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This paper deals with a well-known problem in the general area of search theory: optimize the search
resources sharing so as to maximize the probability of detection of a (moving) target. However, the
problem we consider here considerably differs from the classical one. First, there is a bilevel search plan-
ning and we have to consider jointly discrete and continuous optimization problems. To this perspective
original methods are proposed within a common framework. Furthermore, this framework is sufficiently
general and versatile so as to be easily and successfully extended to the difficult problem of the multizone
multisensor search planning for a Markovian target.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The optimization of search problems is a matter of concern for
many real world applications, especially for the Intelligence Com-
munity. Moreover, the dimension of the space of search is often very
large compared with the amount of resources available to proceed
the search. Such kinds of problems can inherently be viewed in a hi-
erarchical manner: determine search zones for the sensors and then
optimize their search plans over these zones. However, hierarchical
problems are often very hard to solve. Indeed, they are difficult to
model in such a way that they could be optimized by classical means:
at the upper level, the objective functional can be non-convex or im-
plicitly defined as the result of an algorithm (lower level). To over-
come this difficulty, an adaptive solving approach is needed. Thus,
we introduce a hierarchical method that allows to solve hierarchical
search problems.

In this paper we consider a space of search partitioned into zones
of reasonable size. A unique sensor must be able to explore effi-
ciently a whole zone. Each zone is itself partitioned into cells. A cell
is an area in which every points have the same properties, accord-
ing to the difficulty of detection (altitude, vegetation, etc.). An ex-
ample of search space is given in Fig. 4 in Section 6. Furthermore,
each sensor has its own coefficient of visibility over a cell. The visi-
bility coefficients depend also on the kind of target that is searched.
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Here, there is a unique target to detect. Target location and motion
are defined by a given prior within a Bayesian setup. Thus, the hier-
archical search problem to solve is made of two completely entan-
gled optimization levels:

• at upper level: find the best allotment of sensors to search zones
(a sensor is allotted to a unique zone);

• at lower level: for every sensor, find the best resource sharing in
order to have an optimal surveillance over the allotted zone.

This problem is easy to solve when the allotment of sensors to search
zones is injective (1:1). Indeed, it can be solved by employing linear
programming (LP) at upper level.

But in the general case where the (1:1) hypothesis is abandoned,
the complexity of the problem increases dramatically. As a conse-
quence, classical methods become awkward to employ. In order to
overcome this difficulty, the upper level is optimized via a rare event
simulation method developed by Rubinstein [1]: the cross-entropy
(CE) algorithm. At lower level, several algorithms can be employed.
We first consider an optimization method based on the algorithm
of de Guenin [2] for detecting a stationary target. In a second time,
we consider the stationary two-sided search (both target location
and sensors resource sharing have to be optimized). This part of our
work relies on results of Nakai [3]. Then we see how the CE can
be coupled with a forward and backward algorithm, introduced by
Brown [4,12], in order to optimize detection when the target has
a Markovian motion. At last we study the optimization of a cross-
cueing functional where we try to detect and confirm a target with
two different means of search in a multiperiod framework.
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2. A model for the hierarchical problem

We first introduce the model and the notations employed in the
remainder of the paper. As said before, the problem aims tomaximize
the probability of locating a target hidden in a large space of search
when available resources are scarce.

2.1. Main notations

E space of search
z zone index
i cell index
s sensor index
t time index
� prior on the initial location of the target
�s(cz,i) quantity of resource of sensor s allotted to

cell cz,i
�s quantity of resource available for sensor s

to search the space
ws
z,i coefficient that characterizes the acuity of

sensor s over cell cz,i (visibility coefficient)
xz,s allocation variable. xz,s = 1 if sensor s is

allotted to zone Ez, else xz,s = 0
m sensors-to-zones allotment mapping
(P�) family of probability laws for the CE algo-

rithm
pM(z|s) probability of allotting sensor s to zone Ez

according to M
�t “prior” at time t
Ut(z, i) forward functional for cell cz,i at time t
Dt(z, i) backward functional for cell cz,i at time t

2.2. The searching framework

The space of search: The search space, named E, is considered to
be the theater of operations. It is thus a large space with spatially
variable search characteristics. This variability will be described be-
low, up to an elementary level (the cell level or lower level) where
search homogeneity will be assumed. Precisely, the search space E
is divided into Z search zones, denoted Ez, z ∈ {1, . . . , Z}, each of them
partitioned into Cz cells, denoted {cz,i}Czi=1, so that:⎧⎪⎪⎪⎨⎪⎪⎪⎩
E =

Z⋃
z=1

Ez with z1�z2 ⇒ Ez1 ∩ Ez2 = ∅,

Ez =
Cz⋃
i=1

cz,i with i1�i2 → cz,i1 ∩ cz,i2 = ∅.
(1)

A cell cz,i represents the smallest search area in which the search
parameters are constant. For example, it can be a part of land with
constant characteristics (altitude, landscape). Each zone must have
a reasonable size in order to be explored by a sensor within a fixed
time interval.

The target: The target is hidden in one unit of the search space.
Its location is characterized by a prior �z,i. Thus, we have

Z∑
z=1

Cz∑
i=1

�z,i = 1. (2)

This prior may be relatively informative and results (in general) from
operational considerations, previous searches, intelligence, etc. We
will see also (see Section 3.1) how it can be relaxed.

The means of search: Means of search can be passive (e.g. IRST,
ESM) or active sensors (radars). We will consider that searching the
target will be carried out by S sensors. Due to operational constraints,

each sensor s ∈ S must be allotted to a unique search zone. For
example, it could be the exploration time to share between units of
a zone. At the lower level the amount of search resource allocated
to the cell cz,i for the sensor s —if sensor s is allotted to zone Ez –
is denoted �s(cz,i). It can represent the time spent on searching the
cell cz,i (passive sensor), the intensity of emissions or the number of
pulses (active sensors), etc. Furthermore, each sensor s has a search
amount �s, i.e.:

s → Ez ⇒
Cz∑
i=1

�s(cz,i)��s. (3)

To characterize the effectiveness of the search at the cell level, we
consider the conditional non-detection probability P̄s(�s(cz,i)) which
represents the probability of not detecting the target given that the
target is hidden in cz,i, and that we apply an elementary search
effort�s(cz,i) on cz,i. Some hypotheses aremade tomodel P̄s(�s(cz,i)).
For all sensors, �s(cz,i)� P̄s(�s(cz,i)) is convex and non-increasing
(law of diminishing return). Assuming independence of elementary
detections, a usual model [5] is

P̄s(�s(cz,i)) = exp(−ws
z,i�s(cz,i)), (4)

where −ws
z,i is a (visibility) coefficient which characterizes the re-

ward for the search effort put in cz,i by sensor s.
An additional assumption is that sensors act independently at

the cell level which means that if S sensors are allotted to cz,i the
probability of not detecting a target hidden in cz,i is simply

S∏
s=1

P̄s(�s(cz,i)). (5)

2.3. The optimization problem

Let us give now a general presentation of the problem. Letm : s −
→ z be amapping allotting sensors to search zones. Our aim is to find
both the optimal mapping m (i.e. the best sensor-to-zone allotment)
and the optimal local distributions �s in order to minimize the non-
detection probability. The objective functional is then

F(m, {�s, s ∈ {1, . . . , S}}) =
Z∑

z=1

⎛⎜⎝ Cz∑
i=1

�z,i
∏

s∈m−1(z)

P̄s[�s(cz,i)]

⎞⎟⎠ , (6)

which leads to solve the following constrained problem:∣∣∣∣∣∣∣∣∣∣∣∣

min
m,{�s ,s∈{1,. . .,S}}

F(m, {�s, s ∈ {1, . . . , S}})

s.t. ∀ z, ∀s ∈ m−1(z),
Cz∑
i=1

�s(cz,i)��s,

∀i ∈ z, �s(cz,i)�0,
m mapping : s ∈ S → z ∈ Z.

(7)

The structure of this problem is clearly hierarchical. As said before,
we have to consider two completely interconnected problems:

• A discrete optimization problem, i.e. sensors allotment to search
zones (the upper level).

• A continuous optimization problem, i.e. conditionally to a sensor-
to-zone allotment, find the best placement of search efforts (the
lower level).

3. Optimization of the hierarchical problem

These two levels (see Fig. 1) are completely entangled: a change in
the sensor-to-zone allotment results in a change of the distribution
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Fig. 1. An overview of the hierarchical optimization scheme.

of search efforts at the lower level, while the sensor-to-zone allot-
ment depends on the effect of the search distribution at the lower
level.

At the lower level, the continuous optimization problem can be
efficiently solved by classical methods, whereas at the upper level
it has to be considered from two points of view, according to the
assumptions made about the mapping m.

• The mapping m is injective: the two-level optimization problem
(see Eq. (7)) can be viewed as a classical 2D-assignment problem.

• No assumption about m: the general optimization problem can be
solved by a learning approach, coupled with a local optimization.

This section aims to describe the solving of the aforementioned prob-
lems.

3.1. The optimal distribution of search resources at the lower level

First, we present the methods employed for solving the optimiza-
tion problem at the lower level. It is assumed that the search ef-
forts are indefinitely divisible. Thus we have to deal with simple and
classical continuous optimization problems. Solving the optimiza-
tion problem widely differs accordingly that m is injective (at most
one sensor per zone) or not (more than one sensor per zone).

At most one sensor per search zone, one-sided optimization: In the
particular case where at most one sensor (say s) is allotted to a search
zone (say z), we have to solve the classical optimization problem:∣∣∣∣∣∣
min
�s

∑
i∈z

fi[�s(cz,i)]

s.t.
∑
i∈z

�s(cz,i) − �s�0, �s(cz,i)�0,
(8)

where fi[�s(cz,i)] is a convex and differentiable function of �s(cz,i). A
classical choice is fi[�s(cz,i)]=�z,i exp[−ws

z,i�s(cz,i)], wherews
z,i is the

visibility coefficient in the cell cz,i for the sensor s and �z,i the prior
we have about the target location. So, we have to minimize a convex
differentiable functional over a convex domain. Necessary and suf-
ficient conditions are given by the Karush–Kuhn–Tucker conditions
(denoted KKT for short), yielding (see Appendix A)

∀ i ∈ z, �s(cz,i) = max

[
0

(
1

ws
z,i

)
ln

(
ws
z,i�z,i
�

)]

�

[(
1

ws
z,i

)
ln

(
ws
z,i�z,i
�

)]+
. (9)

It is worth stressing that the primal problem (see Eq. (8)) can be
efficiently solved via duality (see Appendix A), essentially due to
the separability of the objective functional. It remains to find the
optimal value of the dual parameter �, which is obtained by max-
imizing the dual functional �(�) (see Appendix A). As �(�) is a
monodimensional concave functional, the maximum is unique and
can be found by any classical procedure. This problem (Koopman [5],
de Guenin [2]) is quite classical and traces to the origins of search
theory.

More than one sensor per search zone, one-sided optimization: In
the general case, a subset m−1(z) of sensors is allotted to the zone z.
The following continuous optimization problem must be solved for
each zone:∣∣∣∣∣∣∣∣∣
min
�

∑
i∈z

�z,i
∏

s∈m−1(z)
exp(−ws

z,i�s(cz,i))

s.t. ∀ s ∈ m−1(z),
∑
i∈z

�s(cz,i) − �s�0,

∀i ∈ z,�s(cz,i)�0.

(10)

This problem is more complicated than the classical one (see Eq. (8)),
due to the product, but the functional remains (weakly) convex. A
simplemethod for optimizing the sensor use is to optimize iteratively
with respect to each continuous variable �s (for s ∈ m−1(z)), the
other being kept fixed. The algorithm takes then the following form
(see also Fig. 1):

• Initialize �s(cz,i) = 0 ∀s ∈ m−1(z),
• Iteration: For s0 going from 1 to #m−1(z),

optimize the resource distribution �s0
,�s

being kept fixed for s�s0,
• Repeat the above procedure up to convergence.

(11)

The two-sided optimization framework: Previously, it was assumed
that the prior �z,i was known. This can be a rather demanding as-
sumption, so we try to relax it. To that aim we consider that the only
prior we have is the distribution �z, which is the probability that the
target is in zone z. Naturally, it is assumed that these priors sum to
1 (i.e.

∑
z �z = 1). We denote �i|z the conditional probability of the

target being in the cell ci,z given that it is in the zone z. Classical
definitions yield∑
i∈z

�i|z = 1, �z,i = �z�i|z. (12)
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Since we no longer assume that the {�i|z} are known, we consider
that they are determined as the worst distribution i.e. a solution of
the following minimax problem:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
m

∑
z

�z

⎛⎝min
�s

max
�.|z

∑
i∈z

�i|z
∏

s|s∈m−1(z)
exp(−ws

i�s(ci,z))

⎞⎠
s.t. ∀ z,

∑
i∈z

�i|z = 1,

∀ z, ∀s ∈ m−1(z),
∑
i∈z

�s(cz,i) − �s�0,

∀i ∈ z, �s(cz,i)�0,
m mapping : s ∈ S → z ∈ Z.

(13)

Here again we can split the problem into two interconnected levels:

• an upper level, i.e. optimization of allotment of sensors to search
zones;

• a lower level, i.e. optimization of both prior of the target �i|z and
of the resource distribution for the sensors allotted to a search
zone.

Solving the local optimization problem for a given zone seems rather
formidable at first glance. However, it is shown (see Appendix B)
that KKT conditions simply result in the following linear system:⎧⎪⎨⎪⎩

∑
s∈m−1(z)

ws
i,z�

∗
s (cz,i) = cst, ∀i ∈ z,

∑
i∈z

�∗
s (cz,i) = �s, ∀s ∈ m−1(z),

(14)

where �∗
s (cz,i) are solutions of the minimax problem (see Eq. (13))

and the constant cst is unknown. Even if Eq. (14) is a classical linear
system, it is worth stressing that it is generally (highly) undeter-
mined.

Actually, there are Cz ×#m−1(z)+ 1 unknown variables and Cz +
#m−1(z) equations. It is perfectly determined only for #m−1(z) = 1
(a classical result of Nakai [3]). In the general case we can represent
Eq. (14) as a linear system (see Eq. (15)).{
AX = C,
X = (. . . ,�∗

s (cz,i), . . . , cst)
T.

(15)

Every solution X of Eq. (15) can be written as X =X0 + ÃV , where X0
is a particular solution of the following linear system and where the
columns of Ã form a basis of ker A.1 Practically, undeterminacy can
be overcome by imposing an additional objective functional in the
resource placement, e.g.:

∑
s∈#m−1(z)

⎡⎣∑
i�i′

(�∗
s (cz,i′ ) − �∗

s (cz,i))
2

⎤⎦ . (16)

The optimal values of the target distribution (i.e. �∗
i|z) are deduced

from the {�∗
s (cz,i)} and the KKT conditions (see Appendix B, Eq. (52)).

3.2. Optimizing the sensor-to-zone allotment

We are now considering the optimization of the sensor-to-zone
allotment. This will be divided into two parts according to the as-
sumption we make about m.

3.2.1. The LP (linear Programming) solution
Under the assumption that the mapping m is injective, the hi-

erarchical problem is greatly simplified since at the upper level

1 Such a basis can be obtained by Gaussian elimination.

it becomes a 2D-assignment problem. Let xz,s ∈ {0, 1} be the as-
signment variables. We have to solve a 0–1 integer programming
problem:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
xz,s

Z∑
z=1

S∑
s=1

Costz,sxz,s

s.t. ∀ s,
Z∑

z=1
xz,s = 1,

∀ z,
S∑

s=1
xz,s = 1,

xz,s ∈ {0, 1}.

(17)

Furthermore, we know that Costz,s�0. It is quite remarkable that
the integrity constraint (i.e. xz,s ∈ {0, 1}) can be relaxed to posi-
tivity constraint (xz,s�0). The set of solutions remains the same.
To show this, it is sufficient to rewrite Eq. (17) as a general LP
problem:∣∣∣∣∣∣∣
min
X

CTX

s.t. AX = 1,
XT = (. . . , xz,s, . . .) and C= (. . . ,Costz,s, . . .).

(18)

It is obvious that the constraint matrix A is totally unimodular (i.e.
every square submatrix has a determinant +1,−1 or 0). Then the
LP relaxation solves exactly the integer programming problem. For
instance, the simplex algorithm involves Z × S continuous xz,s vari-
ables which is usually quite feasible. The assignment costs Cz,s are
computed off-line via the low-level optimization procedure which
means that

Costz,s =
Cz∑
i=1

�z,i exp(−ws
z,i�

∗
s (cz,i)), (19)

where �∗
s is the optimal local distribution of the search effort for

sensor s. So we have Z × S continuous low-level optimization prob-
lems to solve. The simplicity of the solution is due to the basic
assumption we have made (injectivity of m) which allows to write
the high-level optimization problem as a 2D-assignment problem.
This is no longer possible if this assumption is relaxed since we
have to consider (see Eq. (6)): �z,i

∏
s∈m−1(z) P̄s[�s(cz,i)], for each

zone of the space of search. So there is no hope to benefit from
the “comfort” of LP when the hypothesis of injectivity of m is
abandoned.

3.2.2. The solution-learning method
In the general case, the use of LP is not possible: a reason is

that the objective functional F(m, {�s, s ∈ {1, . . . , S}}) as given by
Eq. (6) cannot be written as a linear functional of the allotment
variable xz,s, because of the product over sensors. As an exhaus-
tive optimization is clearly unrealistic, we turn toward a simulation
approach, namely the CE method. After a brief general presentation
of the CEmethod, we shall consider its ability to solve the upper level
problem.

The CE method: The CE method has been developed by Rubinstein
[1] initially for evaluating rare events probabilities, for which a direct
computation by usual methods would be unreliable. The only way to
evaluate them is then to resort to a simulation method based on im-
portance sampling. The CE method allows to tilt proposal densities
in order to favor sampling of rare events. In fact, it has been demon-
strated that this method is particularly relevant for solving “hard”
optimization problems like combinatorial ones. Indeed, when deter-
ministic methods failed to find the optimal solution within a reason-
able amount of computation, in most cases the CE method allows to
find a fairly good one more quickly. In order to use the CE method to
deal with a deterministic optimization problem, this problem must
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be first translated into a stochastic one. The set of feasible solu-
tions is then regarded as a set of events subjected to an importance
density. Finding the optimum of the problem is considered to be a
rare event. A general presentation of the CE algorithm is provided
below:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Choose a family of probability laws (P�) representative
of the problem,

Choose a function B in order to evaluate the draws,
Initialize the law: � = �0,
Perform the following iteration until convergence:
• Draw N allotments m1,m2, . . . ,mN according to P�,
• Select the 	 × N, 0 <	 <1, best draws {m̃1, m̃2, . . . , m̃T },

according to B(mj),
• Find �′ minimizing the Kullback distance, i.e.

maximizing:
T∑

t=1
ln(P�′ (m̃t)),

•� = �′.

(20)

For convergence analysis of the CE method we refer to [1,6,7]. To
overcome the combinatorial problem we had to face at the upper
level we will combine the CE algorithm with a classical continuous
optimization algorithm at the lower level (see Section 3.1). The CE
algorithm draws particular allotments of sensors to search zones that
will be evaluated and then selected, in order to obtain a drawing law
which will converge toward the optimal allotment. First, we must
choose a family of probability laws, (P�), describing a probability
choice of m. The aim is to find:⎧⎪⎪⎪⎨⎪⎪⎪⎩

�∗ ∈ argmin
�

∑
m

P�(m)B(m),

with
B(m) = min

{�s ,s∈{1,. . .,S}},m
F[m, {�s, s ∈ {1, . . . , S}}].

(21)

A discrete probability law p(z|s) is associated to each sensor s. It rep-
resents the probability to assign sensor s to zone z. These probabili-
ties are summarized by a matrix M:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

pM(1|1) pM(2|1) . . . pM(Z|1)
...

...
...

pM(1|s) pM(2|s) . . . pM(Z|s)
...

...
...

pM(1|S) pM(2|S) . . . pM(Z|S)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (22)

where pM(z|s) is the probability to assign sensor s to zone z according
to the M matrix. Since m is a mapping, these laws allot at most one
search zone per sensor; but 0, 1 or more sensors can be allotted to
the same search zone. Of course, we must have

Z∑
z=1

pM(z|s) = 1. (23)

Updating the matrix M: Let Xk = (xk1, x
k
2, . . . , x

k
s , . . . , x

k
S) be the vector

of sensors to zones assignment. Thus, xks is the search zone assigned
to sensor s for the draw Xk. The index k corresponds to the k-th
iteration of the algorithm. The probability of drawing the vector Xk,
according to M is

PM(Xk) =
S∏

s=1

pMs (xks |s), (24)

where pMs (xks |s) is the coefficient z of the row s in matrix M. As
explained in Section 3, N draws Xk, k ∈ {1, . . . ,N} will be done. The
T best draws, according to F, will be selected to update M. Denoting

{X1, . . . ,XT } as the T “best” vectors among the draws {X1, . . . ,XN}, up-
dating M will be done by calculating the M′ minimizing the Kullback
distance K:

K=
T∑

k=1

ln

[∏
s
pM

′
s (xks )

]
. (25)

This problem is addressed in Appendix C. Considering the T best
vectors, the updating formula is then

pM
′
(z|s) = card{Xk such that xks = z}

T
. (26)

We have introduced upper and lower level algorithms for a station-
ary target. Now, we will see how our method (upper algorithm cou-
pled with lower algorithm) can be extended to search for a target
with Markovian move.

4. An extension to a multiperiod search for a moving target

In the previous sections it was assumed that the target was
stationary. So this study is extended to a multiperiod search of
a moving target. This means that information about the sensors
and the target will be now indexed by time (the period index).
The target prior is now trajectorial and we shall consider here
a Markovian (target) prior. Furthermore, assuming independence
of detections at each period, a target is said undetected for this
multiperiod search if it has not been detected at any period of
the search. Due to the number of possible target trajectories, the
combinatorial complexity of the problem increases dramatically.
For a unique sensor the problem has been theoretically solved in
[8,9]; while extensions to double layered constraints have been
considered in [10]. Practically, all feasible algorithms are based on
a forward–backward split introduced by Brown [4]. Similar proce-
dures are also much employed in order to estimate Hidden Markov
Models parameters (see e.g. [11]). Here we have to couple our
multisensor multizone optimization method with the multiperiod
Markovian search. Let us give now a more formal presentation of the
problem.

4.1. Forward–backward split

We consider that the search periods are indexed by t ∈ {1, . . . , T}.
At each time period t, let mt : s −→ z be a mapping allotting sensors
to search zones. Our aim is to find both the optimal mappings mt
and the optimal local distributions �t

s in order to minimize the non-
detection probability, i.e.:

F({mt ,�t
s}Tt=1) =

∑


∈�

Z∑
z=1

⎛⎜⎜⎝∑
i∈z

�( 

)
T∏

t=1

∏
s∈m−1

t (z)

P̄s[�t
s(cz,i)]

⎞⎟⎟⎠ ,

(27)

where � denotes the set of target trajectories, and 

 a target
trajectory in �. This leads to consider the following constrained
problem:

∣∣∣∣∣∣∣∣∣∣∣

min
{∀t,mt ,�t

s}
F({mt ,�t

s}Tt=1)

s.t. ∀ t, ∀z, ∀s ∈ m−1
t (z),

∑
i∈z

�t
s(cz,i)��t

s,

∀i ∈ z, �t
s(cz,i)�0,

∀ t, mt mapping : s ∈ S → z ∈ Z.

(28)
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Fig. 2. The multisensor multizone moving target algorithm.

The problem seems formidable, but it is considerably simplified if
we rewrite the objective functional F as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F({mt ,�t
s}Tt=1) =

Z∑
z=1

⎡⎣∑
i∈z

��
z,i

∏
s∈m−1

� (z)

P̄s(��
s (cz,i))

⎤⎦ ,

where

��
z,i = ∑



∈ 

�,z,i

�( 

)
t��∏

1� t�T

⎛⎜⎝ ∏
s∈m−1

t (z)

P̄s[�t
s(czt ,it )]

⎞⎟⎠ ,



�,z,i = { 

 ∈ �| 

(�) = cz,i},


 = (cz1,i1 , . . . , cz� ,i� , . . . , czt ,it , . . .),

�( 

) =
T−1∏
t=1

�t,t+1(czt ,it , czt+1,it+1
).

(29)

For a given �, and considering that the ��
z,i are known (the new

“priors”), the multiperiod search problem is put in the standard form
(see Section 3.1). Thus, it can be solved by the hierarchical optimiza-
tion scheme (CE + classical nonlinear optimization) we developed
for the monoperiod search, where the “variables” are the ��

s (cz,i) and
the mapping m�.

It remains to have a mean to calculate efficiently the ��
z,i. To

that aim, the trajectorial Markov hypothesis is instrumental and we
consider the following splitting of the ��

z,i:

��
z,i = U�(z, i)D�(z, i) where U and D are recursively defined by:

U�(z, i) =
∑
j∈z̃

��−1,�(j, i)

⎛⎜⎜⎝ ∏
s∈m−1

�−1(z̃)

P̄s[��−1
s (cz̃,i)]

⎞⎟⎟⎠U�−1(j, z̃),



C. Simonin et al. / Computers & Operations Research 36 (2009) 2179 -- 2192 2185

D�(z, i) =
∑
j∈z̃

��,�+1(i, j)

⎛⎜⎜⎝ ∏
s∈m−1

�+1(z̃)

P̄s[��+1
s (cz̃,i)]

⎞⎟⎟⎠D�+1(j, z̃).

(30)

In the above equation, we denote by z̃, the zones which can be
attained conditionally to the hypothesis that the target is in the cell
i of the zone z at the period � and that it has a Markovian prior �.
Such a forward–backward split was introduced by Brown [4].

In the following the general algorithm employed for planning a
multisensor multizone search for a moving target is described.

4.2. Multisensor multizone moving target algorithm

The algorithm we introduce consists of three optimization levels.
A global level, namely the forward–backward level, containing two
entangled sublevels a sensor-to-zone allocation optimization level -
referred before as the upper level- and a local optimization algorithm
allowing to find best resource sharing -referred before as the lower
level. At forward–backward level, the goal is to obtain the optimal
search plan, i.e. for each time best sensor-to-zone allotment and best
resource sharing, by refining successively an initial search plan. It is
known as the myopic search plan and defined by not anticipating
the motion of the target. It implies that the D (backward) functional
is not employed in computing the myopic search plan. Let k be an
iteration index such that D1

k (1, 1) is the value of D at first time in the
first cell of the first zone for iteration k.

The multisensor multizone moving target algorithm takes the
following form:

• Initialization:
◦ ∀�, ∀z, ∀i, D�

1(z, i) = 1;
◦ ∀k, ∀z, ∀i, F1k (z, i) = �z,i;

• Iteration (k index):
◦ Iteration (� index):
– ∀z, ∀i, compute the optimal allotment and resource sharing

with prior ��
z,i = U�

k(z, i)D
�
k(z, i);

– ∀z, ∀i, compute U�+1
k (z, i);

◦ ∀z, ∀i, compute D�
k+1(z, i);

◦ Stop: when the search plan is no more improved.

Fig. 2 illustrates this algorithm. We will see further that the opti-
mal search plan can be far more effective than the myopic search
plan.

5. Cooperating search resources and cross-cueing

Up to now, the search efficiency has been only evaluated via a
conditional detection functional. Thus, it is a binary (0–1) functional
which can appear as rather limitative, in particular if we want to
evaluate the benefit of cooperating search resources. This is the case
if we consider that a detection by a given search resource can be
viewed as a clue and if we want to define an evaluation functional
crossing clues coming from various sources.

5.1. A cross-cueing functional

For introducing the cross-cueing functional, we restrict to a given
zone z, at a given time-period andwe assume that two distinct search
resources (1 and 2) are available. Then, the target is said to be “cross-
cued ” if it has been detected by both search resources. Assuming
that detections are independent and that the target is actually in cell
cz,i, the conditional probability Pcc(�1(cz,i),�2(cz,i)) of such event

for the cell cz,i is given by

Pcc(�1(cz,i),�2(cz,i)) = P(�1(cz,i))P(�2(cz,i)), (31)

where P(�1(cz,i)) represents the probability of detecting the target
by means of sensor 1 if it is hidden in cell cz,i, while a search effort
�1(cz,i) is put on cz,i. So, the basic problem we have to solve is

max
�1(.),�2(.)

∑
i∈z

�z,iPcc(�1(cz,i),�2(cz,i))

s.t.
∑
i∈z

�1(cz,i)��1,
∑
i∈z

�2(cz,i)��2. (32)

Notice that the objective functional does not have general concavity
properties. However, it is separable. As it is shown in Appendix D,
this allows an easy calculation of the dual functional. Thus, the above
problem can be efficiently solved via dualization (see Appendix D).

Assume now that k search resources are affected to the zone
z, i.e. m−1(z) = {l1, . . . , lk}, then we consider the following objective
functional:

F(m, {�s s ∈ {1, . . . , S}})
= −

∑
z

∑
i∈z

∑
(s,s′),s�s′∈m−1(z)

�z,ics,s′ ,iP(�s(cz,i))P(�s′ (cz,i)).

(33)

In Eq. (33), the factor cs,s′ ,i stands for the “confirmation” effect gained
by a simultaneous detection by search resources s and s′. Let us now
introduce multiperiod multizone cross-cueing optimization.

5.2. Multiperiod, multizone optimization

We consider the following cost functional:

F({mt ,�t
s}Tt=1) = −

∑


∈�

Z∑
z=1

⎡⎣ Cz∑
i=1

� 


T∏

t=1

×

⎛⎜⎜⎝ ∑
(s,s′)∈m−1

t (z)

Pcc(�t
s(cz,i),�

t
s′ (cz,i))

⎞⎟⎟⎠
⎤⎥⎥⎦ ,

with

Pcc(�t
s(cz,i),�

t
s′ (cz,i)) = P(�t

s(cz,i))P(�
t
s′ (cz,i)), (34)

where � denotes the set of target trajectories, and 

 is a target
trajectory in �. In Eq. (34), the summation is done over all the search
resource couples allotted to zone z ((l, l′) ∈ m−1

t (z), l�l′). Thus, we
have to consider the following problem:∣∣∣∣∣∣∣∣∣∣∣∣

min
{∀t,mt ,�t

s}
F({mt ,�t

s}Tt=1),

s.t. ∀ t, ∀z, ∀s ∈ m−1
t (z),

Cz∑
i=1

�t
s(cz,i)��t

s,

∀ i ∈ z,�t
s(cz,i)�0,∀s ∈ S,

mtmapping : s ∈ S → z ∈ Z.

(35)

Again, the problem is greatly simplified if the objective functional F
is rewritten as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F({mt ,�t
s}Tt=1) = −

Z∑
z=1

⎡⎣∑
i∈z

��
z,i

∑
(s,s′)∈m−1

� (z)

Pcc(�t
s(cz,i),�t

s′ (cz,i))

⎤⎦ ,

where ��
z,i=

∑


∈ 

�,z,i

�( 

)
t��∏

1� t� T

( ∑
(s,s′)∈m−1(zt )

Pcc(�t
sl
(cz,i),�t

sl′
(cz,i))

)
,



�,z,i = { 

 ∈ �| 

(�) = cz,i},


 = (cz1,i1 , . . . , cz� ,i� , . . . , czt ,it , . . .),

�( 

) =
T−1∏
t=1

�t,t+1(czt ,it , czt+1,it+1 ).

(36)
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For a given �, and considering that the ��
z,i are known (the new

“priors”), the multiperiod search problem is put in the standard form.
So, the problem is again to calculate the ��

z,i. We have recourse to
the same splitting, i.e.:

��
z,i = U�(z, i)D�(z, i),

where U and D are recursively defined by:

U�(z, i) =
∑
j∈z̃

��−1,�(j, i)

×

⎛⎜⎜⎝ ∑
(s,s′)∈m−1

�−1(z̃)

Pcc(��−1
s (cz,i),�

�−1
s′ (cz,i))

⎞⎟⎟⎠U�−1(j, z̃),

D�(z, i) =
∑
j∈z̃

��,�+1(j, i)

×

⎛⎜⎜⎝ ∑
(s,s′)∈m−1

�+1(z̃)

Pcc(��−1
s (cz,i),�

�+1
s′ (cz,i))

⎞⎟⎟⎠D�+1(j, z̃).

(37)

In the above equation, we denote by z̃ the zones which can be
attained conditionally to the hypothesis that the target is in the
cell i of the zone z at the period � and that it has a Markovian
prior �.

6. Results

This section is devoted to show how our method can be employed
practically. All algorithms have been encoded with the MATLAB lan-
guage and tested on a 1.06GHz computer.

Fig. 3. An aerial photograph of the lake of Laouzas.

6.1. Search models

Our goal is to detect a target hidden into the neighborhood of the
lake of Laouzas, more precisely near Rieumontagné, in the south of
France (see Fig. 3).

First we discretize a map of this region into cells according to
ground characteristics (see Fig. 4). Five classes to which cells can
belong are identified: forest, water, town, rough land, very rough
land or flat land. Cells are then aggregated into four zones (Z = 4) of
equal area (∀z, Cz = 30).

Let us now consider search resources. It is assumed that at most
six sensors are available for conducting the search. For each sensor
s the non-detection probability P̄s[�s(cz,i)] is given by P̄s[�s(cz,i)] =
exp(−ws

z,i�s(cz,i)) where ws
z,i are visibility coefficients. These coeffi-

cients depend on the kind of target that is searched and on the kind
of land over which the search is conducted (see Table 1).

In the following, parameters of the CE algorithm are constant. The
parameter 	 is fixed to 0.4 and the initial probability laws for draw-
ing the allotment of sensors to search zones are uniform (∀s, pMs
are uniform probability laws). Let us now study optimization of re-
sources for searching a stationary target.

6.2. Stationary target

In this section we restrict the problem to a stationary target. The
search model has been given in Section 3.

6.2.1. Detection functional
It is assumed that the target is probably hidden near Rieumon-

tagné (see Fig. 5). The target is searched in a first case by the four
first sensors (S = 4) of Table 1 and in a second case by all the six
sensors (S=6). Each sensor has an amount of resource equal to 5. In
both cases, sensors try to allot a high amount of resource where the
target has most chances to be detected due to the prior of the target
or to their visibility coefficients. Due to the low amount of resource
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Fig. 4. The space of search: discretized map and map of the lake of Laouzas.

Table 1
Sensor visibility.

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6

Forest 0.4 0.5 0.6 0.8 0.5 0.1
Water 0.9 0.1 0.1 0.1 0.3 0.5
Town 0.3 0.1 0.4 0.6 0.5 0.2
Rugged land 0.2 0.7 0.8 0.2 0.4 0.6
Very rugged land 0.1 0.6 0.7 0.1 0.3 0.5
Flat land 0.8 0.9 0.1 0.7 0.6 0.2
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Fig. 5. The target prior.

Table 2
Allotments for stationary target and detection functional.

Allotments S = 4 Allotments S = 6

Sensor 1 0 0 1 0 0 0 1 0
Sensor 2 0 0 1 0 0 0 1 0
Sensor 3 0 1 0 0 0 1 0 0
Sensor 4 0 0 0 1 0 0 0 1
Sensor 5 1 0 0 0
Sensor 6 1 0 0 0
Non-detection probability 0.8673881 0.8198461
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Table 3
Allotments for stationary target andtwo-sided optimization.

Allotments S = 4 Allotments S = 6

Sensor 1 0 0 1 0 0 0 1 0
Sensor 2 0 0 0 1 0 0 0 1
Sensor 3 0 0 0 1 0 0 0 1
Sensor 4 0 0 1 0 0 0 1 0
Sensor 5 0 0 0 1
Sensor 6 0 0 1 0
Non-detection probability 0.9218031 0.8892900

available, each sensor is allotted to the search zone where it has
most chances to detect a target. Into its allotment zone, each sensor
tries to share resources in order to obtain a uniform probability of
detection. Non-detection probability is thus 0.8673881 in the case
where four sensors are searching the target, and 0.8198461 in the
case where six sensors are employed. Table 2 presents allocation
results for both optimizations. Consider for instance the case S = 4.
The i-th row stands for the zone allotment to the i-th sensor. The
two-levels hierarchical optimization converges within a few steps of
CE. We can notice that the optimal allotment is not injective even if
S = Z.

6.2.2. Two-sided optimization
Now, prior on the location of the target is considered to be

imprecise: the prior over the cells is no longer known. However,
general information (at zone level) is known. It is thus assumed that
the target has probability 0.25 to hide in each of the four search
zones. As before, the target is searched in a first case by the four first
sensors of Table 1 and in a second case by all sensors. Each sensor
has an amount of resource equal to 5. In both cases, the target tries
to hide where sensors have a low visibility. In return, sensors will
allot a high quantity of resources at these places. Non-detection
probability is then 0.9218031 in the first case and 0.8892900
in the second case. Table 3 presents allocation results for both
optimizations.

Optimization of these two stationary problems request between
1 and 2min according to the size of the search problem.

6.3. Moving target, detection functional

We assume now that the target is Markovian and moves south
east from the surroundings of Rieumontagné. The transition matrix
describing the target motion is given in Fig. 6 and is assumed to
be constant over time. The search is carried out over four time pe-
riods by means of the four sensors in first case and six sensors in
second case, as presented before and the initial probability distri-
bution on the location of the target (at t = 1) is the same as before
(see Fig. 5). The amount of resources available for each sensor is 5,
6, 7 and 8 for time periods 1, 2, 3 and 4, respectively. Results of
the optimization are given in Tables 4 and 5. We can point out that
the myopic search plan is less efficient than the optimal search plan
(see Tables 4 and 5). However, if the gain in probability is slight,
it needs around 20% more resources at each time period in order
to obtain the same results with myopic search plans. The enhance-
ment in effectiveness between myopic and optimal search plans is
due to the ability of the optimal search plan to anticipate target
movement.

Now, let us study how the enhancement of effectiveness is ob-
tained by the multisensor multizone moving target algorithm. We
consider an experiment where the six sensors of Table 1 are em-
ployed to carry out the search. Each of these sensors has an amount
of resource equal to 1 at each time step. The target has the same

Fig. 6. The target transition probability.

characteristics as before. According to Table 6, we can see that the
more important increase in the effectiveness of the search plan is
made between iterations 1 and 2 of the multisensor multizone mov-
ing target algorithm. It is linked to a change in the allotment of sen-
sors to search zones. After the second iteration, the algorithm gives
slighter enhancements thanks to more accurate resource sharing. In
order to obtain the same non-detection probability for the myopic
search plan than for the optimal one, amount of resources available
for each sensor at each time must be increased by around a factor
3. Optimization time for moving target search problems with de-
tection functional is around 20–30min. This increase of computa-
tional time is due to the iteration of CE steps inferred by the FAB
algorithm.

6.4. Moving target, cross-cueing functional

In the following we present result of optimization for the cross-
cueing problem. The CE algorithm has been adapted in order to han-
dle the double allotment of sensors to search zones: draws with an
odd number of sensors allotted to a given zone are rejected. Fur-
thermore we consider that the costs cs,s′ ,i are constant and equal
to 1. Here, four sensors are searching the target. Search amount for
sensors 1 and 2 are the same: 60, 84, 108, respectively, for time
1, 2, 3. Search amount for sensors 3 and 4 are also equal: 72, 96,
120, respectively, for time 1, 2, 3. Visibility coefficients are the same
as before. Results of the optimization are given by Table 7. We can
see that here again the gain in probability given by the FAB algo-
rithm is low. However, it allows to save around 15% of resources. In
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Table 4
Myopic search plan.

Time Sensors Allotment S = 4 Non-detection probability S = 4 Allotment S = 6 Non-detection probability S = 6

Time 1 Sensor 1 0 0 1 0 0.8673881 0 0 1 0 0.8198461
Sensor 2 0 0 1 0 0 0 1 0
Sensor 3 0 1 0 0 0 1 0 0
Sensor 4 0 0 0 1 0 0 0 1
Sensor 5 1 0 0 0
Sensor 6 1 0 0 0

Time 2 Sensor 1 0 1 0 0 0.7236255 0 1 0 0 0.6379034
Sensor 2 0 0 0 1 0 0 0 1
Sensor 3 0 1 0 0 0 1 0 0
Sensor 4 0 0 0 1 0 0 0 1
Sensor 5 0 0 1 0
Sensor 6 0 0 0 1

Time 3 Sensor 1 0 0 1 0 0.5787760 0 0 1 0 0.4727772
Sensor 2 0 0 1 0 0 0 1 0
Sensor 3 0 0 0 1 0 0 0 1
Sensor 4 0 0 0 1 0 0 0 1
Sensor 5 0 0 0 1
Sensor 6 0 1 0 0

Time 4 Sensor 1 1 0 0 0 0.4423658 1 0 0 0 0.3325033
Sensor 2 0 0 0 1 0 0 0 1
Sensor 3 0 1 0 0 0 1 0 0
Sensor 4 0 0 0 1 0 0 0 1
Sensor 5 0 0 1 0
Sensor 6 0 1 0 0

Bold numbers are here to point out the final results of each search plan.

Table 5
Optimal search plan.

Time Sensors Allotment S = 4 Non-detection probability S = 4 Allotment S = 6 Non-detection probability S = 6

Time 1 Sensor 1 1 0 0 0 0.4056058 1 0 0 0 0.2962617
Sensor 2 0 0 1 0 0 0 1 0
Sensor 3 1 0 0 0 1 0 0 0
Sensor 4 1 0 0 0 1 0 0 0
Sensor 5 1 0 0 0
Sensor 6 1 0 0 0

Time 2 Sensor 1 0 1 0 0 0.4055168 0 1 0 0 0.2958389
Sensor 2 0 0 0 1 0 0 1 0
Sensor 3 0 1 0 0 0 1 0 0
Sensor 4 0 0 0 1 0 0 0 1
Sensor 5 1 0 0 0
Sensor 6 0 0 0 1

Time 3 Sensor 1 0 0 1 0 0.4053246 0 0 1 0 0.2954212
Sensor 2 0 0 1 0 0 0 1 0
Sensor 3 0 0 0 1 0 0 0 1
Sensor 4 0 0 0 1 0 0 0 1
Sensor 5 0 0 0 1
Sensor 6 0 1 0 0

Time 4 Sensor 1 0 0 1 0 0.4052149 0 0 1 0 0.2950101
Sensor 2 0 0 0 1 0 0 0 1
Sensor 3 0 1 0 0 0 1 0 0
Sensor 4 0 0 0 1 0 0 0 1
Sensor 5 0 0 0 1
Sensor 6 0 1 0 0

Bold numbers are here to point out the final results of each search plan.

order to obtain the same results with a myopic search plan, search
resources have to be increased by around 15% at each time period.
Optimization time for moving target search problems with cross-
cueing functional is around an hour. This increase of computational
time compared with moving target search problem with detection
functional is due to the complexity of the cross-cueing functional:
it requests more time to compute the resource sharing at lower
level.

7. Conclusion

The problem we have considered here is the search for a (mov-
ing) target within a hierarchical framework. It is difficult because
we have to deal with two completely entangled optimization levels
involving continuous and discrete optimization in a hierarchical
setup. The approach we have proposed is both original and feasi-
ble. It is also sufficiently versatile to handle a variety of problems.
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Table 6
Evolution of search plans.

Iteration Time 1 Time 2 Time 3 Time 4 Non-detection probability

Myopic search plan (iteration 1) 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0.4423658
0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Second search plan (iteration 2) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0.4086939
0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

Third search plan (iteration 3) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0.4056265
0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

Optimal search plan (iteration 4) 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0.4052149
0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1

Bold numbers are here to point out the final results of each search plan.

Table 7
Myopic and optimal search plans for the cross-cueing problem.

Time Sensors Myopic search plan Non-detection probability Optimal search plan Non-detection probability
Allotment Allotment

Time 1 Sensor 1 1 0 0 0 0.7359 1 0 0 0 0.4497
Sensor 2 1 0 0 0 0 1 0 0
Sensor 3 0 1 0 0 1 0 0 0
Sensor 4 0 1 0 0 0 1 0 0

Time 2 Sensor 1 1 0 0 0 0.5723 1 0 0 0 0.4487
Sensor 2 1 0 0 0 0 1 0 0
Sensor 3 0 1 0 0 1 0 0 0
Sensor 4 0 1 0 0 0 1 0 0

Time 3 Sensor 1 1 0 0 0 0.4737 1 0 0 0 0.4478
Sensor 2 1 0 0 0 0 1 0 0
Sensor 3 0 1 0 0 1 0 0 0
Sensor 4 0 1 0 0 0 1 0 0

Bold numbers are here to point out the final results of each search plan.

Thus, extending this hierarchical discrete-continuous optimization
framework to the moving target case is rather straightforward.
The effectiveness of our approach has been proved on realistic
simulations.

Appendix A. Solving the basic search problem

Let f be a separable functional i.e. X ∈ Rn → f (X) = ∑n
i=1 fi(xi)

and the constrained (primal) optimization problem:

P

⎧⎪⎨⎪⎩
min
X

f (X)

s.t. xi�0 and
n∑

i=1
xi = 1.

(38)

From KKT conditions, we know that there exists Lagrangian multipli-
ers {�1, . . . ,�n

} ∈ (R+)n and � ∈ R such that the following equalities
are satisfied at the optimum of the primal problem P:

KKT

⎧⎨⎩
f
′
i (xi) − �

i
+ � = 0,

�
i
xi = 0, ∀i = 1, . . . ,n.

(39)

The key for solving the primal problem is to consider the dual func-
tional �(�) defined by⎧⎪⎪⎨⎪⎪⎩

�(�) = inf
X∈(R+)n

L(X,�) (� ∈ R),

L(X,�) =
n∑

i=1
fi(xi) + �

(
n∑

i=1
xi − 1

)
.

(40)

If, furthermore, we assume that a −1 term has been added to the
classical non-detection functional—only for simplifying the expres-
sion of the dual function �(�), i.e. fi(xi)= �i(e

−wixi − 1)—KKT condi-
tions yield{−�iwie

−wixi(�) + � = 0, ∀i s.t. xi(�) >0,
−�iwi + ��0, ∀i s.t. xi(�) = 0

(41)

and the dual functional stands as follows:

�(�) = −
n∑

i=1


i

(
1 − �

�iwi

)+

+ �

⎛⎝ n∑
i=1

1
wi

[
ln
(
piwi
�

)]+
− 1

⎞⎠ . (42)

Let �∗ be the unique value of � maximizing �(�), then the solution
to the primal problem is

x∗
i = 1

wi

[
ln
(

�iwi
�∗

)]+
. (43)
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Appendix B. The local search game

The problem we have to solve is

max
{�i|z}

min
�s

D(�s, {�i|z}),

where

D(�s, {�i|z}) =
∑
i∈z

�i|z
∏

s∈m−1(z)

exp(−ws
z,i�s(cz,i)),

s.t.

⎧⎪⎨⎪⎩
∑
i∈z

�s(cz,i) = �s,∑
i

�i|z = 1. (44)

Thus, the above maximin optimization problem can be splitted into
two subproblems:⎧⎨⎩
for the target: max

�i|z
min
�s

D(�s, {�i|z}),
for the sensors: min

�s
max
�i|z

D(�s, {�i|z}).
(45)

This is a maximin problem and it is known that if there is a saddle
point (�∗

s , {�i|z}∗), such that

D(�∗
s , {�i|z})�D(�∗

s , {�i|z}∗)�D(�s, {�i|z}∗), (46)

then

max
�i|z

min
�s

D(�s, {�i|z}) = min
�s

max
�i|z

D(�s, {�i|z})D(�∗
s ,�

∗
u|z)

= D(�∗
s , {�i|z}∗). (47)

In the case where only one sensor is allotted to the search zone, the
optimal strategies of the target and of the sensors are simply given
by a classical result [3]:

�∗
s (cz,i) = �s

ws
z,i

1∑
i∈z ws

z,i
−1

, �∗
i|z = 1

ws
z,i

1∑
i∈z ws

z,i
−1

. (48)

However, the problem is somewhat complicated when multiple sen-
sors can be allotted to the same search zone. Let us now examine
the problems we have to solve (see Eq. (45)).

Optimization of the target strategy: For a given zone z, the opti-
mization problem for the target strategy is

min
�i|z

− D(�∗
s ,�i|z)

s.t.
∑
i

�i|z = 1 and �i|z�0. (49)

KKT optimality conditions then yield⎧⎨⎩
If �∗

i|z >0 then
∏
s
exp(−ws

i,z�
∗
s (cz,i)) = �,

If �∗
i|z = 0 then

∏
s
exp(−ws

i,z�
∗
s (cz,i)) <�,

(50)

Optimization of the sensor searching strategy: The problemwe have
to solve is

min
�s

D(�s,�
∗
i|z)

s.t.
∑
i

�s(cz,i) = 1 and �s(cz,i)�0. (51)

KKT optimality conditions then yield⎧⎪⎨⎪⎩
If �∗

s (cz,i) >0 then ws
z,i�

∗
i|z exp(−ws

z,i�
∗
s (cz,i))Rs(cz,i) = −�s,

If �∗
s (cz,i) = 0 then ws

z,i�
∗
i|z exp(−ws

z,i�
∗
s (cz,i))Rs(cz,i)

= − �s − �i,s (�i�0),
with

Rs(cz,i) =
∏
s′�s

exp(−ws′
u�∗

s′ (cz,i)). (52)

Thus, for a given sensor s, the dual functional � is

�(�∗
s ,�.|z) =

∑
i|�∗

s (cz,i)>0

− �s
ws
z,i

+
∑

i|�∗
s (cz,i)=0

−
(

�s + �i,s
ws
z,i

)

+ �s

⎛⎝�s −
∑
i

�∗
s (cz,i)

⎞⎠ . (53)

The maximum of � w.r.t. the {�i,s�0} multipliers is obviously
achieved for: ∀i, �i,s = 0. So, at the optimum we have (see Eq. (52))

ws
z,i�

∗
i|z exp(−ws

z,i�
∗
s (cz,i))Rs(cz,i) = −�s, ∀s ∈ m−1(z). (54)

Now the multiplier �s is necessarily strictly negative, since otherwise
we would have the equality �∗

i|zw
s
z,i = 0 whatever the cell i. Now, it

assumed that the visibility coefficients wz,i cannot be null, otherwise
the target would hide for sure in these cells. This means that �∗

i|z is
strictly positive whatever the cell ci,z. Thus, from Eqs. (50), we have∏
s
exp(−ws

i,z�
∗
s (cz,i)) = �, ∀cz,i. (55)

Appendix C. Minimizing the Kullback information

Minimizing the Kullback information K leads to consider the
following continuous optimization problem:

max
pM′ K�

T∑
k=1

ln

[∏
s
pM

′
s (xks )

]
s.t.

∑
z

pM
′

s (z) = 1. (56)

It is worth making the objective functional K more explicit i.e.:

K=
∑
z

⎛⎜⎝ ∑
s|xks=z

⎡⎣ln S∏
s=1

pM
′
(z|s)

⎤⎦
⎞⎟⎠

=
∑
z

∑
s
[card {Xk|xks = z} ln(pM′

(z|s))]. (57)

Denoting az,s�pM
′
(z|s) and bkz,s� card (Xk|xks =z), the continuous op-

timization we have to solve now stands as follows:

max
az,s

∑
z

∑
s

bkz,s ln(az,s)

s.t.
∑
z

az,s = 1, s = 1, . . . , S, 0�az,s�1. (58)

It is easier to consider that inequality constraints be implicitly taken
into account. Denoting � an S-dimensional vector made of scalar
Lagrange multiplier, we have to consider the maximization of the
following Lagrangian functional:

L=
∑
z

∑
s

bkz,s ln(az,s) + (�TA − 1),

where AT =
(
. . . ,

∑
z

az,s, . . .

)
, �T = (. . . ,�s, . . .). (59)

By differentiating the Lagrangian L, we obtain the following neces-
sary condition:

bkz,s
1
az,s

+ �s = 0, ∀z. (60)

Thus we have az,s = csbkz,s, where cs is a constant. The positivity
constraints (of the az,s) are taken into account via the positivity of
the constant cs, while the equality constraint:∑
z

az,s = 1, (61)
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leads to

pM
′
(z|s) = bkz,s

T
. (62)

Appendix D. Maximizing the cross-cueing functional

We restrict here to a single zone z, divided into cells i. Two search
resources can be deployed on this zone and we consider that the
target detection is “confirmed” if it is detected by the searchers. So,
we consider now the following optimization problem P:

P

∣∣∣∣∣∣∣∣
min −Pcc with Pcc = ∑

i∈z
�ip(�1(cz,i))p(�2(cz,i)),

s.t.
∑
i∈z

�1(cz,i)��1,
∑
i∈z

�2(cz,i)��2,

�1(cz,i)�0, �2(c2,i)�0.

(63)

In Eq. (63), �1(cz,i) (resp. �2(cz,i)) is the search effort put on the
cell i by searcher 1 (resp. searcher 2). As previously, it is assumed
that p(�1(cz,i)) (resp. p(�2(cz,i)) ) is the conditional probability that
searcher 1 (resp. searcher 2) detects a target in the cell i, and thus:{
p(�1(cz,i)) = 1 − exp(−w1,i�1(cz,i)),
p(�2(cz,i)) = 1 − exp(−w2,i�2(cz,i)).

(64)

We call Pcc (see Eq. (63)), the cross-cueing functional. Generally, this
cross-cueing functional is not concave everywhere. However, it has
the great advantage to be separable. Considering the primal problem
(Eq. (63)) leads to consider the following Lagrangian functional:

L(�,�) = −
∑
i∈z

�ip(�1(cz,i))p(�2(cz,i)) + �

⎛⎝∑
i∈z

�1(cz,i) − �1

⎞⎠
+ �

⎛⎝∑
i∈z

�2(cz,i) − �2

⎞⎠ . (65)

The Lagrangemultipliers � and � are positive, and the dual functional
�(�,�) is defined by

�(�,�) = min
u1,u2∈R2n+

L(�,�)(u1,u2),

u1 = (�1(cz,1), . . . ,�1(cz,i), . . . ,�1(cz,n)),

u2 = (�2(cz,1), . . . ,�2(cz,i), . . . ,�2(cz,n)). (66)

For given values of � and �, denote u∗
1 and u∗

2 the search vectors
which minimizeL(�,�). Assume furthermore that �∗

1(cz,i) is strictly
positive. What are the consequences? Considering the minimization
of L(�,�) on the convex domain R2n+ , a necessary condition for the
vectoru∗�(u∗

1,u
∗
2) to be a (local) minimum ofL(�,�) on the convex

set S�R2n+ is⎧⎨⎩
−∇ L(�,�)(u∗) ∈ N(S,u∗),
where
N(S,u∗)�{s ∈ S|〈s, s′ −u∗〉�0,∀s′ ∈ S}.

(67)

N(S,u∗) is the normal cone to S, in u∗. Considering Eq. (67), the
following (necessary) condition holds if we assume that �∗

1(cz,i) >0:

�
��1(cz,i)

L= −�i
�

��1(cz,i)
p(�1(cz,i))p(�2(cz,i)) + � = 0

for �1(cz,i) = �∗
1(cz,i),

or

�iw1,i(1 − p(�∗
1(cz,i)))p(�

∗
2(cz,i)) = �. (68)

The multiplier � being non-negative, the following implications re-
sult straightforwardly from Eq. (67):{
�∗
1(cz,i) >0 ⇒ �∗

2(cz,i) >0,
�i w1,i >0.

(69)

Moreover, since � is also positive, we have �∗
1(cz,i) >0 ⇐

⇒ �∗
2(cz,i) >0. Denoting X1,i�p(�∗

1(cz,i)), if �∗
1(cz,i) >0, then

X1,i and X2,i are the solutions of the following non-linear
system:⎧⎨⎩

�iw1,i(1 − X1,i)X2,i = �,
�iw2,i(1 − X2,i)X1,i = �,
X1,i,X2,i ∈ [0, 1].

(70)

Subtracting the second row to the first in Eq. (70), we obtain

X2,i = X1,i +
(

�
�iw1,i

− �
�iw2,i

)
,

and the second order equation:

−�iw1,iX
2
1,i +

(
�iw1,i − � + �

w1,i
w2,i

)
X1,i − �

w1,i
w2,i

= 0. (71)

So, the problem is reduced to searching the roots of the (above)
second order equation lying in the [0, 1] interval. It is easily shown
that there is at most one root in this interval. It simply remains to test
which couple (X1,i,X2,i) or (0, 0) provides the lower value of L(�,�),
for every cell i of the zone z. Thus, we see that the separability of
the cross-cueing functional Pcc greatly simplifies the optimization
problem.

The dual functional �(�,�) can now be calculated via Eq. (71).
This is simply a two-dimensional functional, which is furthermore
concave. The following ascent algorithm is considered:(

�k+1
�k+1

)
=
(

�k
�k

)
+ �kg(u

∗
1(�k,�k),u

∗
2(�k,�k)),

where

g(u∗
1(�k,�k),u

∗
2(�k,�k)) =

⎛⎝
∑
i∈z

�∗
1(cz,i)(�k,�k) − �1∑

i∈z
�∗
2(cz,i)(�k,�k) − �2

⎞⎠ . (72)
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