purely temporal filters because of their practical
interest (explained in Section 6.1.2). Three denoising filters
are compared: the adaptive recursive filter [28] without
motion compensation (ANMCR) acting as a reference,
the transparent-motion-compensated recursive filter (MCR)
described in Section 6.1, and the proposed hybrid recursive
filter (HR) developed in Section 6.2. The MCR and HR filters
exploit transparent motions estimated by the method of
Section 5.

The adaptive function of the ANMCR and MCR filters,
taking into account the relation between filter gain and
prediction error, is pictured on Figure 10. It has been
designed heuristically to provide efficient noise reduction
without introducing artifacts. It has three parts, defined by
two thresholds (s1 = σ and s2 = 2σ in practice): a constant
part for the low prediction errors (where the coefficient is
set to the optimal value for noise reduction cmax), a linear
decreasing one in a transition area, and a vanishing one for
large prediction errors. We have specified the three factors
f1, f2, and f12 of the hybrid filter in a similar way. cmax is set
to 1, s1 to 1.5σ and s2 to 2σ for that filter.

8.1. Results on Realistic Generated Image Sequences. We
have tested the proposed denoising method on realistic
synthetic image sequences simulating the X-ray imaging
process and the transparency phenomenon (Appendix B.2).
The obtained image sequence is corrupted by a strong noise
typical of fluoroscopic exams (σ = 20).

Table 4 contains the evolution of the residual noise level
of the filtered images. The transparent motion compensated
filter soon reaches a denoising limit, as predicted by the
theory. The hybrid filter performs slightly better than the
ANMCR filter, as far as residual noise level is concerned.

cmax

s10 s2

Figure 10: Decreasing function used as adaptive function in
the different filters. It has three parts: a constant one for small
prediction errors, a linear one in a transition area, and a vanishing
one for large prediction errors.

Table 4: Normalized residual noise evolution given by the rate
σ̂(t)/σ for a realistic synthetic image sequence typical of X-ray
exams, processed by the adaptive temporal filter without motion
compensation (ANMC), with transparent motion compensation
(MC) and by the proposed hybrid filter (HR).

t 2 3 4 5 6 7 8

ANMCR 0.71 0.69 0.66 0.63 0.60 0.59 0.58

MCR 0.87 0.82 0.79 0.79 0.78 0.78 0.78

HR 0.76 0.66 0.60 0.57 0.56 0.55 0.54

The residual noise maps are given in Figure 11. They
show that the hybrid filter preserves better the image details,
and that the MCR filter also outperforms the ANMCR filter.
However, the residual noise is much more perceptible in the
case of MCR filter than for the other two filters.

Combining the different performance criteria, we can
claim that the HR filter appears as the best choice among the
three filters for that set of experiments.
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Figure 11: Residual noise of the eighth image of the generated sequence respectively obtained with the ANMCR filter, the MCR filter and
the proposed HR filter (see main text).

(a) (b)

(c) (d)

Figure 12: (a) Two time instants of a fluoroscopic sequence processed with the HR, (b) the ANMCR filter, (c), (d) one detail of each
image is shown. (c) Highlights the better cardiac border contrast, and (d) the better lungs detail preservation.

8.2. Results on Real Clinical Images. It is difficult to illustrate
denoising results by means of static printed images, when the
considered images are meant to be observed dynamically on a
specific screen in a dark cath-lab. However, the major interest
of our framework being its ability to improve the quality of
real interventional images, we present three typical denoising
results in this subsection.

Since the MCR performs noticeably worse than the
two other filters, we will compare the performance of the
ANMCR and HR filters only. The images processed with the
former will be presented on the right of the figures, and
those with the latter on the left, at different time instants.
Both are heuristically parameterized to provide a visually
equivalent global denoising effect, so that the difference of

performance will be mainly assessed based on the quality of
contrast preservation and on the presence of artifacts. We
have drawn arrows on the figures to highlight the regions of
interest (that appear immediately on a dynamic display).

Results on a cardiac fluoroscopic exam are reported on
Figure 12 at different time instants ( It can be observed at
the address http://www.irisa.fr/vista/Equipe/People/Auvray/
Travaux Vincent.Auvray.English.html .). The dark mass of
the heart (on the right) can be distinguished from the bright
tissues of the lungs (on the left). These two organs are
superimposed to the background, where spine disks can be
seen. The comparison of the output images obtained with
the HR filter (on the left) and the ANMCR filter (on the
right) reveals a much better contrast preservation of the heart
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(a) (b)

Figure 13: (a) Four-time instants of a fluoroscopic sequence processed with the HR, and (b) the ANMCR filter. We observe a better
contrast preservation of the catheter with the hybrid filter.

(a) (b)

Figure 14: (a) Fluoroscopic sequence processed with the HR, and (b) the ANMCR filter. The two images on the right correspond to a
zoom on the region of interest of the two images of (a) .

with the HR filter (even if the printed figures do not give
the immediate improvement impression that an observer has
in ideal observation conditions). This is confirmed by the
observation of the lungs.

The second image sequence (Figure 13) corresponds to a
cardiac exam where the catheter motion has been correctly
handled by the transparent motion estimation module. We
indeed observe that the catheter is more contrasted on the
images processed by the HR filter than the ANMCR filter.

The last experiment exhibits the “noise tail” artifact
induced by the ANMCR filter. When a moving textured
object is detected by this filter, the corresponding area is kept
without filtering in the output image. As a result, a region
of the output image is more noisy than its neighborhood,
which can be disturbing. In this situation, the hybrid filter is
able to denoise the whole image, and thus does not introduce
such artifacts. This phenomenon is pictured on Figure 14.
We have added on the right of the figure a zoom on the region
of interest. We observe that the curve corresponding to the
moving border of the heart remains corrupted on the image

denoised with the ANMCR filter. This artifact disappears on
the image processed by the HR filter.

9. Conclusion

We have defined an original and efficient method for esti-
mating transparent motions in video sequences, which also
delivers an explicit segmentation of the image into the spatial
supports of the transparent layers. It has proven to be robust
to noise, and to be computationally acceptable. We assume
that the images can be divided into regions containing at
most two moving transparent layers (we call this configura-
tion bidistributed transparency), and that the layer motions
can be adequately represented by 2D parametric models (in
practice, affine models). The proposed method involves three
main steps: initial block-matching for two-layer transparent
motion estimation, motion clustering with a 3D Hough
transform, and joint transparent layer segmentation and
parametric motion estimation. The number of transparent
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layers is also determined on-line. The last step is solved by
the iterative minimization of a MRF-based energy functional.
The segmentation process is completed by a mechanism
detecting regions containing one single layer.

Experiments on realistic generated image sequences have
allowed us to fix the optimal settings of this framework,
and to quantitatively evaluate its performance. It turns
out to be excellent on diagnostic images, and satisfactory
on fluoroscopic images (with normal scattering). We have
also demonstrated the quality of the transparent motion
estimation on various real clinical images, as well as on one
video example. Satisfactory results have been reported both
for motion estimation and layer segmentation. The method
is general enough to successfully handle different types of
image sequences with the very same parametrization.

To the best of our knowledge, our contribution forms
the first transparent motion estimation scheme that has been
widely applied on X-ray image sequences. Let us note that
it could be used in applications other than noise reduction.
For instance, it could be exploited to compensate for the
patient motion in order to provide the clinician artifact-
free subtracted angiography [29]. Other medical applications
include the extraction of clinically relevant measurements,
the tracking of features of interest (such as interventional
tools) [30] or the compression of image sequences [31].

The second main contribution is the design of an original
motion compensation method which can be associated
to any spatiotemporal noise filtering technique. A direct
transparent motion estimation method based on the TMC is
first presented and its limitations were studied. To overcome
them, an hybrid motion compensation method is proposed
which locally combines or selects different options, leading
to an optimal noise reduction/contrast preservation trade-
off. Convincing results on realistic synthetic image sequences
and on real noisy and low-contrasted X-ray image sequences
have been reported.

Possible extensions include the improvement of the
energy minimization method (i.e., by exploiting a graph-
cut technique [32]). Further speeding-up the processing can
also be investigated. A temporal smoothing term could also
be added to the global energy functional. Finally, the other
applications that could benefit from this processing should
be studied [33].

Appendices

A. X-Ray Imaging Properties and
Simulation Scheme

X-rays are attenuated in various ways depending on the
materials they are going through. An attenuation coefficient
μmat, typical of each material, intervenes in the Φout flow
of monochromatic X photons coming out of an object of
thickness d radiated with the Φin input flow:

Φout = Φine
−μmatd. (A.1)

Assuming that tissues have a constant attenuation coeffi-
cients, the radiation flow out of n tissues of thicknesses di
and attenuation coefficients μi is given by:

Φout = Φin

n∏

i=1

e−μidi ∝
n∏

i=1

e−μidi . (A.2)

The global attenuation being the product of the attenua-
tions of each organ, we have to consider a multiplicative
transparency. It turns into an additive one by applying a
log operator. As a result, the measured image I is the
superimposition of n sub-images Ii (the layers) undergoing
their own motion. At pixel p and time t, we have:

I
(

p, t
) =

n∑

i=1

Ii
(

p, t
)
. (A.3)

It is actually difficult to give an exact definition of the concept
of layer. It is tempting to assign a layer to each organ (one
layer for the heart, one for the diaphragm, one for the spine,
etc.). It is however more appropriate for our purpose to
consider two organs undergoing the same motion or coupled
motions as forming one single layer (i.e., the heart and the
tissues of the lungs that it carries along). Conversely, we
will divide an organ into two layers if necessary (i.e., the
walls of the heart when they have two different apparent
motions due to the acquisition angulation). Formally, we will
define a layer as any physical unit having a coherent motion
under the imaging angulation. Let us point out that the layer
specification is dependent on how we define coherent motion.
As explained in Section 3, it will result from the choice of the
2D parametric motion model.

B. Image Formation Model

B.1. Image Formation Process. In order to generate realistic
test images, we need to investigate the X-ray formation
process [34, 35]. The X photons produced by the generator
do not follow an exact straight line from the tube focal
spot to the detector, they respect statistical laws implying
possibilities of deviation. This can be modeled with a Poisson
quantum noise corrupting the image, that can finally be
considered as of constant standard deviation after applying
a square-root operator [36].

Moreover, part of the radiation absorbed by the anatomy
is scattered in an isotropic way. Even if this effect is limited
by anti-scatter grids, it causes a “haze” on the images that
can be modeled by the addition of a low-pass version of
the original image. Finally, the detector has a Modulation
Transfer Function (MTF), due to the scintillator that slightly
blurs the signal, and due to the finite dimension of the
photoreceptor cells. It has been measured for the considered
imaging system. The detector also produces a low electronic
noise.

B.2. Image Simulation. To quantitatively assess the perfor-
mance of our motion estimation and compensation method,
we aim at generating realistic (short) image sequences sup-
plying known ground-truth in terms of layers and motions.
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(a) (b)

Figure 15: The two images from high-dose exams used to form the
two moving layers in the realistic sequence generation. (a) is an
image from an abdominal exam, and (b) is an image from a cardiac
exam.

The simulation proceeds in two steps: we first generate
attenuation maps from real high-dose clinical images, and
then we combine them under known simulated conditions.

To achieve the first step, we use images from real exams
(Figure 15) in order to ensure a content representative for
X-ray images. We select them among high-dose exams to be
able to consider them as noise-free. We inverse the encoding
and the MTF transforms, convert the resulting graylevel
images into the input radiation on the detector and roughly
compensate for the scatter. The procedure to realize the latter
step is to subtract 20% of a 64×64 boxcar low-passed version
of the radiation image. The resulting radiation image is
proportional to the anatomy attenuation map corresponding
to the initial image content.Once two such attenuation maps
have been built from two different initial images, we move
them by known displacements to generate (multiplicatively)
a realistic two-layer anatomy configuration in motion. We
finally simulate short (three-image) sequences under known
conditions, including layer motion, quantum noise, scatter,
electronic noise and MTF. Appendix B.1 details how these
phenomena are modelled and simulated.

C. Denoising Limit of the Temporal Transparent
Motion Compensated Filter

Fixed Points. From (25) and (27) it comes:

σ2
Î

(t + 1) =
(

2σ2
Î

(t)+σ2
Î

(t − 1)
)2
σ2 +σ4

(
2σ2

Î
(t)+σ2

Î
(t − 1)

)

(
2σ2

Î
(t) + σ2

Î
(t − 1) + σ2

)2 .

(C.1)

The possible limits of this series are given by the fixed points.
Let us denote σ2 = V . We have:

V = f
(
V
)
= 9 ·V 2

σ2 + 3σ4V
(

3V + σ2
)2 ,

V
(

9 ·V 2 − 3σ2V − 2σ4
)
= 9V

(
V +

1
3
σ2
)(
V − 2

3
σ2
)
= 0.

(C.2)

As a result, the three fixed points are −(1/3)σ2, 0, and
(2/3)σ2.

The first one corresponds to a negative variance and thus
makes no sense here. To decide whether the other two are
attractive or repulsive, we form the function:

g(V) = 9σ2V
2

+ 3σ4V
(

3V + σ2
)2 −V = −9V

3
+ 3σ2V

2
+ 2σ4V

(
3V + σ2

)2 .

(C.3)

More precisely, if the derivative for a fixed point is greater
than 1, the corresponding point is repulsive. Otherwise, it is
attractive.

g′(V) = dg

dV
(V)

27V 3 − 27σ2V 2 + 2σ6

(3V + σ2)3 . (C.4)

For the two considered fixed points:

g′(0) = 2, g′
(

2
3
σ2
)
= 0. (C.5)

Finally, even if the sequence has two fixed points, (2/3)σ2 is
the only possible finite limit.

Convergence. Nevertheless, the series could diverge. We have
to study how its distance to the attractive fixed point evolves.
Let us consider:

V̂2(t) = σ2
Î

(t)− 2
3
σ2. (C.6)

Two consecutive elements of this series are related as follows:

V̂2(t + 1) = σ2
Î

(t + 1)− 2
3

= f
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Î

(t)
)
− 2

3
σ2
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2
3
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− 2

3
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3
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= 3σ2V̂2(t)2 + 3σ4V̂2(t)
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3
V̂2(t)

V̂2(t) + σ2

= σ2

3
(
V̂2(t) + σ2

) V̂2(t).

(C.7)

The first element of the last expression is strictly smaller than
1 for V̂2(t) > −(2/3)σ2 (i.e., to say for every value of the
variance but the repulsive fixed point 0).

The series of variances then converges monotically to the
attractive fixed point(2/3)σ2.
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growing every year.

The International Journal of Microwave Science and
Technology, published by Hindawi Publishing Corporation,
invites authors to participate in the Special Issue on Power
Amplifiers for Wireless Communications by submitting
original papers on the following topics not limited to those
listed:

• High efficiency RF power amplifiers
• Linearization and memory effects
• Novel design techniques
• Integrated power amplifiers for wireless handsets
• Active device and behavioral modeling
• CMOS applications in RF power amplification
• Compound semiconductor technology (GaAs, GaN)
• Novel packaging techniques

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/ijmst/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/ according to the following
timetable:

Manuscript Due November 1, 2009

First Round of Reviews February 1, 2010

Publication Date May 1, 2010

Lead Guest Editor

Marc J. Franco, RFMD Technology Platforms, Component
Advanced Development, 7628 Thorndike Rd., Greensboro,
NC 27409, USA; mfranco@ieee.org

Guest Editor

Ali Tombak, RFMD Technology Platforms, Component
Advanced Development, 7628 Thorndike Rd., Greensboro,
NC 27409, USA; ali_tombak@ieee.org
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International Journal of Biomedical Imaging

Special Issue on

Mathematical Methods for Images and Surfaces

Call for Papers

“The Midwest Conference on Mathematical Methods for
Images and Surfaces” was held in the Michigan State
University on April 18-19. It created an excellent forum for
researchers from engineering, biological, and mathematical
sciences to exchange ideas and keep up with new develop-
ments. To further disseminate research findings presented
and exchanged in the conference, The International Journal
of Biomedical Imaging will publish a special issue entitled
“Mathematical Methods for Images and Surfaces.”

The scope of this special issue is the same as that of
the conference. However, to better fit the scope of the
journal, research findings relevant to biomedical science and
technology are particularly welcome. Original papers and
high-quality overviews on a wide range of topics in images
and surfaces are solicited for this special issue. Topics of
interest include, but are not limited to:

• Geometric flows, higher-order curvature flows, gradi-
ent flows for image, and surface analysis

• Mumford-Shah functional
• Level set methods and their applications
• Wavelets, frames, and multiresolution analysis
• Mathematical algorithms for images and surfaces
• Image edge detection, segmentation, pattern recogni-

tion, and video analysis and processing
• Computational methods for biomedical imaging
• Algorithms for bioluminescence imaging, fluorescent

imaging, PET imaging, ultrasound imaging, MRI, and
tomography

• Computational methods for anatomy
• Mathematical analysis of protein and membrane sur-

faces

The papers solicited for this special issue are not restricted
to the contributions presented during the Conference.
Submissions from other researchers which fit the scope of
this special issue are also welcome.

Before submission authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/ijbi/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete

manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/ according to the following
timetable:

Manuscript Due October 1, 2009

First Round of Reviews January 1, 2010

Publication Date April 1, 2010

Lead Guest Editor

Guowei Wei, Department of Mathematics and Department
of Electrical and Computer Engineering, Michigan State
University, MI 48824, USA; wei@math.msu.edu

Guest Editors

Lalita Udpa, Department of Electrical and Computer
Engineering, Michigan State University, MI 48824, USA;
udpal@egr.msu.edu

Yang Wang, Chair of Department of Mathematics,
Michigan State University, MI 48824, USA;
ywang@math.msu.edu

Shan Zhao, Department of Mathematics, University of
Alabama, AL 35406, USA; szhao@bama.ua.edu
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EURASIP Journal on Wireless Communications and Networking

Special Issue on

Signal Processing-Assisted Protocols and Algorithms for
Cooperating Objects and Wireless Sensor Networks

Call for Papers

With the advent of the so-called Internet of Things (IoTs),
we will witness an unprecedented growth in the num-
ber of networked terminals and devices. In attaining this
IoT vision, a class of energy- and, in general, resource-
constrained systems like Wireless Sensor Networks (WSNs),
networks of cooperating objects and embedded devices
such as RFIDs, or networks for Device-to-Device (D2D)
and Machine-to-Machine (M2M) communications are to
play a fundamental role. The paradigm shift from general-
purpose data networks to application-oriented networks
(e.g., for parameter or random field estimation, event
detection, localization, and tracking) clearly calls for further
optimization at the physical, link, and network layers of
the protocol stack. Interestingly, the above-mentioned esti-
mation/detection/localization/tracking problems have been
addressed for years by the signal processing community,
this resulting into a number of well-known algorithms.
Besides, some inspiration could be also borrowed from
other communication schemes, such as MIMO and beam-
forming techniques or cooperative communications that
were traditionally developed for wireless data networks, or
even from other fields such as mathematical biology (e.g.,
networks of coupled oscillators). However, the challenge
now is to enhance such algorithms and schemes and make
them suitable for decentralized and resource-constrained
operation in networks with a potentially high number
of nodes. Complementarily, the vast literature produced
by the information theory community, on the one hand,
reveals the theoretical performance limits of decentralized
processing (e.g., distributed source coding) and, on the
other, offers insight on the scalability properties of such
large networks and their behavior in the asymptotic regime.
Realizing the information-theoretic performance with prac-
tical decentralized networking, radio resource management
schemes, routing protocols, and other network management
paradigms is a key challenge.

The objective of this Special Issue (whose preparation
is carried out under the auspices of the EC Network
of Excellence in Wireless Communications NEWCOM++)
is to gather recent advances in the areas of cooperating
objects, embedded devices, and wireless sensor networks.

The focus is on how the design of future physical, link,
and network layers could benefit from a signal processing-
oriented approach. Specific topics for this Special Issue
include but are not limited to:

• Decentralized parameter estimation
• Estimation of random fields
• Distributed MIMO and beamforming
• Decentralized and cooperative time and frequency

synchronization
• Cooperative event detection
• Data gathering and data fusion
• Data-centric multihop techniques and routing
• Scalability and asymptotic laws for in-network dis-

tributed estimation/detection
• Energy-saving algorithms and protocols
• Feedback-limited scheduling and MAC protocols
• Decentralized joint source-channel coding
• Cooperative localization and tracking
• Topology control in resource-constrained networks
• Low-complexity opportunistic networking protocols

Before submission, authors should carefully read over the
journal’s Author Guidelines, which are located at http://www
.hindawi.com/journals/wcn/guidelines.html. Prospective au-
thors should submit an electronic copy of their complete
manuscript through the journal Manuscript Tracking Sys-
tem at http://mts.hindawi.com/ according to the following
timetable:

Manuscript Due February 1, 2010

First Round of Reviews May 1, 2010

Publication Date August 1, 2010

Lead Guest Editor

Carles Antón-Haro, Centre Tecnològic de
Telecomunicacions de Catalunya (CTTC), 08860
Castelldefels, Barcelona, Spain; carles.anton@cttc.es
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Technology (NJIT), Newark, NJ, USA;
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