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Abstract

This paper is concerned with performance analysis for data association, in a target tracking environment. Effects of

misassociation are considered in a simple (linear) multiscan framework soas to provide closed-form expressions of the

probability of correct association. In this paper, we focus on the development of explicit approximations of this probability.

Via rigorous calculations the effect of dimensioning parameters (number of scans, false measurement positions or densities)

is analyzed, for various modelings of the false measurements. Remarkably, it is possible to derive very simple expressions of

the probability of correct association which are independent of the scenario kinematic parameters.

Index of principal notations:

• ca: correct association ,fa: false association, DTMC: discrete time Markov chain.

• erfc(x) =
R +∞

x
N (0, 1)(x) dx , N (m, σ): normal density meanm, s.d.σ.

• I: identity matrix ,1: indicator function ,11: a vector made of1.

• N : scan number,l: a scan index,λ: the false alarm distance.

• ∆f,c: difference of association costs ,K: number of false measurements.

1 Introduction

A fundamental problem in multi-target tracking is to evaluate the performance of the association algorithms. However,it

is quite obvious that tracking and association are completely entangled. In this context, a key performance measure is the

probability of correct association. Generally, track accuracy has been considered without consideration of the association

problem. However, remarkable exceptions exist. Very roughly, they can be divided in two categories. The first one deals

with track divergence. In particular, important efforts have been done for performance of the Nearest Neighbor (NN) filter. In

some approaches, the tracking error is modeled as a diffusion process [1]. Fundamental contributions deals with the analysis

of the dynamic process of tracking divergence [2], applied to NN filter performance[3] or the expected track life of the PDAF

[4] in clutter [5]. Equally important are contributions devoted to the performance evaluation of track initiation in dense envi-

ronments [6], [7].

The second category is scan-wise oriented, which means thatfor each set of measurements, the algorithm calculates

an optimal track-to-measurement assignment and propagateonly the best ”hypothesis”. Since it uses an optimal track-to-

measurement assignment it should provide better tracking performance than NN or PDA [8], [9]. However, this work is

essentially oriented toward a modeling of misassociationsvia the effect of permutations, from a0-scan viewpoint and its
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propagation [7]. Here, we focus on the effect of the ”contamination” of a target track due to extraneous measurements, within

a multiscan framework. In fact, a ”contamination” results in a change of the estimates of the track parameters, which could

render misassociations more likely than the true one. It is certain that only measurements situated in the immediate vicinity

of the target track would have a severe effect. This is the case for dense target environment or for situations where theseclose

outliers are intentionally generated (e.g. decoys) [10].

Here, our analysis is devoted to multiscan association analysis. For easing calculations the target motion is generally as-

sumed to be deterministic, while we are concerned with batchperformance. The linear estimation framework has been used

so as to allow us to obtain explicit closed-form expressionsof the probability of correct association, which is the onlyaim of

this contribution. Then, track purity can be seen as the probability that the proportion of false measurements ”included” in

the system track be under a certain level (percentage). False measurements are modeled either as deterministic or random.

This paper is organized as follows. In Section2 the elementary multiscan association scenario is presented. We have then

to calculate the association costs under the two hypotheses(correct and false associations). This is the object of Section 3.

The major result of this section is the calculation of (exact) closed-forms for these association costs via elementary linear

algebra, which will be of constant use subsequently.

The true problem is now to derive from Section 3 results an accurate closed-form approximation of the probability of

correct association. This is precisely the aim of Section 4,which plays the central role in this paper. The way we derive this

approximation is detailed. It is based upon an approximation of the normal density via a sum of indicator (step) functions.

The final result is a very simple closed-form approximation,whose accuracy is testified by Section 5 (simulation results).

Note, however, that these results are limited to a single false association within the whole batch period.

It is the aim of Section 6 to extend the analysis to multiple false measurements. The approach we developed for approxi-

mating the probability of correct association in the uniquefalse measurement case is no longer valid. In particular,the method

we used for approximating the integrals no longer holds. So,we have to resort to a different approach. Roughly, we consider

that the mean and variance of the difference of association costs are characterized by their distributions, themselvesdepend-

ing on random parameters. It is shown that the probability ofcorrect association is highly dependent of the number of false

measurements lying in the vicinity of the target trajectory.

2 Problem formulation

A target is moving with a rectilinear and uniform motion. Noisy measurements consisting of Cartesian positions are repre-

sented by the points:

P̃1 = (x̃1, ỹ1) , P̃2 = (x̃2, ỹ2) , · · · , P̃N = (x̃N , ỹN ) , (1)

at time periodst1, t2,· · · ,tN , which are called ”scans”. Under the correct association hypothesis, the position measurements

are the exact Cartesian positionsPi = (xi, yi), corrupted by a sequence of independent and identically normally distributed

noises (denotedεxi
, εyi

), i.e.:

P̃i = (x̃i, ỹi) = (xi + εxi
, yi + εyi

) . (2)

We assume that the observation noisesεx andεy are uncorrelated, with a varianceσ2. When a target is (sufficiently) isolated

from others, there is no ambiguity about the measurement origin. This is not true if a second target lies in the vicinity of

the first target. In this case, it becomes possible to make a mistake about the origin of an observation by associating it to

the wrong target, thus corrupting target trajectory estimation. But the question is to give a more precise meaning to theterm
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”sufficiently isolated”.
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Figure 1:The association scenario. Dotted line: correct association, dashed line: false association.

Thus, the aim of this article is to give a closed-form expression for the probability of correct association of measurements

to a target track, as a function of the number of scans and the distance of the outliers observations. In order to simplify the

scenario, we consider that the outlier measurementsPf are located close to the true target positionPl = (xl, yl) at time

periodtl, with a distanceλ1. Throughout this paperλ stands for the ratioλ/σ. The general problem setting and definitions

are depicted in fig. 1.

Let us denoteδ = ti+1 − ti, the inter-measurement time, and:

v = (vx, vy)
T

,

the two components of the constant target velocity on the Cartesian axis. Then, in the deterministic case, the target trajectory

is defined by the state vector(x1, y1, vx, vy).

3 Problem analysis

Under the correct association (ca) hypothesis and denotingτi
∆
= i δ, the position measurements̃Pi are represented by the

following equation2:




x̃1

ỹ1

x̃2

ỹ2

...

x̃N

ỹN




︸ ︷︷ ︸
Z̃ca

=




I2 02

I2 τ1I2

...
...

I2 τN−1I2




︸ ︷︷ ︸
X




x1

y1

vx

vy




︸ ︷︷ ︸
β

+




εx1

εy1

εx2

εy2

...

εxN

εyN




︸ ︷︷ ︸
ε̃ca

(3)

With these definitions and under the correct association hypothesis, the measurement model simply stands as follows:

Z̃ca = X β + ε̃ca . (4)

1For the sake of brevity, we assume that measurements are resolved (see [11])
2I: identity matrix
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3.1 The regression model [12]

Consider the following linear regression model:

Z̃ = X β + ε̃ , (5)

whereZ̃ are the data,X are the regressors andβ is the vector of parameters, to be estimated. Generally, theestimation ofβ

is made via the quadratic loss function:

L2(β) =
(
Z̃ −X β

)T (
Z̃ −X β

)
= ‖Z̃ −X β‖2 . (6)

If the matrixX TX is non-singular, thenL2(β) is minimum for the unique valuêβ of β such that:

β̂ = (X T X )−1X T Z̃ . (7)

From the estimation̂β of β, let Ẑ be the estimator of the meanX β of the random vector̃Z defined by:

Ẑ = H Z̃ ,

with :

H = X (X TX )−1 X T .

The vector of the residualŝε
∆
= Z̃ − Ẑ is given by:

ε̂ = M Z̃ , (8)

with M = I−H , andI the identity matrix. It is easy to check thatM is a projection matrix (i.e.MT = M andM2 = M).

We also recall the following classical identities, which will be used subsequently [13]:

M X = 0 , and:ε̂ = M ε̃ . (9)

3.2 Evaluation of the correct association probability

Assume that the outlier measurementPf,l = (xf , yf ) is located at the point (1 ≤ l ≤ N , see fig. 1):

{
xf = xl ,

yf = yl − λ .

The correct association is then defined by the association ofpoints
{

P̃1, · · · , P̃l, · · · , P̃N

}
∆
= Z̃ca, whereas the wrong asso-

ciation is defined by
{

P̃1, · · · , P̃f,l, · · · , P̃N

}
∆
= Z̃fa (the lowercasef stands for false association). The vectorsẐca andẐfa

are similarly defined from̃Zca, Z̃fa and the regression equation (eq. 8).

The vectors of residuals arêεca = Z̃ca − Ẑca under the correct association hypothesis (ca) andε̂fa = Z̃fa − Ẑfa under the

false association hypothesis (fa). They are deduced from a linear regression, leading to the following definition of the costs

of correct association (denotedCca) and false association (denotedCfa) :

Cca = (Z̃ca − Ẑca)
T (Z̃ca − Ẑca) , (10)

= ε̃T
ca M ε̃ca .

In the same way, we have also:

Cfa = ε̃T
fa M ε̃fa . (11)

Let us define now∆f,c the difference between the correct and wrong costs, i.e.:
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∆f,c
∆
= Cfa − Cca . (12)

Then, the probability of correct association is defined by the probability that∆f,c ≥ 0 (denotedP (∆f,c ≥ 0)). The aim of
this article is to give closed-form expressions for this probability .

Let beε̃com the vector of components that the vectorsε̃ca andε̃fa have in common, and definẽεl andfal as the comple-

mentary vectors3, so that:

ε̃ca = ε̃com + ε̃l , ε̃fa = ε̃com + fal . (13)

With these notations, the difference between the correct and wrong costs∆f,c can be written:

∆f,c = fa
T
l M fal − (ε̃l)

TM(ε̃l) ,

−2 (ε̃l − fal)
TM(ε̃com) .

(14)

Since the components of the vectorε̃com are normally distributed and supposed independent, this vector is normal (̃εcom ∼
N (O,Σcom) ), and similarly forε̃l (ε̃l ∼ N (O,Σl) ).

Assuming that the vector̃εl is set to afixed valueel, the law of the difference of costsL(∆f,c| ε̃l = el) is normal with

characteristics:

L (∆f,c| ε̃l = el) = N
[
fa

T
l Mfal − (el)

TMel, 4(el − fal)
T Φ(el − fal)

]
, (15)

where:Φ
∆
= MΣcomMT . Integrating this conditional density w.r.t. the Gaussianvectorε̃l, yields:

P (∆f,c(l) ≥ 0) = Eε̃l

[
erfc

(
el

TMel − fa
T
l M fal

2
√

(el − fal)T Φ(el − fal)

)]
(16)

Considering eq. 16, it is not surprising that it is the functionalΨ(el):

Ψ(el) =
(el)

TMel − fa
T
l M fal

2
√

(el − fal)T Φ(el − fal)
, (17)

which will play the fundamental role for analyzing the probability of correct association. However, though eq. 16 is simple

and general, it has the great inconvenient to involve the integration of theerfc function, so there is no hope to derive a closed-

form expression ofP (∆f,c(l) ≥ 0) by this way. So, we shall first turn toward a different approcah based on eq. 15. To that

aim, our developments follow the following steps:

• Calculation of a closed form expression for the mean and variance ofL (∆f,c| ε̃l) (see eq. 15) (see section 3.3).

• Approximation ofL (∆f,c| ε̃l) as a sum of indicator functions, see section 4.1.

• Approximation of the integration domains for the indicatorfunctions, see section 4.2.

3.3 A closed-form for the mean and variance ofL (∆f,c| ε̃l)

Let us concentrate first on the case of a unique false association. Using elementary matrix calculations, the following results

have been obtained (see Appendix A):

fa
T
l Mfal − (el)

TMel =

[
2
�
2N+1−6l+ 6l2

N

�
(N+1)(N+2) − 1

] (
‖el‖2 − ‖fal‖2

)
.

(el − fal)
T Φ(el − fal) = 1

(N+1)2(N+2)2

[
Q1(l, N) + 2l δQ2(l, N) + l2 δ2Q3(l, N)

]
‖el − fal‖2

.

(18)

3This means that vectors̃εl andfal are made of zeroes, excepted in thel positions
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where theQ1, Q2 andQ3 polynomials have the following expression:
∣∣∣∣∣∣∣∣∣∣

Q1(l, N) = 4N3 − 50N2 + N(48l − 18) + l(24 − 36l) + 4 ,

Q2(l, N) = − 6
δ

[
N2 − 5N − 2 + 4l(1 + 1

N − 3l
N )
]

Q3(l, N) = 36
δ2

[
N
3 − 1 + 2

N ( 1
3 + 2 l − 2 l

N2 )
]

.

Considering eq. 16 (last row), we can notice that the variations ofΨ(el) as a function ofl are not very important. Actually, it

is easily seen that N2

2 (N3−3lN2+3l2N)1/2 is varying between
√

N
2 and

√
N
4 asl varies between0 andN . Now, theerfc function

is quite flat for large values ofN , which means thatP (∆f,c(el) ≥ 0) is almost independent of thel value.

The previous calculations can be rather easily extended tomultiple false associations. LetFAK = (lk)K
k=1, be the vector

made by indiceslk of the (possible) false associations. A closed-form expression of the numerator of eq. 17 is:

e
T
KMeK − FA

T
KMFAK =

K∑

k=1

K∑

k′=1

αN (lk, lk′)
(
〈elk , elk′ 〉 − 〈falk , falk′

〉
)

,

with:

αN (lk, lk′) =

(
1{k=k′} − 2(2N+1−3 lk′−3 lk+

6 lkl
k′

N )

(N+1)(N+2)

)
.

(19)

Similarly, for the denominatorDΨK
of ΨFAK

, we have:

(eK − FA)
TM (eK − FA) = 2

√∑K
k=1

∑K
k′=1 θ(lk, lk′) 〈elk − falk , elk′ − falk′ 〉 ,

with:

(N + 1)2(N + 2)2 θ(lk, lk′) = [Q∗
1(FAK , N) + (lk + lk′)Q∗

2(FAK , N) + lklk′ Q∗
3(FAK , N)] .

(20)

The polynomialsQ∗
1, Q∗

2 andQ∗
3 stand as follows:

∣∣∣∣∣∣∣∣∣∣∣

Q∗
1(FAK , N) =

∑N
l=0,l/∈FAK

(4N + 2 − 6l)2 ,

Q∗
2(FAK , N) = − 6

δ

[∑N
l=0,l/∈FAK

(4N + 2 − 6l)(1 − 2 l
N )
]

,

Q∗
3(FAK , N) = 36

δ2

[∑N
l=0,l/∈FAK

(1 − 2 l
N )2

]
.

4 Closed-form approximations of the probability of correct association: unique

false measurement

As shown in section3, it has been possible to obtain closed-form expressions of the Ψ functional. However, even in the

unique false measurement case, it is still necessary to perform an integration of theerfc(Ψ(el) ) functional. Though this is

possible numerically, no analytic insight can be gained by this way. Actually, it is hopeless to consider approximations of the

erfc function and we have to turn toward a radically different approach based on approximating the normal density by a sum

of stepwise (indicator) functions.

For the sake of simplicity, the error measurement components ε̃x,l and ε̃y,l will be simply denoted asx andy. We have

now to deal with convenient approximations of the association cost difference∆f,c
∆
= Cfa − Cca. We restrict us to a single

outlier measurement. At this point, it is worth recalling that it isconditionallydistributed as a normal density (see eq. 15):

∆f,c| ε̃l = el ∼ N
[
fa

T
l Mfal − (el)

TMel, 4(el − fal)
T Φ(el − fal)

]
= N (m,σ). (21)
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The conditional meanm and varianceσ2 have been made explicit in section 3.3 (eq. 18), yielding:




m =

[
2
�
2N+1−6 l+ 6 l2

N

�
(N+1)(N+2) − 1

] (
‖el‖2 − ‖fal‖2

) ∆
= αN (l)

(
‖el‖2 − ‖fal‖2

)
,

σ2 = (N+1)2(N+2)2

[Q1(l,N)+2lδQ2(l,N)+l2δ2Q3(l,N)] ‖el − fal‖2 ∆
= βN (l) ‖el − fal‖2

.

(22)

From eq. 22, we see that∆f,c(N) is normally distributed with an almost constant mean (roughly
(
‖fal‖2 − ‖el‖2

)
), while

its variance is proportional toσN = 1
N ‖el − fal‖, which will be of constant use from now. The situation is depicted in fig.

2. In this figure, we see thatm is almost constant asN increases, while its varianceσ increases. This results in an increase

of P (∆f,c(N) ≥ 0) since the darked area on the left of the) threshold is decreasing. This section will be divided in three

m

σN2

σN1

N2 > N1

0

Figure 2:P (∆f,c ≥ 0) as a function ofN .

subsections corresponding to the main steps of the development. The first idea consists in approximating the above normal

density by a sum of indicator functions. Then, we have to calculate specific integrals (namedAi andBi integrals). This will

constitute the major difficulty since these integrals are defined on an implicitly defined domain.

4.1 Approximating the normal density by a sum of indicator functions

A first step will consist in approximating the densityL (∆f,c| ε̃l = el) (see eqs. 21, 22) by a weighted sum ofn indicator

functions (denotedϕi). Thus considering a ”3σ”4 support of this approximation centered on the meanm of this normal

density, i.e.[m − 3σ,m + 3σ] leads to:

L (∆f,c| ε̃l = el) ≃
n∑

i=1

γi

6 i
n σ(x, y)

ϕi(x, y) ,

where:

ϕi(x, y)
∆
= 1∆f,c∈[bi

inf
(x,y) , bi

sup(x,y)] , el = (x, y)T .

(23)

4Of course, the choice of3σ is completely arbitrary and extending our calculations to aκσ support is quite straightforward. Moreover, a3σ support is

quite sufficient under the Gaussian assumption.
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This means that the supports of thesen indicator functions vary from[−3 σ
n , 3 σ

n ], to [−3σ, 3σ], and that we have the following

definitions (see fig. 3):

σ(x, y) = 2

√
(el − fal)

T
Φ(el − fal) ,

= 2
√

βN (l) [(x)2 + (y + λ)2 ] ,

bi
sup(x, y) = m(x, y) + 3

i

n
σ(x, y) ,

= fa
TMfa − (el)

TM(el) +
3i

n
σ(x, y) ,

= αN (l)(x2 + y2 − λ2) +
3i

n
σ(x, y)

bi
inf(x, y) = fa

TMfa − (el)
TM(el) −

3i

n
σ(x, y) ,

= αN (l)(x2 + y2 − λ2) − 3i

n
σ(x, y) . (24)

The scalar parametersαN (l) andβN (l) are given by (see eq. 18):




αN (l) = [
2(2N+1−6l+6 l2

N )

(N+1)(N+2) − 1] ,

βN (l) = Q1(l,N)+2lδQ2(l,N)+l2δ2Q3(l,N)
(N+1)2(N+2)2 .

(25)

For instance, forl = N , we have more simply :




αN = N(1−N)
(N+1)(N+2) ≈ −1 ,

βN = 4N3+226N2−66N+4
(N+1)2(N+2)2 ≈ 4

N (N ≫ 1) .

The fact thatβN (l) is small (w.r.t.1) will play a central role for deriving closed form approximations ofP (∆f,c ≥ 0). The

definition and meaning of theϕi functions are represented on fig. 3. With these definitions, we thus have the following

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������
��������������������������������������������

b1
inf b1

sup b3
supb3

inf

αN(x2+y2−λ2)

ϕ1

ϕ2

ϕ3

Figure 3:The approximation scheme: theϕi functions

approximation:

Proposition 1 Consider the approximation ofP (∆f,c ≥ 0| ε̃l = el) as a sum of indicator functions (see eq. 23), the follow-

ing equality holds true:

P (∆f,c ≥ 0| ε̃l = el) =

n∑

i=1

γi

[
bi
sup(x, y)

2 3i
n den(x, y)

1bi
sup(x,y)≥0 −

bi
inf(x, y)

2 3i
n den(x, y)

1bi
inf

(x,y)≥0

]
,

=

n∑

i=1

γi

2

(
1bi

sup(x,y)≥0 + 1bi
inf

(x,y)≥0

)
+

n

12

αN√
βN

(x2 + y2 − λ2)√
((x − λ)2 + y2)

n∑

i=1

γi

i

(
1bi

sup(x,y)≥0 − 1bi
inf

(x,y)≥0

)
.

(26)
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Moreover, we have:

bi
sup(x, y) ≥ 0 ⇐⇒ f(x, y) ≤ −6i

n

√
βN

αN
. (27)

where:

f(x, y) = x2+y2−λ2√
x+(y+λ)2

.

Proof: For the sake of completeness, a short proof is now presented. First, consider eq. 26 and assume that∆(u) ∈
[binf , bsup]. Then:

∫

∆≥0

1∆(u)∈[binf ,bsup]du = (bsup − binf )1binf≥0 + bsup(1bsup≥01binf≥0) ,

= bsup

(
1binf≥0 + 1bsup≥01binf≤0

)
− binf 1binf≥0 ,

= bsup


1bsup≥0

(
1binf≥0 + 1binf≤0

)
︸ ︷︷ ︸

1


− binf 1binf≤0 ,

= bsup1bsup≥0 − binf1binf≥0 .

(28)

The first part of eq. 26 is thus proved. The second part of eq. 26is a straightforward consequence of the expressions of

bi
sup(x, y) andbi

inf(x, y) as given by eq. 24.

The second part of Prop. 1 is also quite straightforward (notice thatαN (l) is negative):

bi
sup(x, y) ≥ 0 ⇐⇒ αN (x2 + y2 − λ2) + 6i

n

√
βN

√
x2 + (y + λ)2 ≥ 0 ,

⇐⇒ f(x, y) ≤ −6i
n

√
βN

αN
.

(29)

� � �

The {γi} coefficients are obtained as the solution of an optimizationproblem (e.g. least squares, see Appendix B). We

stress that these{γi} coefficients are considered asfixedwhatever the value of theel vector. So, integrating over all the

possible values of theel vector, we obtain:

P (∆f,c ≥ 0) =

∫

R2

P (∆f,c ≥ 0| ε̃l = el) dx dy ,

=

n∑

i=1

γi

2
Ai +

αN√
βN

n

12

n∑

i=1

γi

i
Bi , (30)

where: 



Ai =

∫

R2

N(0,1)(x, y)

[
1

f(x,y)≤− 6i
√

βN
n αN

+ 1
f(x,y)≤ 6i

√
βN

n αN

]
dxdy,

Bi =

∫

R2

N(0,1)(x, y)f(x, y)

[
1

f(x,y)≤− 6i
√

βN
n αN

− 1
f(x,y)≤ 6i

√
βN

n αN

]
dxdy ,

(31)

For reasons which will clearly appear soon, it is worth to rewrite theAi andBi integrals as:





Bi =

∫

6i
√

βN
n αN

≤f(x,y)≤− 6i
√

βN
n αN

N(0,1)(x, y) f(x, y) dxdy ,

Ai =

∫

6i
√

βN
n αN

≤f(x,y)≤−6i
√

βN
n αN

N(0,1)(x, y) dxdy + 2

∫

f(x,y)≤ 6i
√

βN
n αN

N(0,1)(x, y) dxdy .

(32)

So, now the problem we have to face is to obtain accurate closed form approximations of theBi andAi integrals.
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4.2 Approximating the Bi integrals

It is clear that deriving a general closed-form expression for theBi (or Ai) integrals is hopeless5. However, an accurate

closed-form approximation can be obtained thanks to the following remark. When the scan numberN becomes great, then

the ratioρ =
√

βN

αN
is close to zero. Now, the numerator of thef(x, y) function is zeroed on a circle (equationx2 + y2 = λ2).

This leads us to consider the following parametrization of the(x, y)-plane.
{

x = (−λ + ε) sin(θ) ,

y = (−λ + ε) cos(θ) .
(33)

The functionf(x, y) is then changed in af(ε, θ) function defined below, which leads to the following changesfor theBi

integral: 



f(ε, θ) = −ε(2λ−ε)√
4λ sin2(θ/2)(λ−ε)+ε2

exp
(
−x2+y2

2

)
= exp

(
− (λ−ε)2

2

)
,

dxdy = |λ − ε| dε dθ .

(34)

Now, since we are considering only the small values of thef function (numerator(f) = −ε(2λ − ε)), it is quite legitimate
6 to restrict our analysis to small values ofε. More precisely, we assumeε ≪ λ. Then, thesecondorder expansion of the

f(ε, θ) functional is :

f(ε, θ)
2
=

−ε

|sin(θ/2)| . (35)

Practically, this is rather important since the integration domain which was previously implicitly defined is nowexplicitly
defined; i.e. it simply becomes:





− |sin(θ/2)| ηi,N ≤ ε ≤ |sin(θ/2)|
(−6i

√
βN

n αN

)

︸ ︷︷ ︸
ηi,N

,

0 ≤ θ
2 ≤ π .

(36)

The accuracy of this approximation is illustrated by fig. 4. We can notice that the integration domain is well approximated.

The integration having been conveniently approximated, weconsider also a second order expansion of the integrandF (ε, θ)

of theBi integral, i.e. with:

F (ε, θ) = f(ε, θ)N (ε, θ) |J(ε, θ)| ,

and|J(ε, θ)| = |λ − ε| the Jacobian of the(x, y) → (ε, θ) transform, we have:

F (ε, θ)
2
= −λε

e−λ2/2

|sin(θ/2)| +
(1 − 2λ2)

2 |sin(θ/2)|e
−λ2/2 ε2 . (37)

Considering on the first hand the effect of changingε into−ε for this2-nd order expansion and the integration domain on the

second one, the effect of theε term is zero, so that:

Bi = 1
2π

∫

θ

∫ ε=ηi,N sin(θ/2)

ε=−ηi,N sin(θ/2)

(1 − 2λ2)

2 |sin(θ/2)| e−
(λ)2

2 ε2 dε dθ ,

= (1−2λ2)
2π e−

(λ)2

2
η3

i,N

3

∫

θ

(sin(θ/2))
2
dθ ,

(38)

whereηi,N = −6 i
n

√
βN

αN
(see eq. 36). Thus, a very simple closed-form approximationof theBi integral has been obtained,

from which the following approximation of the partαN√
βN

n
12

n∑

i=1

γi

i
Bi of P (∆f,c ≥ 0) (see eq. 30) is deduced:

5There does not exist a primitive function ofN(0,1)(x, y) f(x, y) and the integral isimplicitly defined
6Actually, there are two values ofε zeroing the numerator off(ε, θ), ε = 0 andε = 2λ. However, both are represented by a unique transformation (see

eq. 33)
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Figure 4:Thef(x, y) function and its approximation (real: purple; approximations: continuous red and black)

αN√
βN

n
12

n∑

i=1

γi

i
Bi ≃ 3(1 − 2λ2)e−λ2/2 βN

α2
N




n∑

i=1

i2 γi

32 n2




.

Thus, we see that an accurate approximation of the termαN√
βN

n
12

n∑

i=1

γi

i
Bi is proportional both to the ratioβN

α2
N

∝ 1
N and the

fixed term3(1 − 2λ2)e−λ2/2.

4.3 Approximating the Ai integrals

We have now to turn toward theAi terms. First, we remark that:

1f(x,y)≤−ηi,N
+ 1f(x,y)≤ηi,N

= 1−ηi,N≤f(x,y)≤ηi,N
+ 2

(
1f(x,y)≤0 − 1−ηi,N≤f(x,y)≤0

)
, (39)

so that, we have:

Ai = 2

∫

R2

N(0,1)(x, y) (1f(x,y)≤0 − 1−ηi,N≤f(x,y)≤0)dxdy

︸ ︷︷ ︸
Ai,1

,

+

∫

R2

N(x, y)1−ηi,N≤f(x,y)≤ηi,N
dxdy

︸ ︷︷ ︸
Ai,2

.

We use the same change of variable (see eq. 34) as previously.For theAi,1 integral the normal density is integrated over the

(ε, θ) domain[0, 2λ] × [0, 2π]; while for theAi,2 integral it is[0, ηi,N |sin(θ/2)|] × [0, 2π]. We thus have:

Ai,1 = 1
π

∫ 2π

0

[e−(λ−ε)2/2]λ0 − [e−(λ−ε)2/2]2λ
λ dθ ,

+ 1
π

∫ π

0

[e−(λ−ε)2/2]
ηi,N |sin(θ/2)|
0 dθ ,

≃ 2 − e−λ2/2 [2 + 2 ηi,N − (λ2−1)
4 η2

i,N ]

(40)
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For theAi,2 integral, we proceed in the same way that forBi, i.e. :

Ai,2 = 1
2π

∫ 2π

0

[
e−

(λ−ηi,N |sin(θ/2)|)2

2 − e−
(λ+ηi,N |sin(θ/2)|)2

2

]
dθ ,

≃ 2λe−λ2/2

π ηi,N .

(41)

Gathering the above results, we have just obtained a closed form approximation of theAi term:

Ai =

(
−2π + (2λ − 2π)ηi,N + π

4 (λ2 − 1)η2
i,N

π

)
e−λ2/2 . (42)

4.4 The closed-form approximations ofP (∆f,c ≥ 0)

Summarizing the previous calculations, we are now in position to present the following result, which constitutes also the

principal result of this paper.

Proposition 2 Let us consider that the possible false association can occur at unique time period (denotedl), then a closed-

form approximation of the probability of correct association is:

P (∆f,c ≥ 0) = 1 + (a + b λ + c λ2) e−
λ2

2

where: 



a = − 1
2π

[
1 +

√
βN (l)

αN (l)

n∑

i=1

γi

i
+

66π

32n2

βN (l)

α2
N (l)

n∑

i=1

i2 γi

]
,

b = 1
2π

[
6
n

√
βN (l)

αN (l)

n∑

i=1

i γi

]
,

c = 15
16n2

βN (l)
α2

N (l)

n∑

i=1

i2 γi .

(43)

The scalarsαN (l) andβN (l) are given by eq. 25.

This formula is quite simple and relevant. We can notice alsothat P (∆f,c ≥ 0) is independent of the kinematic scenario

parameters, since it involves only the ratioλ/σ (here simply denotedλ), and the number of scansN (via αN (l) andβN (l)).

Since we haveβN ∝ 1
N andαN ∝ −1, the asymptotic value ofP (∆f,c ≥ 0) is simply1− e− λ2

2

2 π . This rough approximation

is valid for values ofN as small as30− 40. Not surprisingly, we see that the dimensioning parameter for P (∆f,c ≥ 0) is the

ratioλ/σ.

SinceβN is small, it is the elementary increment. So, the slope (denotedslo) of P (∆f,c ≥ 0) as a function ofN is the

factor7 of the ratio
√

βN (l)

αN (l) , i.e. it is:

slo = 1
2π

(
6
n

n∑

i=1

i γi −
n∑

i=1

γi

i

)
.

so that :

P (∆f,c ≥ 0)
1≃ 1 −

(
1 − slo

√
βN (l)

αN (l)

)
e−

λ2

2 .

(44)

Note that, forN ”great” (30 − 40) the approximation given by eq. 44 is less precise that the approximation given by eq.

43. However, its main interest is to put in evidence the effect of theN parameter. If the{γi} coefficients are determined by

minimizing a least square criterion, thenslo can be easily calculated (see Appendix B), and is obviously positive (see eq. 91).

7The superscriptf
′

denoting the derivative,
√

x
′

= 1
2
√

x
while x

′
= 1
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4.5 The case of a randomλ

Up to now, it was assumed that the parameterλ was deterministic. However, it is more realistic to model this seducing

measurement by a normal densityN (λ0, σ0). Let ∆̄f,c be the (extended) cost difference for thisλ modeling, conditioning on

λ, we then have:
P (∆̄f,c ≥ 0) = Eλ [Pλ(∆f,c ≥ 0)|λ] ,

with:

Pλ(∆f,c ≥ 0) = 1 + (a + bλ + cλ2)e−λ2/2 .

(45)

Performing straightforward calculations, we obtain:

P (∆̄f,c ≥ 0) = 1 + 1√
σ2
0+1

[
a + bλ̄0 + c(λ̄2

0 + s2
0)
]
e
− λ2

0
2(σ2

0+1) ,

where:

λ̄0 = 1
σ2
0+1

λ0 , s2
0 =

σ2
0

σ2
0+1

.

(46)

So, forN sufficiently large, we haveP (∆̄f,c ≥ 0) ≈ 1− 1√
σ2
0+1

e−
λ̄2
0
2

2 π . Thus, we see that the effect of this randomization of

λ is far to be negligible.

4.6 A system analysis perspective

Using the previous results, we are now turning our effort toward the steady-state behavior of the association process via a

Discrete Time Markov Chain (DTMC) analysis. We consider that at each time period there is a binary decision process,

defined by: {
[ca] : event: correct association, [fa] : event: false association,

pfa
∆
= probability of false association.

(47)

Note that closed form approximationspfa have been already obtained. We assume furthermore thatpca = 1 − pfa and that

this decision process can be modeled by anhomogeneousDTMC. We are interested now in the evaluation of the probability

thatk consecutive false associations occur. We shall focus on thecasek = 2. To that aim, let us define the random variable

X which can take4 states, defined by:
∣∣∣∣∣

state:(1) : [ca, ca] , state:(2) : [ca, fa] ,

state:(3) : [fa, ca] , state:(4) : [fa, fa] .
(48)

It is easily shown thatX is also a DTMC, whose transition matrix (denotedP2) stands as follows:

P2 =




1 − pfa pfa 0 0

0 0 1 − pfa pfa

1 − pfa pfa 0 0

0 0 1 − pfa pfa


 (49)

Considering the transition matrixP2, we see that this DTMC is aperiodic and irreducible, ensuring the existence of a

stationary distribution [14]. State4 is especially relevant for our analysis, since it corresponds to two consecutive false

associations. The structure of the matrixP2
2 is quite enlightening and is a characteristic feature. Indeed, straightforward

calculations yield:

P2
2 =

[
(1 − pfa)

2
11, pfa(1 − pfa) 11, pfa(1 − pfa) 11, p2

fa 11
]

,

where:11
∆
= (1, 1, 1, 1)

T
.

(50)

Thus,P2
2 admits the following factorization:

P2
2 = V WT ,

where:

V = (1 − pfa) 11 , WT =
(
1 − pfa, pfa, pfa,

p2
fa

(1−pfa )

)
.

(51)
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Furthermore, it is easily shown thatWT P2 = WT . Thus, we have:

P2
3 =

(
V WT

)
P2 , (52)

= V
(
WT P2

)
,

=
(
V WT

)
= P2

2 .

And more generally, whatevern ≥ 4 we haveP2
n = P2

2
P2

n−2 = P2
4 = P2

2, yielding the following result:

Proposition 3 Whatevern ≥ 2, the following equality holds true:

P2
n = P2

2.

So, whatever the initial distributionX0, described by therow vectorX0 = (x1, x2, x3, x4), we have (∀n ≥ 2):

X0
(n) = X0 P2

n = X0 P2
2 , (53)

= (X0 V) WT ,

= (1 − pfa) (X0 11)︸ ︷︷ ︸
=1

WT = (1 − pfa) WT ,

=
(

(1 − pfa)
2 , pfa (1 − pfa) , pfa (1 − pfa) , p2

fa

)
.

Similarly, let us consider the (asymptotic) stationary distribution π, thenπ is a solution of the balance equationπ = π P2.

Not surprisingly, it is easily shown that:

π =
(
(1 − pfa)

2 , pfa (1 − pfa) , pfa (1 − pfa) , p2
fa

)
. (54)

We are now in position for studying the behavior of this DTMC.Since the state4 is particularly important, let us recall the

following classical result [14], [15].

Proposition 4 Assume the DTMC is irreducible and letπ its stationary distribution, then the mean inter-visit time mj,j is

given by

mj,j =
1

πj
, 1 ≤ j ≤ N .

Thus, we have herem4,4 = 1
π4

= 1
p2

fa

, a value which is usually very weak ifpfa is small. Consider now a slight modification

of the DTMC. If the state4 is attained , then the DTMCremainson (the absorbing) state4. The associated transition matrix

P̃2 reads:

P̃2 =




1 − pfa pfa 0 0

0 0 1 − pfa pfa

1 − pfa pfa 0 0

0 0 0 1


 (55)

The aim of this modeling is to investigate the probability that the system beat leastone time in state4, during a given time

interval. To this aim, calculations are greatly simplified if the following rewriting of theP̃2 matrix is considered:

P̃2 =

(
Q v1

0
T 1

)
, (56)

whereQ is a3 × 3 left-up matrix. Elementary calculations yield:

P̃n
2 =

(
Qn

vn

0
T 1

)
. (57)
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If we are able to provide an explicit expression ofQn, there is no need to calculate the vectorvn since the matrix̃Pn
2 is

stochastic. The eigensystem of theQ matrix is quite simple, i.e. :

∣∣∣∣∣∣∣∣∣∣∣∣∣

eigenvalues eigenvectors

λ1 = 0 u
T
1 =

(
−pfa

1−pfa
, 1, 0

)

λ2 = 1
2

(
1 − pfa −

√
δ
)

u
T
2 =

(
1, (1−pfa)

λ2
, 1
)

λ3 = 1
2

(
1 − pfa +

√
δ
)

u
T
3 =

(
1, (1−pfa)

λ3
, 1
)

δ =
(
1 + 2 pfa − 3 p2

fa

)
.

(58)

From which the following equality is deduced8:

Qn = λn
2

(
u2u

T
2

)
+ λn

3

(
u3u

T
3

)
. (59)

Consequently, admitting an initial distributionX = (1, 0, 0, 0) of the system state, the probability that the state4 has been

attainedat leastat one time within the temporal interval[0, n] is:

P̃n
2 (1, 4) = 1 − λn+1

2

(
2λ2 + 1 − pfa

2λ2
2 + (1 − pfa)

2

)
+ λn+1

3

(
2λ3 + 1 − pfa

2λ2
3 + (1 − pfa)

2

)
. (60)

A second order expansion (w.r.t.pfa) gives usP̃n
2 (1, 4) ≃ (n + 1)p2

fa + pfa

3 . To complete this analysis, let us denoteNa the

number of visits to the transient states, before visiting the absorbing state (state4 here), then we have:

P (Na = n) = XT
0 Qn−1 (Id − Q) 11 , n ≥ 1. (61)

Hence, theexpectednumber of visits to the absorbing state is simply:

E(Na) =
∑

n≥1
n P (Na = n) = XT

0 (Id − Q)
−1

11 ,

with:

(Id − Q)
−1

11 =
(

1+pfa

p2
fa

, 1
p2

fa

, 1+pfa

p2
fa

)
.

(62)

As pfa is rather small for our application, we thus haveE(Na) ≃ 1
p2

fa

, whatever the initial distribution of the transient states.

Extending the previous analysis to an arbitrary value ofk is straightforward and we simply refer to [16].

The advantage of this analysis is its simplicity. However, astrong assumption is that thepfa at timet + 1 is not modified if a

false association has occurred at timet. If k and thepfa are sufficiently small, this is a realistic assumption. If a large number

of consecutive false associations occurs the parameters ofthe regression are changed and we have to turn to a more precise

approach. This will be the aim of section 6.

5 Simulation Results (unique false association)

Once we have get the main result (eq. 43), we have to test the accuracy of our approximations. For doing that, we just have

to consider the variations of the two dimensioning parameters (λ andN ). For the first one (λ), the number of scans (N ) is a

fixed value (N = 20 andN = 40). Then, we compare the exact value ofP (∆f,c ≥ 0) and its approximation as given by

eq. 43, for increasing values of theλ parameter. Note thatλ represents in fact the ratioλ/σ whereλ is the distance between

the exact target position and the position of the ”false” target, whileσ is the observation noise standard deviation. The result

is displayed on fig. 5. We can see that our approximation (eq. 43) performs quite satisfactorily in general, but is better as N

increases. This is not surprising, especially if we remind that our approximations were based on the fact that the integration

boundsηi,N were small, meaning thatN was sufficiently great.

This approximation is valid for value ofλ as small as1, which has only a mathematical meaning since for this value of λ

8after normalization of theu2 andu3 vectors
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Figure 5:The probability of correct association (dashed)P (∆f,c ≥ 0) and approximated (in red:N = 20, in blueN = 40),

versusλ (x − axis).

it is quite likely that measurements are merged. A complete derivation of the probability density function (pdf) of merged

measurements has been performed in [11], [17]. However, it seems hopeless to include unresolved measurement pdf in our

calculations for a closed form approximation ofP (∆f,c ≥ 0). We can see that forλ values between1 and2, the slope

of P (∆f,c ≥ 0)(λ) is almost constant and rather important. Whenλ becomes close to3, then the probability of correct

association is very close to1.

Thus, it remains to analyze the effect of theN parameter. This is done in fig.6. Results are restricted to fixed values of

λ, that is equal to1.5, 2 and2.5, because they are the most interesting values, representing the more common association

problem. We can see that whenN exceeds30, the approximation is very good. The difference is less than0.05, which is

quite satisfactory. Moreover, for greater values ofN , exact values and approximations cannot be distinguished.However, the

behavior of the more accurate approximation (see eq. 43) is not satisfactory for small values ofN , sinceP (∆f,c ≥ 0)(N)

begins to decrease asN increases.
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Figure 6:The probability of correct associationP (∆f,c ≥ 0) (exact: dashed) and approximated (continuous) versusN (x

axis), for various values ofλ: in blueλ = 1.5, in redλ = 2., in greenλ = 2.5.

Now, considering the first order approximation ofP (∆f,c ≥ 0)(N) given by eq. 44, the dependency ofP (∆f,c ≥ 0)(N)

to N is satisfactorily taken into account for ”reasonable” values ofN (say10 ≤ N ≤ 40) , as seen on fig. 7. In particular,

the calculated slope (slo, eq. 44) is close to the actual one.
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Figure 7: The probability of correct associationP (∆f,c ≥ 0)(N) versusN (x axis),λ = 2. Blue: exact value, red:1-st

order approximation (eq. 44).

Finally, we present the results for a randomλ (see subsection 4.5), on fig. 8 . The values ofP (∆̄f,c ≥ 0) are plotted on

they-axis, versus the mean value ofλ (λ0), for two values of theσ0 parameters (1 and3). Not surprisingly, the effect of this

randomization is noteworthy.
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Figure 8: The probability of correct associationP (∆̄f,c ≥ 0) for a randomλ versusλ̄0 x − axis, N = 40. Dashed:

deterministicλ (σ0 = 0), continuous: randomλ (−o−: σ0 = 1, − + −: σ0 = 3).

6 The multiple false measurements case

Just like in the first part, a target is moving with a rectilinear and uniform motion. The hypotheses we made in the first

part are unchanged. In fact, we consider more specifically the section 3 framework. In this part, we focus on multiple false

measurements, and our aim is again to determine the probability for deciding the right association.
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We have seen previously (see section 3.4) that a closed form of ∆f,c could be obtained (see eq. 20). Thus, calculation

of the probability of correct association (P (∆f,c ≥ 0) can be extended to the general case. However, deriving convenient

approximations lead us to encounter severe difficulties. So, the feasible approaches will rely on the same principles but with

fundamental simplifications. More specifically, we assume that there is at most one false measurement for each time-period.

The scenario we consider here is depicted on figure 9.

Mesured Position

False Alarm

Figure 9:The multiple false measurement scenario

In order to investigate the difficulties we have to face, let us consider the numerator ofΨFAK
(denotedN(ΨFAK

) . Opposite

to the unique false measurement case, this numerator cannotbe considered (or approximated) by a unique quadratic form (see

section 4.2). Actually, we have (see eq. 20):

N(ΨFAK
) =

K∑

k=1

K∑

k′=1

αN (lk, lk′)
(
〈elk , elk′ 〉 − 〈falk , fal′

k
〉
)

. (63)

A first problem is thatN(ΨFAK
) can be small while, simultaneously, elementary terms

(
〈elk , elk′ 〉 − 〈falk , fal′

k
〉
)

can be

(relatively) large, but of opposite signs. The change of variable approach which is instrumental for deriving explicitclosed

form approximations of theBi andAi integrals is then clearly unfeasible.

So, we have to turn to aradically different approach based upon normal approximations. A keyfeature of the normal

densities is that there are exhaustively represented by their two first moments. Then, we will see that these moments can be

easily calculated. In order to give the general scheme, let us recall the general (linear regression) result (see eq. 20):

L (∆FAK
| ε̃l1 = el1 · · · , ε̃lK = elK ) = N [m1, v1] ,

where :

m1 =
K∑

k=1

K∑

k′=1

αN (lk, lk′)
(
〈elk , elk′ 〉 − 〈falk , falk′

〉
)

, v1 = 4
K∑

k=1

K∑

k′=1

θ(lk, lk′) 〈elk − falk , elk′ − falk′ 〉 .

(64)

Assuming that the mean (m1) and the variance (v1) of ∆FAK
are random, thanks to the (elk ) terms, but with determined law,

we deduce an expression of the posterior law of the∆FAK
random variable. More precisely, assume that we have:

m1 ∼ L1(θ1) and: v1 ∼ L2(θ2) ,

with θ1 andθ2 deterministic parameters. Assume also that the density function forL1 is g1 with supportS1 and that forL2

it is g2 with supportS2. Then, the posterior density of∆FAK
simply reads:

h (∆FAK
) =

∫

S1

∫

S2

f(∆ | m1, v1)gθ2
(v1)gθ1

(m1) dv1dm1 . (65)

The great advantage we have now is that though we do not have the right expression of the posterior law, we just have to

consider a double integration. So, the problem we have to face now is to obtain convenient approximations ofgθ1
andgθ2

.

First, we will approximate the law of the meanm1 with a normal distribution. For a great number of random variables, the

central limit theorem allows us to make this approximation.Then, we assume now thatm1 ∼ N (m0, σ
2
0). The distribution
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of v1 will be discussedlater. As both ∆FAK
andm1 are normally distributed, we have a precise knowledge of theposterior

density of∆FAK
(see Appendix C):

h (∆FAK
) =

∫

S1

∫

S2

f(∆FAK
| m1, v1) g2(v1)g1(m1)dv1dm1 ,

=

∫

S2

fN (m0,σ2
0+v1)(∆) g2(v1)dv1

(66)

Thus, we have:

P (∆FAK
≥ 0) =

∫

S2

erfc

(
m0√

σ2
0 + v1

)
g2(v1)dv1 . (67)

This expression is quite simple and easily computable. Moreover, in this setup, the accuracy of the approximation increases

with K, thanks to the central-limit theorem. Our problem being to renderh (∆FAK
) (see eq. 66) as explicit as possible, we

have to perform integration w.r.t. the variancev1. To that aim, we have to choose a law for the variancev1. We shall consider

two solutions:

The first one is to use again the central-limit theorem, and tomodelv1 via a Gaussian distribution9. The second solution is

to calculate the right law ofv1, which should be a kind of Chi-2.

Considering the expression ofv1, we notice (see eqs. 20, 64 ) that it is a weighted sum of elementary quadratic forms of

normal vectors (〈elk − fak, elk′ − fak′〉), with weightsθ(lk, lk′). Each elementary quadratic form is Chi-square distributed.

However, when the weights are different, a tractable distribution of the weighted sum is not available (see [18]). So, a first

simplification is to consider that these weights are approximately equal altogether10. In this setup, we consider thatv1 is

Chi-square distributed with2K degrees of freedom, and we have:

P (∆FAK
≥ 0) =

∫

R+

erfc

(
m0√

σ2
0 + v1

)
fχ2(2K)(v1)dv1

= 1
2KΓ(K)

∫

R+

erfc

(
m0√

σ2
0 + v1

)
vK−1
1 e−v1/2dv1

(68)

Turning now toward the first solution (normal approximationof v1, ie v1 ∼ N (v0, s
2
0)), yields:

P (∆FAK
≥ 0) =

∫

R+

erfc

(
m0√

σ2
0 + v1

)
fN (v0,s2

0)
(v1)dv1 , (69)

where the parametersm0, σ2
0 , v0 ands2

0 are given by (see Appendix D):
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 = 2

K∑

k=1

αN (lk, lk) −
K∑

k=1

K∑

k′=1

αN (lk, lk′) λlk λlk′ ,

σ2
0 = 4

[
K∑

k=1

K∑

k′=1

αN (lk, lk′)

]2

,

v0 = 4

K∑

k=1

θ (lk, lk)
(
2 + λ2

lk

)
+ 4

K∑

k=1

K∑

k′=1,k′ 6=k

θ(lk, lk′)λlkλlk′ ,

s2
0 = 2

[
K∑

k=1

K∑

k′=1

θ(lk, lk′)(1 + λlk)(1 + λlk′ )

] [
K∑

i=1

K∑

i′=1

θ(li, li′)

]
.

(70)

9The limitation of that approach is that if we consider that law, the variance will have non-zero probability to be negative!
10A reasonable assumption, with our assumptions.
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However, even if convenient approximations of theerfc(x) functions exist, they dont lead, in general, to simple closed form

approximations. So, it seems difficult to obtain a more explicit closed-form approximation for the multiple false measurement

case. Some insights can be gained by approximating theαN (lk, lk) andθ(lk, lk′) (see eqs. 19, 20), under the assumption that

the ratioK/N is sufficiently small w.r.t.1, yielding:

∣∣∣∣∣
αN (lk, lk) ∽

(
1 − 1

N

)
K θ(lk, lk′) ∽

(
P (N3,K3)

N4

)
K ,

m0 ∽
(
1 − 1

N

)
K2(2 − λ2 K) σ2

0 ∽ 4 K6 ,
(71)

whereP (N3,K3) is a polynomial inK andN , whose maximal order inN andK is 3. Thus, we notice the fundamental

importance of theK andλ parameters. Similarly to the unique false measurement case(see eq. 44), the effect ofN appears

as a slope factor toward the steady-state value.

6.1 Exponential Law Assumption

We wrote in the previous paragraph:

P (∆FAK
≥ 0) =

∫

S2

erfc

(
m0√

σ2
0 + v1

)
g2(v1)dv1 . (72)

We can use the following Taylor development:

erf(z) =
2√
π

∞∑

n=0

(−1)n

n!(2n + 1)
z2n+1 (73)

And we then have to calcultate:

P (∆FAK
≥ 0) = 1 − 2√

π

∑∞
n=0

(−1)n

n!(2n+1)

∫

S2

(
m0√

σ2
0 + v1

)2n+1

g2(v1)dv1 . (74)

If we assume thatv1 follows an exponential law, we then have to calculate that simple integral:

I2n+1 =

∫

R+

(
m0√

σ2
0 + v1

)2n+1

v0e
−v1v0dv1 (75)

Performing calculations, we then have:

I2n+3 = v0m
2n+3
0 − v0m

2
0σ

2n+1
0 I2n+1 (76)

And then,

I2n+1 = v2
0m5

0

1 − (−v0m
4
0σ0)

n

1 + v0σ0m4
0

− vn
0 m2n

0 σn−1
0 I1 (77)

Which can be used in the sums to calcumate the final expression of the probability:

P (∆FAK
≥ 0) = 1 − erf(1) − erf(−v0m

4
0σ0)

v0σ0m4
0

+
erf(v0m

2
0σ0)

m2
0v0σ2

0

I1 (78)
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7 Simulations: the multiple false measurements case

7.1 Multiple false measurements and the probability of correct association

We consider here the framework which has been develop in the section 6. First, we have to consider the validity of the normal

(m1) andv1 approximations (see eqs 68 and 69). For a value ofK (number of false measurements) as small as2 and a constant

λ, this is presented in fig. 10, forN = 30. The result is quite satisfactory, even for this small valueof K. In figure 11,
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Figure 10:Approximation of the Probability of correct association for multiple (consecutive) false measurements (K = 2, χ2

approximation eq. 68).P (∆FAK
≥ 0) in they-axis,λ on thex-axis,N = 40.

we consider the difference between four and eight false measurements. This difference looks like a simple translation.The

main result is that having eight false measurements, at a constant distance of3.5 is equivalent to a double false measurement

scenario, with distance2.5 and only one false measurement, with a distance of1.8.
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Approximation for the probability of correct association in the multiple case
4 False Alarms(Blue), 8 FA(Red)

Figure 11: Probability of correct association for various number of consecutive false alarms (K = 4 and K = 8).

P (∆FAK
≥ 0) in they-axis,λ on thex-axis,N = 40.

8 Conclusion

Deriving accurate closed-form approximations of the probability of correct association is of fundamental importancefor un-

derstanding the behavior of data association algorithms. However, though numerous association algorithms are available,
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performance analysis is rarely considered from an analytical point of view. Actually, this is not too surprising when we

consider the difficulties we have to face even in the simplistic framework of linear regression.

So, the main contribution of this paper is to show that such derivations are possible. This has been achieved via elemen-

tary though rigorous derivations, developed in a common framework. Multiple extensions and applications render it quite

attractive for a wide variety of contexts (close targets, clutter, intentionally generated false measurements, ECM, etc.).
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Appendix A

The aim of this appendix is to provide an explicit closed forms of the two quadratic forms defining the mean and the variance

of L (∆f,c| ε̃l = el) (see eq. 15). The first step consists in calculating a closed form for theΨ(el) numerator. Considering

the special forms11 of the vectorsel andfal, only a closed form expression of theMl,l (2 × 2) l−th diagonal block matrix

of theM matrix is required. Routine calculations yield:

Ml,l =

[
1 − 2

(
2N+1−6 l+ 6 l2

N

)

(N+1)(N+2)

]
I2 ,

so that:

el
TMel − fa

T
l M fal =

[
1 − 2

�
2N+1−6l+ 6l2

N

�
(N+1)(N+2)

] (
‖el‖2 − ‖fal‖2

)
.

(79)

In the second step, theΨ(el) denominator is considered. First, it is worth recalling theform of theΦ matrix:

Φ = (I −H)Σcom(I −HT ) ,

= Σcom − ΣcomHT −HΣcom︸ ︷︷ ︸
Φ1

+HΣcomHT . (80)

Noticing that the(2 × 2) sub-matrixΦ1(l, l) is zero, we can restrict to the(l, l) (2 × 2) sub-matrix of theHΣcomHT matrix.

Straightforward calculations yield:

HΣcomHT = X CΣcomCT X T ,

with:

C =

(
(4N + 2)I2 . . . (4N + 2 − 6(k − 1))I2 . . .

− 6
δ I2 . . . − 6

δ (1 − 2(k−1)
N )I2 . . .

) (81)

For the sake of simplicity, it is assumed that we haveΣcom = diag


I2, · · · , I2︸ ︷︷ ︸

l−1

, 0, I2, · · · , I2︸ ︷︷ ︸
N−l−1


. Then, routine calculations

yield a simple expression for the4 × 4 matrixCΣcomCT :

CΣcomCT = 1
(N+1)2(N+2)2

(
Q1(l, N)I2 Q2(l, N)I2

Q2(l, N)I2 Q3(l, N)I2

)
, (82)

from which, we deduce finally (Φl,l l-th 2 × 2 diagonal block of theΦ matrix):

Φl,l = 1
(N+1)2(N+2)2

[
Q1(l, N) + 2l δQ2(l, N) + l2 δ2Q3(l, N)

]
I2 , (83)

where theQ1, Q2 andQ3 polynomials have the following expression:

∣∣∣∣∣∣∣∣∣∣

Q1(l, N) = 4N3 − 50N2 + N(48l − 18) + l(24 − 36l) + 4 .

Q2(l, N) = − 6
δ

[
N2 − 5N − 2 + 4l(1 + 1

N − 3l
N )
]

Q3(l, N) = 36
δ2

[
N
3 − 1 + 2

N ( 1
3 + 2 l − 2 l

N2 )
]

.

Finally, we have thus obtained:

(el − fal)
T Φ(el − fal) =

1

(N + 1)2(N + 2)2
[
Q1(l,N) + 2l δQ2(l,N) + l2 δ2Q3(l,N)

]
‖el − fal‖2 (84)

11These two vectors are made of zeros except forx andy l-th components
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Appendix B

This appendix deals with the calculation of the coefficientsγi for the least square criterion. Denotingϕi (i = 1, · · · , n) the

functions defined byϕi
∆
= n

6i den
1[bi

inf
,bi

sup]
, the coefficientsγi are the solutions of the following optimization problem:

min
γi

‖g −
n∑

i=1

γiϕi‖2
2 , (85)

whereg is the normal density given by eq. 64, and‖ − ‖2 is theL2 norm. It is then known that theγi are the solutions of the
following linear system: 8>><>>: γ1‖ϕ1‖

2
2 + γ2〈ϕ2, ϕ1〉 + · · · + γn〈ϕn, ϕ1〉 = 〈g, ϕ1〉 ,

...

γ1〈ϕ1, ϕn〉 + γ2〈ϕ2, ϕn〉 + · · · + γn‖ϕn‖
2
2 = 〈g, ϕn〉 .

(86)

The norms‖ϕi‖2
2, as well as the scalar products〈ϕi, ϕj〉 are straightforwardly calculated , yielding:

〈ϕi, ϕj〉 =
n

6 inf(i, j)

1

den
. (87)

and solving the linear system given by eq. 86:

n∑

i

γi = 〈g,1[b1
inf

,b1sup]
〉γi = i(i − 1)〈g, ϕi−1 − ϕi〉 − i(i + 1)〈g, ϕi − ϕi+1〉 . (88)

Then, from the above equation (eq. 88), we have:




n∑

i=1

iγi = 2 〈g,

n∑

i=1

i 1[bi
inf

,bi
sup]

〉 ,

n∑

i=1

γi

i
=

1

n
〈g,1[bn

inf
,bn

sup]
〉 .

(89)

From eq. 89, we deduce the slope ofP (∆̄f,c ≥ 0) as a function ofN (see eq. 44):

slo =
6

n

n∑

i=1

iγi −
n∑

i=1

γi

i
, (90)

=
1

n

(
12 〈g,

n∑

i=1

i 1[bi
inf

,bi
sup]

〉 − 〈g,1[bn
inf

,bn
sup]

〉
)

. (91)

Obviously, the slopeslo is positive (see eq. 91).

Appendix C

Here, our iam is simply to recall a classical statistical result. Assume that the random variableX has the following (condi-

tional) distribution:

X | m ∼ N (m,σ2) , (92)

with m ∼ N (θ, s2). Then, integrating overm, we have:

h(x) =

∫

R

f(x | m)g(m) dm ,

=

∫

R

1

2πσs
e
−
(

x−m√
2σ2

)2
−
(

m−θ√
2s2

)2
dm

(93)

Performing the integration w.r.t. them parameter is quite easy since it involves a quadratic form inm and the result is as

simple as:
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h(x) =
1

2π(s2 + σ2)
exp

[
− 1

2(s2 + σ2)
(x − θ)

2

]
, (94)

which shows that the random variableX is normally distributed, with meanθ, and variance(σ2 + s2). So, the uncertainty in

the meanm simply results in an incresed variance.

Appendix D

The aim of this appendix is the calculation of the values ofm0, σ2
0 , v0 ands2

0. Calculations are a bit long but elementary, so

we then just express here the main stages to perform the results. First, we have:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 = EXY

[
K∑

k=1

K∑

k′=1

αN (lk, lk′)(xlkxl′k
+ ylk yl′k

− λlk λl′k
)

]
,

σ2
0 = VXY

[
K∑

k=1

K∑

k′=1

αN (lk, lk′)(xlk xl′k
+ ylk yl′k

− λlk λl′k
)

]
,

v0 = 4EXY

[
K∑

k=1

K∑

k′=1

θ(lk, lk′)
(
(ylk − λlk) (yl′k

− λl′k
) + xlk xl′k

)]
,

s2
0 = 16VXY

[
K∑

k=1

K∑

k′=1

θ(lk, lk′)
(
(ylk − λlk)(ylk′ − λl′k

) + xk xk′

) ]
.

(95)

These calculations are routine exercises, only the last calculation require (a bit) more attention. In the independentcase:

VXY (xy) = V(x)E(y2) + V(y)E(x2) . (96)

The (small) problem we have to solve is the calculation of thesecond term. This is achieved via classical results about

moments of a normal random variable:

VY

[
(yk − λk)2

]
= E

[
(yk − λk)4

]
− E

2
[
(yk − λk)2

]
,

= E
[
y4

k − 4 y3
kλk + 6 y2

kλ2
k − 4 ykλ3

k + λ4
k

]
− (1 + λ2

k)2 ,

= 3 + 6λ2
k + λ4

k − 1 − 2λ2
k − λ4

k ,

= 2 + 4λ2
k .

(97)

Finally, we have:

s2
01 = 64

∑K
k=1 θ2(k, k)(1 + λ2

k) (98)
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