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a b s t r a c t

Image sequence analysis in video-microscopy has now gained importance since molecular biology is
presently having a profound impact on the way research is being conducted in medicine. However, image
processing techniques that are currently used for modeling intracellular dynamics, are still relatively
crude and yield imprecise results. Indeed, complex interactions between a large number of small moving
particles in a complex scene cannot be easily modeled, limiting the performance of object detection and
tracking algorithms. This motivates our present research effort which is to develop a general estimation/
simulation framework able to produce image sequences showing small moving spots in interaction, with
variable velocities, and corresponding to intracellular dynamics and trafficking in biology. It is now well
established that spot/object trajectories can play a role in the analysis of living cell dynamics and simu-
lating realistic image sequences is then of major importance. We demonstrate the potential of the pro-
posed simulation/estimation framework in experiments, and show that this approach can also be used
to evaluate the performance of object detection/tracking algorithms in video-microscopy and fluores-
cence imagery.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Context in biology

The development of systems biology is characterized by the set-
tlement of new techniques and technologies producing a vast
amount of data of different types or origins. Only automatic
approaches for analysis and interpretation of complex and massive
data will allow researchers to face this new challenge. This is
already well established for a number of biological fields such as
DNA sequence analysis, expression data analysis, and DNA micro-
arrays analysis. Also, in dynamical imaging of biological samples
substantial amount of work is necessary to overcome conceptual
and technological obstacles. This motivates our present research
effort which is to develop novel approaches based on recent
methods in computer vision and signal processing, able to analyze
information from 4D data related to intracellular dynamics and
membrane transport.

In fluorescence video-microscopy, methods that estimate tra-
jectories of small objects of interest (chromosomes, vesicles, etc.)

may encounter difficulties if the number of objects is large and
the signal-to-noise ratio is low. Moreover, the tracked objects are
not always visible in the sequence when tagging molecules sepa-
rate suddenly from the target objects. Obviously, the complexity
of dynamical processes involving many objects or groups of objects
in interaction cannot be easily modeled. The corpus of data to be
considered for a comparative analysis in a single experiment
formed by multiple image series, is also massive. Nevertheless, it
is now clear that the localization and spatio-temporal conforma-
tion of a large number of molecular constructions within the cell,
their dynamical response to diverse chemical, physical or bio-
molecular perturbations, are key elements for understanding the
essential functional mechanisms in life sciences. Motion informa-
tion and trajectories have to be extracted in order to analyze the
dynamical response of the cell to different perturbations and
experimental conditions.

In this paper, we propose a simulation/estimation framework
able to model complex data corresponding to interactions between
moving particles with variable velocities. Parsimonious models
representing fluorescence microscopy image sequences will be
defined to summarize complex data into a low dimensional set
of parameters. These models will be exploited to generate artificial
image sequences that mimic dynamics observed in real image
sequences. In our study, the acquisition rate of a real image se-
quence is typically one stack per second at most. The volume/stack
being is composed of 10 slices of 512� 512 pixels. This constitutes
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standard settings in fluorescence wide-field microscopy. The speed
of the vesicles ranges from 1 to 10 pixels and the number of objects
can be large (about a few hundreds).

Traditionally, tracking algorithms compute object trajectories
that have to be analyzed. Unlike previous methods (Smal et al.,
2007; Genovesio et al., 2006), we need to simultaneously estimate
the traffic component (e.g. moving objects) and the cytosolic com-
ponent, both involved in membrane transport. The main difficulty
is that these two adding components are perturbed by noise and
photo-bleaching. Our goal is then to robustly estimate each factor
and component for analysis. We introduce the simulation frame-
work to evaluate the performance of estimation methods we
propose.

1.2. Needs for simulation tools

In many application fields such as medical imaging or astron-
omy, simulations are required for validating physical models and
understanding recorded data. In this section, we explain the ratio-
nale for simulation methods in video-microscopy.

First, realistic simulations of dynamical processes usually give a
qualitative and controlled representation of the observed spatio-
temporal biological events. Simulation can be then considered as
a computational tool that can help to understand some mecha-
nisms of internal components within the cell. By interacting with
the control parameters, an expert can artificially simulate pro-
cesses close to the reality provided the dynamical models are
known; this philosophy has been successfully exploited to under-
stand dynamics of microtubule networks (Gibbons et al., 2001;
Nédélec, 2001). By minimizing the difference between a set of
descriptors computed from a real image sequence and the same
set of descriptors computed from a simulated sequence, the
parameters of the simulation method can be tuned to obtain an
artificial sequence that reveals apparently the same dynamical
characteristics than the observed sequence. This set of estimated
control parameters can then be considered a parsimonious repre-
sentation of the underlying process.

Moreover, dynamical information extraction usually relies on
tasks such as object detection, motion estimation or object track-
ing. The most commonly used tracking concept is the so-called
‘‘connexionist” approach (Anderson et al., 1992; Sbalzarini and
Koumoutsakos, 2005; Bonneau et al., 2005; Racine et al., 2006)
which consists in detecting particles independently in each frame
in a first step, and then linking the detected objects over time.
The related data association task is the most critical step in this ap-
proach, especially if the number of objects is very high and if the
trajectories interact. Sophisticated particle filtering techniques
(Smal et al., 2007; Genovesio et al., 2006; Li et al., 2007) or
graph-theory based methods (Thomann et al., 2003) have been
then developed to improve temporal matching. These tasks cannot
be done manually, and they must be fast, reliable and reproducible.
Furthermore, comparing object tracking results to ground truth is
the more straightforward method to assess the performance of
the applied method. Accordingly, simulation of a reliable ground
truth is an important and challenging task especially in biomedical
imaging. Let us point out that benchmarking data sets are for in-
stance widely used to compare methods in image restoration
(Portilla et al., 2003) and optical flow estimation (Barron et al.,
1994). In fluorescence video-microscopy, the proposed simulation
methods used to build benchmarking data sets are limited yet
since they are not able to represent complex interactions between
objects as observed in real image sequences. Nevertheless, in Hadj-
idemetriou et al. (2006), the authors proposed to estimate the
dynamics of outer tips of microtubules; the method is validated
on artificial data that mimic real image sequences. As for vesicle
tracking within living cells, random walks combined with paramet-

ric models are commonly used for validation (Genovesio et al.,
2006), but they cannot account for the complex movements of real
moving objects in video-microscopy sequences.

1.3. Simulation framework and properties

Let us briefly discuss the expected properties of a tool to per-
form simulation of image sequences:

(1) Two modeling approaches can be proposed for simulation:
data-driven modeling and physically-based modeling. The
physics-based approach relies on the physical properties of
the scene and the optical characteristics of the imaging sys-
tem for image modeling. The main advantage is that the
model parameters are motivated by physics. Hence, they
are easy to interpret because they directly correspond to
the real world. Conversely, the complexity of scenes and
models usually limits such an approach and the inverse prob-
lem cannot be easily solved. The data-driven modeling aims at
describing image sequences through statistical models
learned from real images (Soatto et al., 2001). This approach
can only mimic dynamical processes but is not able to
describe the physical properties of real processes. Data-dri-
ven and physically-based approaches can also be combined
to model the main components of the image sequence. In
video-microscopy, these components are essentially the
moving objects, the fixed or slowly-varying background
and noise.

(2) A simulation method must also be controllable (Wang et al.,
2003). This means that the representation must be parsimo-
nious, which is useful for interpretation by an expert. In
most cases, the parameters are related to the physical prop-
erties of the system but also to the properties of the object
image like scale or velocity. By using such a representation,
the simulation method becomes more interactive and allows
the expert to exploit a priori knowledge or to plan a set of
experiments by editing the simulation. For example, an
expert can indicate the locations of source and destination
points of moving objects, and by varying the positions of
these extremity points, she/he can observe the evolution of
the simulated intracellular trafficking. Finally, the expert
feedback can be used to set up a realistic simulation.

Our aim is to fulfill these requirements.

1.4. Our approach

In this paper, we propose a powerful method for simulating
complex video-microscopy image sequences. We design a realistic
image sequence modeling framework able to mimic the dynamical
and photometric contents of video-microscopy image sequences
showing trafficking. Unlike the biophysical approach which aims
at describing the underlying physical phenomena (Gibbons et al.,
2001; Nédélec, 2001), the proposed approach is only based on
the analysis of original image sequences. While being quite gen-
eral, the proposed method has been designed for analyzing the role
of fluorescence-tagged proteins moving around the Golgi appara-
tus and participating in the intracellular trafficking. These proteins
can be linked to vesicles. The vesicles are propelled by motor pro-
teins moving along polarized ‘‘cables” called microtubules, that
form a dense network. This mechanism explains the observed high
velocities which could not be accounted by basic diffusions. In or-
der to model the content of these sequences, it is decomposed in
two components. The first one is the almost static background of
the scene while the second one contains the objects of interest,
that is the tagged vesicles moving with high velocities. This repre-
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sentation yields a compact description of the dynamical processes
corresponding to small moving objects within the cell.

The remainder of this paper is organized as follows: in Section
2, a dynamical background model is proposed and a method is de-
fined to estimate the model parameters. In Section 3, a photomet-
ric and network-based dynamical model is introduced to represent
moving spots in fluorescence microscopy image sequences. A sta-
tistical method is also presented for moving spot detection. Finally,
in Section 4, we report several experimental results and demon-
strate the potential of the proposed approach.

2. Dynamical background modeling

In this section, we propose a statistical framework for modeling
and estimating the time-varying background.

2.1. Image model

Large structures lying inside the cell like the Golgi apparatus ap-
pear as nearly static during the observation time interval. In
images showing fluorescently tagged particles, the global image
intensity is proved to vary slowly along time. This is due to several
physical phenomena such as photo-bleaching or diffusion of fluo-
rescent proteins within the cell. Therefore, it is appropriate to pro-
pose a model able to describe the (slowly) time-varying
background since a stationary model would be too restrictive.
The modeling of more complex small moving objects with variable
velocities (traffic component) will be discussed in Section 4.

We have conducted experiments showing that the intensity
variation with respect to time can be well captured by a linear
model for each pixel of the image grid, mainly since we are dealing
with sequences of limited length. This simple model provides a
compact representation of the background. For each point, it
amounts to two parameters (linear temporal model). Conse-
quently, the background can be fully described by two 2D maps
corresponding to the two spatially varying parameters. The pro-
cessing of 3D volume sequences yields 3D maps if considered. Nev-
ertheless, the involved parameters are spatially correlated, which
must be taken into account in the estimation process. Let us point
out that the proposed approach, explained below, can be adapted
to non-linear intensity models (exponential or bi-exponential
models) in 2D or 3D, if desired.

Formally, we propose the following image sequence model for
the background:

f ðx; tÞ ¼ aðxÞ þ bðxÞt þ uðx; tÞ þ �ðx; tÞ; ð1Þ

where f ðx; tÞ denotes the intensity observed at pixel x ¼ ðx; yÞT 2 X
(or x ¼ ðx; y; zÞT for 3D volume sequences) and time t where X de-
notes the 2D or 3D image support. The two coefficients aðxÞ and
bðxÞ varies with the spatial image position and uðx; tÞ is a positive
function that describes the intensity of moving vesicles if any. In
the sequel, �ðx; tÞ is an additive white Gaussian noise. This model
is able to describe the background intensity of the whole image se-
quence with only two 2D/3D maps a ¼ faðxÞg and b ¼ fbðxÞg of the
same size as the image grid. In the next section, we describe a meth-
od to estimate the maps (a and b representing the time-varying
background model.

2.2. Pixel-wise estimation of the background model parameters

We first deal with the estimation of parameters aðxÞ and bðxÞ at
a given location x, i.e. for a single temporal 1D signal. Let us stress
out that this point-wise estimation must be performed several mil-
lions of times (for each image point) if the method is applied to a
3D image sequence. Accordingly, the proposed estimation proce-

dure must be very fast. Besides, in our study, vesicles have an erra-
tic behavior and sometimes stop for a long time. Consequently,
prior motion detection cannot be used to extract these objects
from the background. The estimation of the time-varying back-
ground will be then based on the image intensity only. Also, since
the background estimation can be altered by the presence of mov-
ing vesicles, we will resort to a robust estimation framework.

2.2.1. Robust M-estimation
The two parameters aðxÞ and bðxÞ are estimated by minimizing

a robust error function of the form

EðaðxÞ; bðxÞÞ ¼
Xn

t¼1

qðf ðx; tÞ � ðaðxÞ þ bðxÞtÞÞ; ð2Þ

where n is the number of temporal samples in the 1D signal and qð�Þ
is a robust function. A local minimum of EðaðxÞ; bðxÞÞ is commonly
obtained by using the iteratively re-weighted least squares (IRLS)
procedure (Huber, 1981).

The choice of the robust function qð�Þ is usually guided by the
noise probability density function (Ieng et al., 2004). In our case,
the overall noise is the sum of two components uðx; tÞ and �ðx; tÞ.
In order to take into account that uðx; tÞ usually takes high positive
values (vesicles appear as bright spots in the image), we choose an
asymmetric robust function, more specifically, the Leclerc estima-
tor (Allende et al., 2006; Ruckstuhl et al., 2001) plotted in Fig. 1 and
defined as

qðzÞ ¼
1� exp � z2

k2r2
1

� �
if z 6 0;

1� exp � z2

k2r2
2

� �
otherwise:

8>>><>>>: ð3Þ

The scale r2 factor can be estimated by applying a robust least-
trimmed squares (LTS) estimator to the pseudo-residuals (Gasser et
al., 1986) defined as: sðx; tÞ ¼ ðf ðx; t þ 1Þ � f ðx; tÞÞ=

ffiffiffi
2
p

, where the
coefficient 1=

ffiffiffi
2
p

ensures that E½ðsðx; tÞÞ2� ¼ E½ðf ðx; ðtÞÞ2�. The scale
factor r1 is estimated by using the variance of the residuals given
by the least-mean squares estimator and obtained at the initializa-
tion step. Let us point out that, in regions where there are no mov-
ing vesicles, r1 and r2 are found almost equal. The scale parameter
k acts as a threshold and is chosen in the range ½1;3�. Theoretically,
this value is relative to the point where the derivative of the q0ð�Þ-
function is zero (Black et al., 1998).

As a matter of fact, the proposed estimator is biased (Ruckstuhl
et al., 2001) but the bias is small. Simulations proved that the L2

Fig. 1. The asymmetric Leclerc robust function allows us to better discard outliers
related to moving vesicles when estimating the background component.
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risk of the estimator is smaller when an asymmetric cost function
is used and when the data are corrupted by an additive positive
signal. Fig. 2 shows that the proposed estimator is able to deal with
heavily contaminated data and outperforms the symmetric Leclerc
M-estimator.

2.2.2. Confidence matrix
An accurate estimation of the confidence matrix for the esti-

mated parameters is needed for the subsequent steps described
in Section 2.3. We use the approximation proposed in Ieng et al.
(2004) to compute the covariance matrix of the estimator

bCðxÞ ¼Pn
t¼1wðrðx; tÞÞðrðx; tÞÞ2

Pn
t¼1ðwðrðx; tÞÞÞ

2Pn
t¼1wðrðx; tÞÞ

� �2

�
Pn

t¼1wðrðx; tÞÞ
Pn

t¼1wðrðx; tÞÞtPn
t¼1wðrðx; tÞÞt

Pn
t¼1wðrðx; tÞÞt2

 !�1

ð4Þ

where rðx; tÞ ¼ f ðx; tÞ � ðaðxÞ þ bðxÞtÞ and the weights are defined as
wðzÞ ¼ q0ðzÞ=z. Unlike the expression given in Huber (1981), the
approximation given by (4) is not asymptotic and yields a better
estimation of the covariance matrix when n is small (e.g. n < 500).

2.3. Spatial coherence for background estimation

In this section, we introduce a process to regularize the 2D/3D
maps a and b. This can be accomplished by adopting the bias–var-
iance trade-off framework described in Lepski (1991), Maurizot et
al. (1995), Ercole et al. (2005), Kervrann and Boulanger (2006). In-
stead of using a single temporal signal at each location x to esti-
mate aðxÞ and bðxÞ, a set of temporal 1D signals is first collected
in a spatial neighborhood of pixel x. This collection of signals is
then analyzed in order to take into account the desired spatial
coherence of the parameters. In practice, a finite set of nested
space–time tubes/parallelepipeds is considered whose temporal
section is formed by a growing spatial neighborhood centered at
point x (see Fig. 3). Each tube TlðxÞ centered at point x is param-
eterized by its diameter /lðxÞ and l 2 ½1; . . . ; L� denotes the index
associated to each tube defined as

TlðxÞ ¼ fy 2 X : jjx� yjjp < /lðxÞg; ð5Þ

where jj � jjp denotes the Lp norm. In our experiments, we arbitrarily
choose the L1 norm to design the set of nested parallelepipeds
shown in Fig. 3.

In order to select the optimal diameter of the space–time tube,
we propose to minimize the point-wise L2 risk E½ðĥðxÞ � hðxÞÞ2� of
the parametric estimator where hðxÞ ¼ ðaðxÞ; bðxÞÞT is the true
parameter vector and ĥðxÞ its corresponding estimator, at position
x. The L2 risk can be decomposed into the squared bias and the var-
iance. As shown in Fig. 4, while the diameter /lðxÞ increases with l,
the bias increases too. This can be explained by the fact that the
data cannot be described any longer at same stage by a unique
parametric model. In contrast, by taking more data points, the var-
iance decreases. This behavior, also called bias–variance trade-off, is
exploited to detect the minimum of the point-wise L2 risk which is
nearly equal to twice the variance (Lepski, 1991) (see Fig. 4).

For each diameter /lðxÞ, new estimates of the background mod-
el parameters ĥlðxÞ and the associated covariance matrix bClðxÞ are
computed with the procedure described in Section 2.2 but using
now all the data contained in the considered neighborhood. It
can be shown that the bias–variance trade-off writes down as the
following test (Kervrann and Boulanger, 2006):

n� 2þ 1
2n

ĥlðxÞ � ĥl0 ðxÞ
� �TbC�1

l0 ðxÞðĥlðxÞ � ĥl0 ðxÞÞ < g ð6Þ

for all 1 6 l0 < l. While this inequality is satisfied, the diameter of
the tube is increased and the estimation process is continued. It is
established that the threshold g can be defined as a quantile of a
Fisher distribution of parameters 2 and n� 2� 1, since an estimator
of covariance matrix is only available.

In this section, we have proposed a spatially and temporally
varying background model and a statistical framework to estimate

Fig. 2. Regression using the asymmetric robust Leclerc function and the symmetric
one. The asymmetric estimator (red) fits well the ground truth (green), while the
symmetric function provides biased results (dotted line).

Time

Fig. 3. Set of nested tubes fTi;lgl¼1;...;3, respectively, red, blue, green parallelepipeds
are successively considered if we choose the L1 norm (see text).

0 1 2 3 4
0

1

2

3

4

bias : xα

variance : 1/xβ

MSE : (bias2 + variance)1/2

Fig. 4. Bias–variance trade-off principle. When the tube diameter increases, the bias
increases and the variance decreases. The optimum is achieved when the bias and
the variance are of the same order.
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the involved model parameters. In the second part of the paper, we
develop a simulation framework to generate dynamical content
corresponding to small moving spots in image sequences.

3. Spot model

In video-microscopy, vesicles appear in many image sequences
as small bright spots against a dark background. The object diam-
eter theoretically ranges from 60 to 150 nm. The resolution of the
microscope is about 130� 130� 300 nm. Then, the diameters of
spots are often below this spatial resolution. However, the point
spread function of the video-microscope makes them appear as
larger structures even if a deconvolution process is applied (Sibari-
ta et al., 2002). Furthermore, when the density of objects increases,
vesicles gather together and constitute small rods.

These vesicles are also known to move along microtubules, that
is along polymers that have an exceptional bending stiffness and
can be easily fit by smooth curves. Microtubules are conveyor belts
inside the cell. They drive vesicles, granules, organelles like mito-
chondria, and chromosomes with special attachment proteins
using molecular motors. It is also established that molecular mo-
tors form a class of proteins responsible for the intracellular trans-
port inside the cell (White et al., 1999). The dynein and kinein
proteins are two classes of motors associated with microtubules.
It has been shown that the concentration of these molecular mo-
tors influences the structure and the dynamics of the microtubule
network (Nédélec, 2001). In stable conditions, the speed and polar-
ization of these motors is assumed to be constant. This explains
partially why the observed velocity of vesicles is constant if they
move along the same microtubule.

In our study, vesicles move along the microtubule, leaving a do-
nor organelle and reaching an acceptor organelle, e.g. from the Gol-
gi apparatus to the endoplasmic reticulum. Unlike Hadjidemetriou
et al. (2006), we assume that the microtubule network is static
when compared to moving vesicles and we rather aim at generat-
ing video-microscopy image sequences following a data-driven
approach.

3.1. Photometric model

Large vesicles or sets of nearby vesicules can be satisfyingly rep-
resented by anisotropic Gaussian spots with variances related to
the spot dimensions ranging from 60 to 150 nm. Furthermore,
the size of vesicles in the image is close to the pixel size. The size
of spots will be estimated in the image sequence as described in
Section 3.3. In our approach, occlusions are not handled since
tagged molecules attached to vesicles can diffuse over time. In
addition, split and merge processes involving several vesicles occur
in real image sequences leading to rods (Zhang et al., 2006). The
latter can be considered as a unique object since the merged spots
move along the same microtubule.

In what follows, the covariance matrix of the anisotropic Gauss-
ian spot is a function of the displacement direction. The ellipticity
also depends on the velocity. Fig. 5 displays how the covariance
matrix of the anisotropic Gaussian function allows us to modify
the orientation of spots according to the direction of the microtu-
bule axis.

3.2. Dynamical model for traffic

3.2.1. Microtubule network modeling
A physics-based simulation of the self-organization of the

microtubule network can be found in Surrey et al. (2001). It is
based on the interaction between the motors (e.g. kinesine) and
microtubules, and explains some characteristic conformations

such as mitotic spindle. Typically, it takes into account the dynam-
ical behavior of the microtubules. However, this computer simula-
tion only describes the behavior of the microtubule network in-
vitro and is not adapted for the more complex in-vivo case in which
the microtubules interact with other organelles of the cell. In addi-
tion, the observation time intervals are usually short compared to
the dynamics of the network itself, assumed to be fixed in the
following.

In order to generate a synthetic but realistic microtubule net-
work, we exploit real image sequences as input for the modeling.
A real network could be tagged with green fluorescence protein
(GFP) but this network is too complex and individual microtubules
cannot be easily extracted. However, the microtubule network can
be also coarsely computed from a maximum intensity projection
map with respect to time, that is from the paths followed by the
tagged vesicles. For instance, Fig. 6 shows the maximum intensity
projection map of a real sequence of 300 2D images. This simple
projection allows us to select a subset of the main paths used for
the intracellular trafficking, leading to a network with low com-
plexity. This approach has been successfully exploited for the con-
struction of kymograms in Sibarita et al. (2006). However, as
shown in Fig. 6, all the paths are not complete, especially if the se-
quence duration is too short. The gaps are then completed by using
ad-hoc image processing tools. The locations of the roads are ex-
tracted from the network image using the unbiased line detection
algorithm defined in Steger (1998). Finally, each road is finally de-
scribed by its length, its width, its source node and its destination
node.

3.2.2. Selection of source/destination nodes
In the proposed simulation, vesicles are going from one region

to another. Typically, they leave a donor organelle and move to-
ward an acceptor organelle. Once the network has been computed,
the expert needs to specify the source and destination nodes on the
network. In order to take into account the lack of a priori informa-
tion on the organelles and their function, a node can be both a
source and a destination, while the other nodes represent the
intersection points of the network and are only used for routing.
Source–destination pairs are important cues for the simulation
and corresponds to a birth/death map as described in Wang et al.
(2003). These labels are actually related to the locations and rela-
tionships of specific organelles inside the cell.

vesicle

direction of displacement

microtubule location

Fig. 5. Gaussian model of the spot oriented in the direction of the microtubule axis.
The covariance matrix of the Gaussian function depends on the velocity of the
vesicle. The simulated vesicles are then elongated along with the displacement
direction.
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In Fig. 7, the source and destination nodes have been manually
selected by the expert. The destination nodes displayed in red cor-
respond to ‘‘end-points”, while the source nodes corresponding to
the membrane of the Golgi apparatus are displayed in green. In this
simulation, vesicles are only going from the Golgi to the ‘‘end-
points” located at the periphery of the cell. Thus, the retrograde
transport from ‘‘end-points” to Golgi is prohibited and assumed
to be inhibited by bio-chemical alterations.

In our approach, the paths are defined as the minimal paths be-
tween the source and the destination nodes. They are computed
using the Dijkstra algorithm (Dijkstra, 1959). In that case, the
weight associated to each edge can be defined as a function of
the length of the corresponding road, but it could take into account
other parameters as well. Let us note for instance the allowed

speed for a given edges could be retained to estimate the shortest
path. Finally, as expected, the vesicles move along the estimated
roads with velocities distributed around the speed-limit of the
roads. At each time step, the vesicle is moved along the microtu-
bule with a displacement step which is a proportional to the
velocity.

3.3. Estimation of model parameters and spot detection

Given a simulated sequence as described above, we now ad-
dress the problem of detecting moving vesicles with minimal prior
knowledge. The performance of any detector is better assessed if
ground truth is available, which is precisely what this simulation
framework can offer. Blob/spot detection in image sequences is

Fig. 6. Maximum intensity projection map computed from an image sequence. The paths followed by the vesicles appear as bright filaments. The maximum intensity
projection map has been simplified using the denoising method described in Kervrann and Boulanger (2006).

Fig. 7. Representation of a realistic synthetic network. This network is based on a maximum intensity projection map and has been manually simplified. This network is
composed of 146 nodes and 160 bi-directional links which correspond to 320 directional edges in the graph associated to the network.

J. Boulanger et al. / Medical Image Analysis 13 (2009) 132–142 137



Author's personal copy

an important task in video-microscopy. Here, we propose a method
able to decide with high confidence whether any image point be-
longs to the image background or a moving object. Our approach
is unsupervised. It will be applied to artificial image sequences ob-
tained by the modeling framework described in the paper and to
real image sequences.

Our two-step method for temporal detection is based on the
minimization of a penalized likelihood criterion in the line of work
of Birgé and Massart (2001) for model selection. In this step, we
consider a sequence of n observations Y1; . . . ;Yn (assumed to be
i.i.d.) that take its values in Rþ. We assume that a subset of
n� ‘; ‘ 2 f0; . . . ;ng, observations are realizations of a hidden vari-
able m at some unknown instants. Here K‘ will denote the un-
known number n� ‘ of temporal observations defined at time t as

Yt ¼ mþ nt ; nt �Nð0; s2Þ; ð7Þ

where m and the variance s2 are also unknown. To detect the K‘

observations corresponding to this model, we adopt a global ap-
proach where all the relevant observations are simultaneously de-
tected, by minimizing a penalized least squares criterion. The role
of the least squares term is to measure the fit of some observations
Yt ’s to m the more accurately possible. The penalty term is used for
determining the number of observations used to estimate m and s2.

In our application, a subset of residuals Yt,f ðx; tÞ � ðaðxÞþ
bðxÞtÞ (obtained as explained in Section 2.2.1) is assumed to belong
to the dark background of intensity m at pixel x. The remaining
observations are assumed to be related to the moving objects.
For the sake of simplicity in the notations, we will omit the variable
x since the detection is performed independently at each pixel.
Without loss of generality, the sequence of residuals Y ¼
fY1; . . . ;Yng is first re-ordered to produce a new sequence
Y 0 ¼ fY 01; . . . ;Y 0ng such that jY 0t j > jY

0
tþ1j since the Yt ’s are assumed

to be independent. Now, we consider the following collection of
models M ¼ fM1; . . . ;Mng:

M1 ¼ ðY 01;0; 0; . . . ; 0ÞT

..

.

Mn�1 ¼ ðY 01; Y
0
2; Y

0
3; . . . ;0ÞT

Mn ¼ ðY 01;Y
0
2;Y

0
3; . . . ;Y 0nÞ

T
;

8>>>>><>>>>>:
ð8Þ

where M‘ is a n-dimensional vector and K‘ ¼ n� ‘ is the number of
components of the background. Since the number of components of

the background is unknown, we introduce a penalized version of
the least squares criterion for signal decomposition (Huet, 2006),
defined as

JðM‘Þ ¼
n
2

logðbs2
‘ Þ þ n c1 log

n
n� K‘

� �
þ c2

� �
n� K‘

K‘

; ð9Þ

where

bs2
‘ ¼
jjY 0 �M‘jj2

n
¼ 1

n

Xn

t¼‘
Y 02t ; ð10Þ

Y 0 is the set of n re-ordered observations. The two universal con-
stants c1 and c2 were calibrated in Huet (2006) and found to be
c1 ¼ 2 and c2 ¼ 4. Since the number n of observations is small, we
compute JðM‘Þ for each model M‘ and select the model MH such
that
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Fig. 8. Illustration of the model selection principle applied to a synthetic signal
ðn ¼ 1000Þ. The number of samples corresponding to the background is about 800.
The X-axis represents the model number; the left ordinate corresponds to the value
jY ‘j associated to the model M‘ plotted in blue; the right ordinate represents the
value of the cost function JðM‘Þ.

Fig. 9. Simulation of a video-microscopy image sequence exploiting a 3D real
images acquired with time-lapse wide-field microscopy: (a) one frame of the
sequence projected (maximum) along z axis (depth) computed from the original
3D + time image sequence; (b) maximum intensity projection 2D map w.r.t. time t;
(c) results of steerable filtering; (d) results of the un-biased line detector; (e) map a;
(f) map b; (g) residual map; (h) noise-free image reconstruction from estimated
parameters.
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MH ¼ inf
M‘;l¼1;...;n

JðM‘Þ ð11Þ

for every pixel in the image. This procedure amounts to threshold-
ing the sequence of residuals (Huet, 2006).

In the second step, we collect the estimated models MHðxÞ at
each pixel x 2 X. Since the model selection amounts to determin-
ing a threshold TðxÞ such that TðxÞ ¼ Yn�KH

ðxÞ for the 1D sequence
of residuals, a threshold map T is computed. Finally, we determine
a global threshold c for the whole image in order to detect the
highest intensity level corresponding to the background compo-
nent for the whole image sequence (see Fig. 8). Practically, we
use the model selection procedure described earlier to threshold
the T map. In that case, the threshold values TðxÞ are considered
as i.i.d. observed variables. Finally, a pixel x belongs to the back-
ground if f ðx; tÞ � ðaðxÞ þ bðxÞtÞ 6 c and to moving objects
otherwise.

4. Experiments

In this section, we report two experiments to illustrate the pro-
posed simulation method. First, we show how we can generate a
realistic image sequence from real images. Second, a synthetic im-
age sequence whose parameters have been manually determined
is exploited to evaluate the performance of an image denoising

method as well as the estimation method of the background as de-
scribed in Section 3.

4.1. Realistic image sequence simulation

We utilize a real image sequence in order to simulate a se-
quence with similar and controlled photometric and dynamical
content. One frame of the real image is shown in Fig. 9a and con-
tains vesicles moving from the Golgi apparatus to the endoplasmic
reticulum. The parameters of the time-varying background are first
estimated as described in Section 2. The two 2D maps (a and b are,
respectively, shown in Fig. 9e and in Fig. 9f. Once these parameter
maps have been estimated, the background is subtracted from the
original images in order to obtain the sequence of residuals dis-
played in Fig. 9g, which is a noisy representation of the moving
spots. The main paths followed by vesicles through the 150 frames
of the real sequence can be observed on the maximum intensity
projection map in the time direction as shown in Fig. 9b. We have
further enhanced the maximum intensity projection map using
optimal steerable filters (Jacob and Unser, 2004) (Fig. 9c). The unbi-
ased line detection algorithm (Steger, 1998) is then applied to the
resulting enhanced image in order to estimate the positions of
the roads plotted in Fig. 9d. Finally 150 vesicles are generated
and moved along the reconstructed network. The velocities of

Fig. 10. Simulation of a synthetic video-microscopy image sequence: (a) hand-made network; (b) true map a corresponding to the background model; (c) true map b
corresponding to the temporal variation of the background; (d–f) three frames ðt ¼ 0; t ¼ 75; t ¼ 100Þ extracted from the noise-free synthetic image sequence; (i–k) three
noisy frames ðt ¼ 0; t ¼ 75; t ¼ 100Þ corresponding to a signal-to-noise ratio of 13.6 dB.
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the vesicles are tuned so that the simulated sequence provides the
same visual effect than the original sequence. It was confirmed by
biologist-experts that the proposed simulation method supplies
realistic image sequences both considering photometry and
dynamics aspects.

4.2. Benchmark generation

This simulation framework can also be exploited for bench-
marking. More specifically, in order to objectively evaluate the per-

formance of the proposed background estimation method, we have
simulated a 128� 128� 150 image sequence. This simulation
comprises 20 vesicles moving along the network plotted in Fig.
10a. To generate the background model, we have manually de-
signed the spatial appearance of the background as shown in Fig.
10b. Then, we have computed the image such that after a period
equals to twice the duration of the simulation, we would obtain
a uniform flat background. The two artificial maps a0 and b0 for
the background model are then shown in Fig. 10b and c. Three
frames of the noise-free simulated sequence are given in Fig.

Fig. 11. Computation of the background model parameters and detection of moving noisy vesicles: (a–c) three frames ðt ¼ 0; t ¼ 75; t ¼ 100Þ of the denoised image sequence;
(d) maximum intensity projection map; (e) estimated map ba; (f) estimated map bb; (g–i) residual images at time t ¼ 0; t ¼ 75 and t ¼ 100 (after background subtraction); (j–l)
detected vesicles using the proposed temporal detection method ðt ¼ 0; t ¼ 75; t ¼ 100Þ.
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10d–f. A zero-mean Gaussian noise of standard deviation r ¼ 9 has
been added to these frames and the resulting noised images are
displayed in Fig. 10i–k. The intensity of the vesicles are assumed
to follow a Gaussian law with mean 30 and standard deviation 3
leading to a signal-to-noise ratio of 13.6 dB. By combining all the
mentioned inputs, we have specified the useful set of parameters
to control the simulation.

Now, we apply the algorithm described in Boulanger et al.
(2008), Boulanger et al. (2007) to restore the noisy image sequence
obtained as explained above. The two-step denoising method ex-
ploits 3D + time information to improve the signal-to-noise ratio
of images corrupted by mixed Poisson–Gaussian noise (Boulanger
et al., 2008; Boulanger et al., 2007). A data-driven variance stabil-
ization transform is first applied to the image-data to introduce
independence between the mean and variance. In a second step,
an original statistical patch-based framework for noise reduction
and preservation of space–time discontinuities has been devel-
oped. In our study, discontinuities are related to small moving
spots with high velocity observed in fluorescence video-micros-
copy. The idea is to minimize an objective nonlocal energy func-
tional involving image spatio-temporal patches. The minimizer
has a simple form and is defined as the weighted average of input
data taken in spatially-varying neighborhoods. The size of each
neighborhood is optimized to improve the performance of the
pointwise estimator. By running six iterations of the adaptive
denoising algorithm (3� 3 patches), the resulting mean squared
error of the recovered image is 1.35, which corresponds to a sig-
nal-to-noise ratio of 30.0 dB. The noise is therefore drastically re-
duced (see Fig. 11) and, visually the reconstructed image
sequence looks similar to the original sequence. Let us also stress
that no vesicle has disappeared. Denoising algorithms are com-
monly applied to real image sequences in microscopy to make eas-
ier other image processing tasks.

We have evaluated the performance of our estimation method
of the time-varying background model. This method is applied to
a simulated noisy image sequence. The two estimated maps ba
and bb are shown in Fig. 11. The mean squared error between the
original map a0 and the estimated map ba is 1.50 and the signal-
to-noise ratio is 31.44 dB. The signal-to-noise ratio calculated from
the original map b0 and the estimated map bb is 32.70 dB. The re-
sults of the temporal detection method described in Section 3.3,
are presented in Fig. 11j–l at time t ¼ 0; t ¼ 75 and t ¼ 100.

5. Conclusion

In this paper, we have proposed a framework for the analysis
and the simulation of the dynamical content corresponding to
membrane trafficking in fluorescence video-microscopy. We have
designed models for the time-varying background and moving ves-
icles. We have also proposed statistical methods for estimating the
model parameters. The proposed simulation framework has been
demonstrated on artificial and data-driven image sequences.

More generally, the simulation framework can be used to gen-
erate realistic image sequences in fluorescence time-lapse micros-
copy. Any tracking, object detection and segmentation algorithm
can be evaluated since the ground truth is available. Since it is
challenging to assess the performance of image processing algo-
rithms on real image sequences, our motivation was to determine
a priori the limits of each algorithm (based on metrics to be arbi-
trarily defined such as mean square error, false alarm rate, etc.).
When applied to real images, the results can be better quantified
if well known on artificial images.

Nevertheless, further validations with biologist-experts are re-
quired to improve the proposed modeling framework. As already
investigated in Pécot et al. (2007), Pécot et al. (2008), we also plan

to address the traffic estimation problem based on the image se-
quence modeling we have described in this paper.
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