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Abstract

This paper is concerned with performance analysis for data associatiantarget tracking environment. Effects of
misassociation are considered in a simple (linear) multiscan framewods $0 provide closed-form expressions of the
probability of correct association. In this paper, we focus on the dpuedat of explicit approximations of this probability.
Via rigorous calculations the effect of dimensioning parameters (nupftecans, false measurement positions or densities)
is analyzed, for various modelings of the false measurements. Rebhgrit is possible to derive very simple expressions of
the probability of correct association which are independent of theasiogkinematic parameters.

Index of principal notations:

e ca: correct associationfa: false association, DTMC: discrete time Markov chain.

erfe(z) = [ N(0,1)(z) dz , N(m,o): normal density meam, s.d.o.

I: identity matrix ,1: indicator function ,1: a vector made of.

e N: scan numbel,; a scan index): the false alarm distance.

Ay . difference of association costé(;: number of false measurements.

1 Introduction

A fundamental problem in multi-target tracking is to evatuthe performance of the association algorithms. Howaeter,
is quite obvious that tracking and association are comlyletetangled. In this context, a key performance measurees t
probability of correct association. Generally, track aacy has been considered without consideration of the mg&nt
problem. However, remarkable exceptions exist. Very rbyghey can be divided in two categories. The first one deals
with track divergence. In particular, important effort&vddeen done for performance of the Nearest Neighbor (NNJ-filih
some approaches, the tracking error is modeled as a diffgsaress [1]. Fundamental contributions deals with théyaisa

of the dynamic process of tracking divergence [2], appleeN N filter performance[3] or the expected track life of theAD

[4] in clutter [5]. Equally important are contributions aeed to the performance evaluation of track initiation imske envi-
ronments [6], [7].

The second category is scan-wise oriented, which meanddhaach set of measurements, the algorithm calculates
an optimal track-to-measurement assignment and propagtehe best "hypothesis”. Since it uses an optimal traek-t
measurement assignment it should provide better trackémfppmance than NN or PDA [8], [9]. However, this work is
essentially oriented toward a modeling of misassociatidaghe effect of permutations, from@&scan viewpoint and its
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propagation [7]. Here, we focus on the effect of the "contaation” of a target track due to extraneous measuremerttsywi

a multiscan framework. In fact, a "contamination” resulisaichange of the estimates of the track parameters, whidd cou
render misassociations more likely than the true one. leitam that only measurements situated in the immediataityic

of the target track would have a severe effect. This is the frasdense target environment or for situations where thiese
outliers are intentionally generated (e.g. decoys) [10].

Here, our analysis is devoted to multiscan associatioryaisalFor easing calculations the target motion is geneesi
sumed to be deterministic, while we are concerned with bpécformance. The linear estimation framework has been used
so as to allow us to obtain explicit closed-form expressimiithe probability of correct association, which is the oaign of
this contribution. Then, track purity can be seen as theabibiby that the proportion of false measurements "inchlide
the system track be under a certain level (percentage)e Rassurements are modeled either as deterministic ormando

This paper is organized as follows. In Sectibthe elementary multiscan association scenario is predeWe have then
to calculate the association costs under the two hypoth{ese®ct and false associations). This is the object ofiGe&.
The major result of this section is the calculation of (exatdsed-forms for these association costs via elementagpar
algebra, which will be of constant use subsequently.

The true problem is now to derive from Section 3 results anuiate closed-form approximation of the probability of
correct association. This is precisely the aim of Sectiowhich plays the central role in this paper. The way we detiig t
approximation is detailed. It is based upon an approximatiothe normal density via a sum of indicator (step) funcgion
The final result is a very simple closed-form approximatiehpse accuracy is testified by Section 5 (simulation results
Note, however, that these results are limited to a singgefaksociation within the whole batch period.

It is the aim of Section 6 to extend the analysis to multipledaneasurements. The approach we developed for approxi-
mating the probability of correct association in the unifplse measurement case is no longer valid. In particukantéthod
we used for approximating the integrals no longer holds w&ohave to resort to a different approach. Roughly, we censid
that the mean and variance of the difference of associatists @re characterized by their distributions, themsealegend-
ing on random parameters. It is shown that the probabilityosfect association is highly dependent of the number e&fal
measurements lying in the vicinity of the target trajectory

2 Problem formulation

A target is moving with a rectilinear and uniform motion. EBpimeasurements consisting of Cartesian positions are-repr
sented by the points:

151:(»%17331)7]52:(@27372)»"‘7]SN:(C%NJ]N)7 (1)
at time periods, ts,- - - ,t 5, Which are calledScans. Under the correct association hypothesis, the positieasarements
are the exact Cartesian positioRs= (x;,y;), corrupted by a sequence of independent and identicalipalty distributed
noises (denoted,,, ,,), i.e.:

Py = (&, §i) = (@i + €0,y i +E4,) - 2

We assume that the observation noisesnde,, are uncorrelated, with a varianeé. When a target issgfficiently isolated
from others, there is no ambiguity about the measuremeginoriThis is not true if a second target lies in the vicinity of
the first target. In this case, it becomes possible to makestaka@ about the origin of an observation by associating it to
the wrong target, thus corrupting target trajectory edfiona But the question is to give a more precise meaning tdeima



"sufficiently isolated”.
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Figure 1:The association scenario. Dotted line: correct associatiashed line: false association.

Thus, the aim of this article is to give a closed-form expi@s$or the probability of correct association of measuretae
to a target track, as a function of the number of scans andigitende of the outliers observations. In order to simplify t
scenario, we consider that the outlier measurem&ntare located close to the true target positBn= (z;,y;) at time
periodt;, with a distance\!. Throughout this papex stands for the ratid /o. The general problem setting and definitions
are depicted in fig. 1.

Let us denot® = t; 1 — t;, the inter-measurement time, and:

V= ('Umuy)T )
the two components of the constant target velocity on théeS@n axis. Then, in the deterministic case, the targjeictiary
is defined by the state vect@t:, y1, vy, vy).
3 Problem analysis

Under the correct associatiooa) hypothesis and denoting 2 8, the position measurement are represented by the
following equatios:
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With these definitions and under the correct associationtgsis, the measurement model simply stands as follows:

Zaa =X B+éc . 4)

1For the sake of brevity, we assume that measurements are réebes[11])
2J: identity matrix




3.1 The regression model [12]

Consider the following linear regression model:

J=Xp+E, (5)

whereZ are the data} are the regressors aytiis the vector of parameters, to be estimated. Generallyestimation of3
is made via the quadratic loss function:

. T /. . )
L@ =(2-x8) (Z-x8)=1Z-xp|*. (6)
If the matrix X7 X' is non-singular, therf,(3) is minimum for the unique valug of 3 such that:

B=xTx)tx’z. (7)

From the estimatioﬁ} of 3, let Z be the estimator of the mea 3 of the random vectoZ defined by:

~

Z = HZ,
with :
H = xXTx)"'aT.

The vector of the residuals2 Z — Z is given by:
E=M7Z7, (8)

with M = I —H , andI the identity matrix. Itis easy to check tha is a projection matrix (i.,emM” = M andM? = M).
We also recall the following classical identities, whicHlwie used subsequently [13]:

MX =0, ande=M¢. 9)

3.2 Evaluation of the correct association probability

Assume that the outlier measureméht, = (z, yy) is located at the pointl(< ! < N, see fig. 1):

Ty = T,

yr = y—A.
The correct association is then defined by the associatipnints{?l, e Py ,PN} £ Zeca, Whereas the wrong asso-
ciation is defined b){Pl, cee ,15”, cee ,PN} 2 an (the lowercasg stands for false association). The vectﬁg andZa

are similarly defined fron¥,, Z, and the regression equation (eq. 8).

The vectors of residuals aée, = Z, — Za under the correct association hypothesi§ éndés, = Zs — Za under the
false association hypothesig). They are deduced from a linear regression, leading todt@nfing definition of the costs
of correct association (denoté€gd,) and false association (denotég) :

Cca = (an - Eca)T (an - Z\ca) s (10)
= e Me,.
In the same way, we have also:
Cra =L M e, . (11)

Let us define now\ ¢ . the difference between the correct and wrong costs, i.e.:



Af,c é Cfa - Cca . (12)

Then, the probability of correct association is defined tgygtobability thatA ; . > 0 (denotedP (A . > 0)). The aim of
this article is to give closed-form expressions for this prbability .

Let bee.m the vector of components that the vectégs andés, have in common, and defirgg andfa; as the comple-
mentary vectors, so that:

g:ca = é(:om + él ; éfa = écom + fal . (13)

With these notations, the difference between the corrattanng costsh ¢ . can be written:

Ape = faf Mfa — (&) M(&),
2 (& — fa)) " M(Ecom) -

Since the components of the vecig,, are normally distributed and supposed independent, tii®vis normal £.om ~
N (O, Yom) ), and similarly forg; (&, ~ N (O, %)) ).

(14)

Assuming that the vectd; is set to &fixed valuee;, the law of the difference of cosi8(A¢ .| &, = e;) is normal with
characteristics:
L (Af7c| él = el) = N [fa;f/\/lfal — (el)TMel, 4(81 — fal)T<I>(el — fa|)} s (15)

where:® 2 MZEcomMT. Integrating this conditional density w.r.t. the Gaussiantoré;, yields:

T _ T
P(A; (1) > 0) = Eg, |erfc e Me; — fa; M fy .
2/(e; — fa))T®(e; — fay)
Considering eq. 16, it is not surprising that it is the fuatl ¥ (e;):
e))" Me; —fa] M fa
() = (S Mer — fay M fay -

- 2¢/(e; — fa;)T®(e; — fay) ’
which will play the fundamental role for analyzing the prbbity of correct association. However, though eq. 16 isfin
and general, it has the great inconvenient to involve thegimattion of theerfc function, so there is no hope to derive a closed-
form expression oP(A[ (1) > 0) by this way. So, we shall first turn toward a different apptobased on eq. 15. To that
aim, our developments follow the following steps:

¢ Calculation of a closed form expression for the mean andwag ofL (A .| &;) (see eq. 15) (see section 3.3).
¢ Approximation ofL (A .| &) as a sum of indicator functions, see section 4.1.

e Approximation of the integration domains for the indicaftanctions, see section 4.2.

3.3 Aclosed-form for the mean and variance o (A .| &)

Let us concentrate first on the case of a unique false aswwciatsing elementary matrix calculations, the followirgults
have been obtained (see Appendix A):

2(2N+1-61+ 9%

faj Mfa; — (e))" Me; TN+

-1 2 _ f 2 )
(el — lIfaq]|) (18)

(er —fa) (e —fay) = m [Ql(laN) +200Q2(1, N) + 12 52@3(LN” ler — fal||2 :

3This means that vectogs andfa; are made of zeroes, excepted in tipositions



where the;, Q2 andQ3 polynomials have the following expression:

Q:1(I,N) = 4N3 —50N2+ N(48] — 18) + (24 — 361) + 4
Q2(L,N) = —S[N?—5N-2+4i(1+ % - 3]
Qs(,N) = B[¥-1+2(L+20-2)].

Considering eq. 16 (last row), we can notice that the vamatof¥ (e;) as a function of are not very important. Actually, it

is easily seen thaz e 311\%2+312N)1/2 is varying betweer:}£ and f as/ varies between and N. Now, theerfc function

is quite flat for large values a¥, which means thaP(Ay .(e;) > 0) |s almost independent of thiesalue.

The previous calculations can be rather easily extendeulttple false associations. LEAx = (1), be the vector
made by indice$; of the (possible) false associations. A closed-form exgioesof the numerator of eq. 17 is:

K K
e};MeK - FA{(MFAK = Z ZO[N(lk,lk/) ((elk,elk,> — <fa|k,fa|k,>) s

k=1k'=1
with: (19)

B 2(2N+1-3 1, —3 1+ LA
an (I, ly) = <l{k-=k-'} - CES e ) :

Similarly, for the denominataby,. of ¥ga,, we have:

(ex — FAY M (exc — FA) = 20/S0, S8 011 i) (er, — far,en,, — far,,) .
with: (20)
(N + (N +2)? 0k, liy) = [QF(FAK, N) + (Ie + lr) Q3 (FAK, N) + Uil Q5(FAx, N)]

The polynomialg);, Q35 andQ3 stand as follows:

Qi(FAk,N) = Zz]io,ngAK(‘LN +2—61)?

Q3(FAk,N) = —% [Zz]io,lgFAK(‘lN +2-60)(1 - %)} )
. - N

Q3(FAKaN) = % {Zl:o,l&FAK(l B %)2} :

4 Closed-form approximations of the probability of correct association: uniqie
false measurement

As shown in sectior3, it has been possible to obtain closed-form expressioneeo¥tfunctional. However, even in the
unique false measurement case, it is still necessary tonpedn integration of therfc(W(e)) ) functional. Though this is
possible numerically, no analytic insight can be gainediigyway. Actually, it is hopeless to consider approximadiohthe

erfc function and we have to turn toward a radically differentrageh based on approximating the normal density by a sum
of stepwise (indicator) functions.

For the sake of simplicity, the error measurement comparentandé, ; will be simply denoted as andy. We have
now to deal with convenient approximations of the assamiatiost differencel . 2 Cra — Cca- We restrict us to a single
outlier measurement. At this point, it is worth recallingtlit is conditionallydistributed as a normal density (see eq. 15):

Af7c| él = e~ N falT/\/lfal — (el)T/\/lel,él(el - fal)T<I>(el — fa.)} = N(m,a). (21)



The conditional meam and variance? have been made explicit in section 3.3 (eq. 18), yielding:

2(2N+1-61+82 A
m W = 1| (ledll? = llfall*) = an(@) (el = lIfaell*)
(22)
_ N+1)*(N+2)° 2 A 2
o’ = GruwrEmaam gy e =l 2 Ax (1) ller — far*

From eq. 22, we see that; .(N) is normally distributed with an almost constant mean (roydfifa;||> — ||e;[|)), while

its variance is proportional toy = % |le: — fa;]|, which will be of constant use from now. The situation is dégd in fig.

2. In this figure, we see that is almost constant a¥ increases, while its varianeeincreases. This results in an increase
of P(As.(N) > 0) since the darked area on the left of théhreshold is decreasing. This section will be divided ire¢hr

Figure 2: P(As . > 0) as a function ofV.

subsections corresponding to the main steps of the develaprithe first idea consists in approximating the above nbrma
density by a sum of indicator functions. Then, we have toudate specific integrals (nameti and B; integrals). This will
constitute the major difficulty since these integrals arfineéel on an implicitly defined domain.

4.1 Approximating the normal density by a sum of indicator functions

A first step will consist in approximating the densify(A .| &; = e;) (see egs. 21, 22) by a weighted sumroihdicator
functions (denoted;). Thus considering a3s"* support of this approximation centered on the meawnf this normal
density, i.e.m — 30, m + 30] leads to:

~ . Vi
L(Apcl&r=er)~ Z 6% o(z,y) ei(z,y)
=1 n ’y (23)
where:

A
pilz,y) = Ln; celbis(@y) , big(ay)] » € = (z,y)" .

40f course, the choice &fo is completely arbitrary and extending our calculations terasupport is quite straightforward. Moreover3a support is
quite sufficient under the Gaussian assumption.



This means that the supports of thesadicator functions vary from-3 <, 3 2], to [-30, 30], and that we have the following
definitions (see fig. 3):

O’(:L',y) = 2\/ el—fal T el—fal)
= 2v/Bn(l) +y+A?2],
bhup(@.y) = m(x,y>+3ga<x,y>,

= fal Mfa — (e)T M(e;) + % o(z,y),
N
= an(D@® +y? = X) + = ola,y)
. 317
b(ey) = fa" Mfa—(e) Mler) = = o(a.y),

= ax )@+ N~ 2 o(ay). (2
The scalar parametessy (1) andGy (1) are given by (see eq. 18):

_ [2(2N+1-61+6%)
an(l) = Fmmory - U
(25)
252
Bn(l) = Q1L N)Jr(?]l\;sff)(zl(lj\\fl):;)f Qs(LN)

For instance, fot = IV, we have more simply :

N(1-N)
{ ON = (NrD(V+2) -1,

_ 4AN34226N?—66N+4 . 4
ﬂN - (N+1)2(N+2)2 ~ N (N > 1) .

The fact thatiy ({) is small (w.r.t.1) will play a central role for deriving closed form approxititans of P (A . > 0). The
definition and meaning of the; functions are represented on fig. 3. With these definitioresttws have the following

an(C+y2—MN?)

Figure 3:The approximation scheme: thg functions

approximation:

Proposition 1 Consider the approximation @ (A . > 0| & = e;) as a sum of indicator functions (see eq. 23), the follow-
ing equality holds true:

" :
~ ) b? f(xa y)

P(Ap.>0[& =e) Z [23:;; @.9) Lo, (2.4)>0 — —2&:16“(35 2 1y (zy)>o0| >
n )

(26)

i noay (2P +y? - N i
:;5 <1bsup<wvy)>0+1bl ( vy>20) 12 /By N T = Z ( bl (,9)>0 1b.’nf(r,y>20) '



Moreover, we have:
i —6i /3
bup(@) 2 0 4= flay) < - =3% (27)

where:

2.2 2
fla,y) = S =

Proof: For the sake of completeness, a short proof is now preserftedt, consider eq. 26 and assume thdt) €
[bins, bsup). Then:

/A>01A(u)e[bmf,bsup]du = (bsup = bing)Lbs ;>0 + bsup(Lb.u,>010:,>0)
= bsup (Loiy>0 + Loy >010:,,<0) = bing Loi,p>0 5

(28)
= bsup | Lbsp>0 (Los ;20 + Loy p<0) | = bing Loy, 5<0 5

1
= bsuplo,,,>0 = bingl,, >0 -

The first part of eq. 26 is thus proved. The second part of eqjs 26straightforward consequence of the expressions of
biup(,y) andd! ¢(x,y) as given by eq. 24.

The second part of Prop. 1 is also quite straightforwardi¢edhata y (1) is negative):

bip(2,9) >0 = an(z? +y* = A2) + E/Brny/22 + (y+ )2 >0,

= fla,y) < GPx

n N

(29)

oono

The {~;} coefficients are obtained as the solution of an optimizatiablem (e.g. least squares, see Appendix B). We
stress that thesgy;} coefficients are considered figed whatever the value of the; vector. So, integrating over all the
possible values of the; vector, we obtain:

P(A;.>0) = / P(Ayc.>0& =¢) dady,
]R2
= Vi anN N = Vi
= —Ai+——) — By, 30
pt 2 + vV On 12; 1 (30)
where:
A; = /}R2 No.(@,y) |:1f(x,y)§—si@ + lf(x,y)g‘*;@ } dady,
(31)
Bi = N ) ) 1 i -1 i dxd )
/RQ e 9)f(z.y) [ L e O ] e
For reasons which will clearly appear soon, it is worth tontathe A, and B; integrals as:
Bi= /Gi\/m<f(w y)<— SN No(.y) f(2,y) dedy ,
noayn — ? — naopn
(32)

Noy(z,y) dedy + 2/ N,y (z,y) dedy .

)< PN

= noay

A =
' /M <foy)<—2/ON

= napy

So, now the problem we have to face is to obtain accurateamsm approximations of th&; and A; integrals.



4.2 Approximating the B; integrals

It is clear that deriving a general closed-form expressmmtifie B; (or 4;) integrals is hopeleSs However, an accurate

closed-form approximation can be obtained thanks to tHeviahg remark. When the scan numh¥rbecomes great, then

the ratiop = ‘{%N is close to zero. Now, the numerator of ther, i) function is zeroed on a circle (equatiof + y? = \2).

This leads us to consider the following parametrizatiorhef(t:, y)-plane.
x=(=A+¢e) sin(0), (33)
y=(=A+¢) cos(d) .

The functionf(z, y) is then changed in d(e, #) function defined below, which leads to the following chanfyesthe B;

integral:

_ —e(2X—¢)
fle.0) = V/4Xsin2(6/2)(A—e)+e?
2 2 2
exp (—’3 ;“’ ) = exp (—7()‘725) ) , (34)

dedy = |A—¢| dedb .
Now, since we are considering only the small values offtienction (hnumeratoff) = —=(2X — ¢)), it is quite legitimate

6 to restrict our analysis to small valuesf More precisely, we assume< \. Then, thesecondorder expansion of the

f (e, 8) functional is :
—&

2
1&9) = sl
Practically, this is rather important since the integmatitomain which was previously implicitly defined is naxplicitly
defined; i.e. it simply becomes:

(35)

a0/ oy < = < in(o/2)] (T2 XY,

(36)

i, N

0<

N

<.

The accuracy of this approximation is illustrated by fig. 4e ¥én notice that the integration domain is well approximhate
The integration having been conveniently approximatedcaresider also a second order expansion of the integfdadd)
of the B; integral, i.e. with:

F(e,0) = f(e,0)N(e,0) [ (c,0)] ,

and|J(g,0)| = |\ — | the Jacobian of théz, y) — (e, ) transform, we have:

2 e N/ (1—2)) 25

FE0) = =2 (a2 T 2kmie/2)]

(37)

Considering on the first hand the effect of changirigto —« for this 2-nd order expansion and the integration domain on the
second one, the effect of tlhderm is zero, so that:

E=Ni,N Sin(0/2) 1-2 )\2 2
B, — #// A=20) 02 2 gp,
0 Je=—mn; N sin(0/2) 2 |Sln(0/2)|

(38)

2 3
= 0529 e [ (singo/2) a0,
0

27

wheren, y = =2¢ ‘QENN (see eqg. 36). Thus, a very simple closed-form approximaifdhe B; integral has been obtained,

n

from which the following approximation of the paﬁg:N 15 E 17' B; of P(Ay,. > 0) (see eq. 30) is deduced:
1
=1

5There does not exist a primitive function&f o 1)(z,y) f(z,y) and the integral igmplicitly defined
6Actually, there are two values efzeroing the numerator of(e, 6), e = 0 ande = 2. However, both are represented by a unique transformatén (s
eqg. 33)

10



Approximation for the integration of f
Real Area (Purple), First Order approximation (Black), Second Order (Red)
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Figure 4:The f (x, y) function and its approximation (real: purple; approximatis: continuous red and black)

n
> i

a n S Vi o 2\ —a2/2 BN i=1
i=1

VBN s 32 n?

. . n " ’}/1 . . . 1
Thus, we see that an accurate approximation of the %527& is proportional both to the rané% x » and the
fixed term3(1 — 2 A2)e=>"/2,
4.3 Approximating the A; integrals

We have now to turn toward thé&; terms. First, we remark that:

Liway<m~ T Li@y<my = Lonv<r@m<my +2 (Lr@y<o = 1on v<fea)<o) » (39)
so that, we have:
A = 2 /2/\/(0,1)(%11) (1 s@ay<o = Lo v<fiay)<o)dody
R
Ay

+ 2N(x’y>1—n7:,N§f<z,y>gm,Ndwdy.
R

A2
We use the same change of variable (see eq. 34) as previboslthe A; ; integral the normal density is integrated over the
(e,0) domain[0, 2] x [0, 27]; while for the A; o integral it is[0, n; n |sin(6/2)[] x [0, 27]. We thus have:

27
Ay = 7 / e R A P
0
+%/ﬂ—[67(/\76)2/2}6”’1\7‘Sin(a/m‘da7 (40)
0

2_
2—e M2 24 2y - O 1 = 17 ]

1

11



For theA; » integral, we proceed in the same way that&y i.e. :

1 2m _ (A= N Isin(8/2))? _ (A, Isin(0/2))2
Ai 2 = 5= e 2 —€ 2 do 3
’ (41)
,>\2/
~ 2l 2 mN -
Gathering the above results, we have Just obtained a clesaddpproximation of thel; term:
=21+ (2XA = 2m)m; v + (A2 = 1)n? 2
Ai _ < ( )77 N 4( ) )z,N 87)\ /2 ] (42)
7T

4.4 The closed-form approximations ofP(A; . > 0)

Summarizing the previous calculations, we are now in pmsitd present the following result, which constitutes als® t
principal result of this paper.

Proposition 2 Let us consider that the possible false association canragtcwnique time period (denotél, then a closed-
form approximation of the probability of correct assoauatiis:

P(Af,c > 0) =1+ (a+b/\+c)\2) e~ T

where:
_ |y Ve N 667 B (D) o
a = T or an (1) Z 32”2 a?\/’(” ;7/ Yi |
_ VB () N,
b = i |}i ozNN(g)) ZZ 71] 3 (43)
i=1
_ Bn(
¢ = 1ér5ﬂ aNEﬁ Z’ Vi -
=1

The scalarsxyy (1) and 5y (1) are given by eq. 25.

This formula is quite simple and relevant. We can notice #iso P(A; . > 0) is independent of the kinematic scenario
parameters, since it involves only the rakigo (here simply denoted), and the number of sca$ (via an (1) andSy (1)).

)\2

Since we havgdy « + anday o —1, the asymptotic value aP(Ay . > 0) is simply1 — . This rough approximation

is valid for values ofV as small a80 — 40. Not surprisingly, we see that the dlmensmnlng parameteP{A; . > 0) is the
ratiol/o.

Sincefy is small, it is the elementary increment. So, the slope (tihsio) of P(A; . > 0) as a function ofV is the
factor’ of the ratio .7 O e itis:

~N()
slo = 5~ ( ZZ% Z%)
sothat: )
P(Af,c>0)é1_<1_ slo (l()w) 2

Note that, forNV "great” (30 — 40) the approximation given by eq. 44 is less precise that tipecagmation given by eq.
43. However, its main interest is to put in evidence the ¢féthe N parameter. If thev;} coefficients are determined by
minimizing a least square criterion, thslo can be easily calculated (see Appendix B), and is obviousdjtipe (see eq. 91).

"The superscripf’ denoting the derivativev/il = 2\7 whilez’ =1
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45 The case of a random\

Up to now, it was assumed that the parametevas deterministic. However, it is more realistic to modes theducing
measurement by a normal densiy(\g, o). LetAf,c be the (extended) cost difference for thismodeling, conditioning on
A, we then have:

P(Ap.>0) = E\[P\(Apc>0)|N ,
with: (45)
Py(Afe>0) = 1+ (a+bA+cA2)e /2.

Performing straightforward calculations, we obtain:

2
2D

P(Aj.>0) =14 ——~— [a+bro+c(O2+52)] ¢ B

\/0'[2)+1
where: (46)
— 2
_ 1 2 _ 9
)\O_ongl)\O 5 80_a§+1'

>
’\"ow

So, for NV sufficiently large, we hav@(A;. > 0) ~ 1 — ——L— ¢

— o Thus, we see that the effect of this randomization of
)

A is far to be negligible.

4.6 A system analysis perspective

Using the previous results, we are now turning our effortaimithe steady-state behavior of the association procass vi
Discrete Time Markov Chain (DTMC) analysis. We considett lilaeach time period there is a binary decision process,
defined by:

{ [ca] : event: correct associatign[fa] : event: false associatign

A " - (47)
pra = probability of false association

Note that closed form approximatiopg have been already obtained. We assume furthermorethat 1 — pr, and that
this decision process can be modeled bynamogeneouDTMC. We are interested now in the evaluation of the prolitgbil
thatk consecutive false associations occur. We shall focus onabket = 2. To that aim, let us define the random variable

X which can takel states, defined by:

state:(1) : [ca,ca] , state:(2): [ca,fa] , (48)
state:(3) : [fa,ca] , state:(4): [fa,fa] .
Itis easily shown thak is also a DTMC, whose transition matrix (denoteg) stands as follows:
1- DPfa  Pfa 0 0
0 0 1-—
Pg _ DPfa  DPrfa (49)

1—pn pa O 0
0 0 1 —pa P

Considering the transition matriR,, we see that this DTMC is aperiodic and irreducible, enguthre existence of a
stationary distribution [14]. Staté is especially relevant for our analysis, since it corresisoto two consecutive false
associations. The structure of the matix is quite enlightening and is a characteristic feature. dddetraightforward
calculations yield:

Py® = {(1 — )’ 1, pra(1 = pra) 1, pa(1 — pa) 1, p2 1|

(50)
where:1 2 (1,1,1, l)T )
Thus,P,? admits the following factorization:
P> =vWwT,
where: (51)

2
a

V= (]. _pfa) 1 s WT = (]- — Pfa; Dfa, pfavﬁ) :

13



Furthermore, it is easily shown thét™ P, = W”. Thus, we have:

P> = (VWT) Py, (52)
= V (W'Py) ,
= (VW) =P,>.

And more generally, whatever > 4 we haveP,” = P,? P," "2 = P, = P,2, yielding the following result:

Proposition 3 Whatevem > 2, the following equality holds true:
P," = Py>.

So, whatever the initial distributiod,, described by theow vectorXy = (x1, 2, x3, z4), We have {n > 2):

Xo™ = XoPy" =Xo P22, (53)
= (XoV)WT,
= (1-p) Xol) WI'= (1 — pra) W™,
N——
=1

= ((1-p).pa(l —pa).pa(l—pa).ph) -

Similarly, let us consider the (asymptotic) stationantritisition 7r, then is a solution of the balance equatian= = P-.
Not surprisingly, it is easily shown that:

™= ((1 _pfa)2 ) Pfa (1 _pfa) ) Pfa (1 _pfa) 7p?a) . (54)

We are now in position for studying the behavior of this DTMEnce the statd is particularly important, let us recall the
following classical result [14], [15].

Proposition 4 Assume the DTMC is irreducible and tetits stationary distribution, then the mean inter-visit éimn; ; is

given by
1
i=—,1<j<N.
My, ) )=

Thus, we have hergvy 4 = L = p% a value which is usually very weakjif, is small. Consider now a slight modification

T4

of the DTMC. If the statel is attaiﬁaed , then the DTM@&mainson (the absorbing) state The associated transition matrix
P, reads:

1- DPfa  DPfa 0 0

. 1 —

P, = 0 0 Dfa  DPrfa (55)
1—pra pa O 0
0 0 0 1

The aim of this modeling is to investigate the probabilitattthe system bat leastone time in statd, during a given time
interval. To this aim, calculations are greatly simplifiéthie following rewriting of theP, matrix is considered:

~ Q v

P, — , 56

2 ( o 1 ) (56)
whereQ is a3 x 3 left-up matrix. Elementary calculations yield:
~ Q" v,

pr — . 57

2 ( OT 1 ) ( )
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If we are able to provide an explicit expression@f, there is no need to calculate the vectgr since the matri>d5§‘ is
stochastic. The eigensystem of Qamatrix is quite simple, i.e. :

eigenvalues eigenvectors

A = uf = ({2, 1,0)

do=1(1-pn—v6) ul=(1,02e0 (58)
As=3(1-pa+v6) ul = (1,852

§=(1+2pn—3p7)

From which the following equality is deduckd
Q" =\y (ugug) + A5 (ugugT) . (59)

Consequently, admitting an initial distributioh = (1,0, 0,0) of the system state, the probability that the stateas been
attainedat leastat one time within the temporal intervil, n] is:

~ 2 1-— 2\ 1-—
Py (1,4) =1 - 3" % + a5t % : (60)
2)\2+(1_pfa) 2)\3+(1_pfa)

A second order expansion (w.rgs,) gives usF~>§1 (1,4) ~ (n+ 1)pi + . To complete this analysis, let us dendfg the
number of visits to the transient states, before visitirgahsorbing state (statehere), then we have:

P(N,=n)=X Q' (Id-Q) 1, n>1. (61)
Hence, theexpectedhumber of visits to the absorbing state is simply:

E(N) =) nPNa=n)=X{ (d-Q) "1,
with: 62)
(1d Q)" 1= (L e )

2 2
Pt Pfa Pfa

As pg, is rather small for our application, we thus havgv, ) ~ % whatever the initial distribution of the transient states
Extending the previous analysis to an arbitrary valug of straightforward and we simply refer to [16].

The advantage of this analysis is its simplicity. Howevestrang assumption is that thpg, at timet + 1 is not modified if a
false association has occurred at titné & and theps, are sufficiently small, this is a realistic assumption. laege number

of consecutive false associations occurs the parameteéhg oégression are changed and we have to turn to a moreerecis
approach. This will be the aim of section 6.

5 Simulation Results (unique false association)

Once we have get the main result (eq. 43), we have to test theamy of our approximations. For doing that, we just have
to consider the variations of the two dimensioning paramgfeand N). For the first oneX), the number of scans\) is a
fixed value (v = 20 and N = 40). Then, we compare the exact valuefA ;. > 0) and its approximation as given by
eq. 43, for increasing values of theparameter. Note that represents in fact the ratd/c where is the distance between
the exact target position and the position of the "falsejéarwhilec is the observation noise standard deviation. The result
is displayed on fig. 5. We can see that our approximation (8} pérforms quite satisfactorily in general, but is betteNa
increases. This is not surprising, especially if we remhrat bur approximations were based on the fact that the imtiegr
boundsn; x were small, meaning tha¥ was sufficiently great.

This approximation is valid for value of as small ad, which has only a mathematical meaning since for this vafug o

8after normalization of the, andus vectors
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Approximation for the probability of correct association, N=20(red), and N=40(blue)
T T T

Figure 5:The probability of correct association (dashd®l)A ¢ . > 0) and approximated (in redN = 20, in blue N = 40),
versush (r — axis).

it is quite likely that measurements are merged. A completésdtion of the probability density function (pdf) of mexd
measurements has been performed in [11], [17]. Howevegeiins hopeless to include unresolved measurement pdf in our
calculations for a closed form approximation BfA;. > 0). We can see that fok values between and?2, the slope

of P(Ay. > 0)()\) is almost constant and rather important. Whehecomes close t8, then the probability of correct
association is very close to

Thus, it remains to analyze the effect of theparameter. This is done in fig.6. Results are restricted tmlfualues of
A, that is equal td.5, 2 and2.5, because they are the most interesting values, reprege¢hnrmore common association
problem. We can see that whéh exceeds30, the approximation is very good. The difference is less thaha, which is
quite satisfactory. Moreover, for greater values\afexact values and approximations cannot be distinguidHedever, the
behavior of the more accurate approximation (see eq. 43jtisatisfactory for small values df, sinceP(Ay . > 0)(N)
begins to decrease a5increases.

Approximation for the probability of correct association
Distance=1.5(blue), D=2(red) and D=2.5(green)

-

o
©
a

o
©

4
=3}
a

o
o

o
3

o
o
a

Probability of correct association
o
3
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=3
o>

o
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@
~

o
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i i i i i i
10 20 30 40 50 60
Number of scans: N

Figure 6: The probability of correct associatioR(Af . > 0) (exact: dashed) and approximated (continuous) versug
axis), for various values of: in blue A = 1.5, inred A = 2., in green\ = 2.5.

Now, considering the first order approximationfofA ;. > 0)(IN) given by eq. 44, the dependency®fA . > 0)(N)
to NV is satisfactorily taken into account for "reasonable” edwf N (say10 < N < 40), as seen on fig. 7. In particular,
the calculated slopelf, eq. 44) is close to the actual one.
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tion at the first order

Approximation of the probability of correct associatio
Blue: E n (Lambda=2)

con
xact Probability, Red: Approxi

09

08

07k

°

o

Probability of good association

°
=
T

03

02

01 I I I I I
0

Figure 7: The probability of correct associatioR(Ay . > 0)(N) versusN (z axis), A = 2. Blue: exact value, redi-st
order approximation (eq. 44).

Finally, we present the results for a randonisee subsection 4.5), on fig. 8 . The values”¢fA ;. > 0) are plotted on
they-axis, versus the mean value ©{ ), for two values of thery, parametersi(and3). Not surprisingly, the effect of this
randomization is noteworthy.

Approximation for the probabilty of correct association in the random case
Sigma=1(-0-), S=3(~+-)

Probability of correct association
o
a
T

0 I I I I
4

3
Mean of the Distance

Figure 8: The probability of correct associatioR(A; . > 0) for a randomA versus\g = — axis, N = 40. Dashed:
deterministich (oo = 0), continuous: random (—o—: o9 = 1, — + —: g9 = 3).

6 The multiple false measurements case

Just like in the first part, a target is moving with a rectiine@nd uniform motion. The hypotheses we made in the first
part are unchanged. In fact, we consider more specificadl\séittion 3 framework. In this part, we focus on multipledals
measurements, and our aim is again to determine the prakdbildeciding the right association.
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We have seen previously (see section 3.4) that a closed forf;Q could be obtained (see eq. 20). Thus, calculation
of the probability of correct associatiof’(A . > 0) can be extended to the general case. However, derivingeogew
approximations lead us to encounter severe difficulties tfgofeasible approaches will rely on the same principlesitin
fundamental simplifications. More specifically, we assuha there is at most one false measurement for each timeeperi
The scenario we consider here is depicted on figure 9.

O False Alarm
x Mesured Position

Figure 9:The multiple false measurement scenario

In order to investigate the difficulties we have to face, ketansider the numerator @fa,. (denotedV (¥e,, ) . Opposite
to the unique false measurement case, this numerator ca@eonsidered (or approximated) by a unique quadratic feem (
section 4.2). Actually, we have (see eq. 20):

K

K
N(\I’FAK) = Z ZOKN(Zlmlk’) ((elk,elk) — (fa|k,fa|i>) . (63)

k=1k'=1

A first problem is thatV(¥ga,. ) can be small while, simultaneously, elementary ter(r(‘-slk,elk,> - <fa.k,fa|ﬁ>) can be
(relatively) large, but of opposite signs. The change ofalde approach which is instrumental for deriving expldidsed
form approximations of thé; and A4; integrals is then clearly unfeasible.

So, we have to turn to eadically different approach based upon normal approximations. Af&ature of the normal
densities is that there are exhaustively represented liytéine first moments. Then, we will see that these moments ean b
easily calculated. In order to give the general schemesle¢call the general (linear regression) result (see eq. 20)

L(Aray| &, = ey, - &1 =) = N [my, vl
where :

K K K K (64)
my = Z ZOZN(lka/) ((er, e,,) — (fay,fa,)) , v1 =4 Z Z O, L) (e, — fay, e, —fay,) .

=1 k=1 =1 k=1

Assuming that the meamq;) and the variancev() of Aga, are random, thanks to the;() terms, but with determined law,
we deduce an expression of the posterior law of/lzg, random variable. More precisely, assume that we have:

my ~ El(el) and: v~ £2(92) s

with 8, andé, deterministic parameters. Assume also that the densittifumfor £, is g; with supportS; and that forZ,
it is go with supportS,. Then, the posterior density dfra, simply reads:

h(Arag) = /s g (A | m1,v1)g0,(v1)ge, (1) dvrdm; . (65)

The great advantage we have now is that though we do not hawigtit expression of the posterior law, we just have to
consider a double integration. So, the problem we have ®riaw is to obtain convenient approximationg;gf andgs, .

First, we will approximate the law of the meamn, with a normal distribution. For a great number of randomalales, the
central limit theorem allows us to make this approximatiGhen, we assume now that; ~ N (mg,03). The distribution
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of v; will be discussedater. As both Aga, andm, are normally distributed, we have a precise knowledge optsterior
density of Aga, (see Appendix C):

h(Ara) = / F(Arag | m1,v1) g2(v1)g1(ma)dvidmy
Sy JSs
(66)
=/ SN (mo 02 101) (D) g2(v1)dvy
Thus, we have:
mo
P(A >O:/erfc7 v1)dvy . 67
(Arag > 0) . (m)m( 1)dvy (67)

This expression is quite simple and easily computable. bl@® in this setup, the accuracy of the approximation
with K, thanks to the central-limit theorem. Our problem beingetoderh (Aga, ) (See eq. 66) as explicit as possible, we
have to perform integration w.r.t. the variange To that aim, we have to choose a law for the variamcéNe shall consider
two solutions:

The first one is to use again the central-limit theorem, andddelv; via a Gaussian distributi@nThe second solution is
to calculate the right law of;, which should be a kind of Chi-2.

Considering the expression of, we notice (see egs. 20, 64 ) that it is a weighted sum of eleanequadratic forms of
normal vectors (e;, — fax,e;,, — far)), with weightsf(l, ). Each elementary quadratic form is Chi-square distributed
However, when the weights are different, a tractable digtidon of the weighted sum is not available (see [18]). Sorsa fi
simplification is to consider that these weights are appnaxely equal altogeth¥l In this setup, we consider that is
Chi-square distributed withK degrees of freedom, and we have:

mo
P (Ap, >0) = / erfc | —— v1)dv
( FAk ) R, (\/m) fXQ(QK)( 1) 1

(68)
e erfe [ =0 ) pElemui/2g,
QKF(K)/]R+ ( /2 + 01 1 1
Turning now toward the first solution (normal approximatafn;, ie v; ~ A (v, s2)), yields:
P (App, > 0) = / erfc [ 0| £ (v1)dv (69)
R e Y R Y A
where the parameters,, o2, vy ands3 are given by (see Appendix D):
K K
my = QZOéN o li) = 0> an (e li) Ay My,
k=1k'=1
K K 2
o = [ZZ lk,lm] ,
k=1k'=1
K K K (70)
vy = 429 bole) (24 M) 4> Y 00k, lk) M\,
=1 k=1k'=1,k'#k
K K
2 = 2 lzz (L, 1) (14 A ) (14 Ny ] lzzgz“z ]
k=1k'=1 i=14'=1

9The limitation of that approach is that if we consider that, ltive variance will have non-zero probability to be negative
10A reasonable assumption, with our assumptions.
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However, even if convenient approximations of #é(x) functions exist, they dont lead, in general, to simple alo®em
approximations. So, it seems difficult to obtain a more exptiosed-form approximation for the multiple false measoent
case. Some insights can be gained by approximating th@é;, ) andf(lx, [/ ) (see egs. 19, 20), under the assumption that
the ratioK'/N is sufficiently small w.r.t1, yielding:

aN(lk;lk) ke ( — %) K 0(lk,lk/) “A (%) K’

(71)
mo - (1—%) K2(2-XK) o3 ~4K",

where P(N3, K3) is a polynomial inK and V, whose maximal order itV and K is 3. Thus, we notice the fundamental
importance of the< and\ parameters. Similarly to the unique false measurement(sasecq. 44), the effect @f appears
as a slope factor toward the steady-state value.

6.1 Exponential Law Assumption

We wrote in the previous paragraph:

mo
P (Apa, >0) = / erfc [ ——— vy )dvy . 72
( FA ) s, (\/m> 92( 1) 1 (72)

We can use the following Taylor development:

67’f _ Z 2n + 1 2n+1 (73)
And we then have to calcultate:
2n+1
n mo
P(Beac>0) = 1- 255, G0 / g2 (0n)dvy . (74)

If we assume that; follows an exponential law, we then have to calculate thapse integral:

2n+1
mo _
Iopt1 = / — voe” M0dvy (75)
Ry \ V0% +v1

Performing calculations, we then have:

Dnys = vomd" ™ —vomiod" o ia (76)
And then,
1-— 7’1)0’17140'0 n
Inpy1 = vgmgyfvomgnag 'n (77)

4
1+ vgoomy

Which can be used in the sums to calcumate the final expreskiba probability:

erf(1) — erf(—vomgoo) + er f(vom3og)

P(Ap,>0) = 1-
(Aeac 2 0) voooma mavood

I (78)
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7 Simulations: the multiple false measurements case

7.1 Multiple false measurements and the probability of corret association

We consider here the framework which has been develop irettteos 6. First, we have to consider the validity of the ndrma
(m1) andv; approximations (see eqs 68 and 69). For a valuk @fiumber of false measuremeh&s small a2 and a constant
A, this is presented in fig. 10, fa¥ = 30. The result is quite satisfactory, even for this small vadfids. In figure 11,

Approximation for the probability of correct association in the multiple case
Exact One(Red) vs Approximate One(Blue)

1
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Figure 10:Approximation of the Probability of correct associatiom foultiple (consecutive) false measuremerifs=£ 2, x2
approximation eq. 68)P (Aga, > 0) in they-axis, A on thez-axis, N = 40.

we consider the difference between four and eight false mmeasents. This difference looks like a simple translatithe
main result is that having eight false measurements, atstaoindistance d3.5 is equivalent to a double false measurement
scenario, with distanc25 and only one false measurement, with a distance&f

Approximation for the probability of correct association in the multiple case
4 False Alarms(Blue), 8 FA(Red)
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Figure 11: Probability of correct association for various number ofnsecutive false alarmsi{ = 4 and K = 8).
P (Ara, > 0) in they-axis, A on thez-axis, N = 40.

8 Conclusion

Deriving accurate closed-form approximations of the philitst of correct association is of fundamental importaficeun-
derstanding the behavior of data association algorithmsweider, though numerous association algorithms are #lajla
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performance analysis is rarely considered from an analypoint of view. Actually, this is not too surprising when we
consider the difficulties we have to face even in the sinmiplfsamework of linear regression.

So, the main contribution of this paper is to show that sudivalions are possible. This has been achieved via elemen-
tary though rigorous derivations, developed in a commoménaork. Multiple extensions and applications render itejui
attractive for a wide variety of contexts (close targetstter, intentionally generated false measurements, E@\), e
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Appendix A

The aim of this appendix is to provide an explicit closed femmhthe two quadratic forms defining the mean and the variance
of L(Ay.|& = e;) (see eq. 15). The first step consists in calculating a closed for the¥ (e;) numerator. Considering
the special form of the vectorse; andfa;, only a closed form expression of thel; ; (2 x 2) [—th diagonal block matrix

of the M matrix is required. Routine calculations yield:

2(2N+1-61+522)
Mig = {1 - Wv] Iz

so that: (79)

2(2N+1-61+ 82
elTMel — falT./\/l fal = |:]_ — W] (||el||2 — ||fal|\2) .

In the second step, thi(e;) denominator is considered. First, it is worth recalling fillen of the® matrix:

d = (I—H)Zeom(I—HT),
= Ecom - ZcomHT - Hzcom +H2comHT . (80)
ol

Noticing that the(2 x 2) sub-matrix®! (I, ) is zero, we can restrict to th{é, ) (2 x 2) sub-matrix of theH,mH’ matrix.
Straightforward calculations yield:

HEcomHT = X CEeomCT XT |

with:
(81)
c_ AN +2), ... AN+2-6(k-1) ...
P 2
For the sake of simplicity, it is assumed that we hayg,, = diag | Is,--- ,I2,0,1I5,--- , I |. Then, routine calculations
—_— Y
-1 N—-l-1

yield a simple expression for thiex 4 matrix CYcomC” :

r_ 1 [ @N) QAlLN)
e = IR ( Q2(l, N)I> Qs3(l,N)I; ) ’ 2

from which, we deduce finallyd; ; {-th 2 x 2 diagonal block of thed matrix):

i = v Q1L N) +216Qa(L,N) + 2 82Qs (L, N)] I (83)

where thel);, Q2 and@3 polynomials have the following expression:

QuILN) = AN®—50N2 + N(48] — 18) + (24 — 361) + 4 .
Q:(LN) = —§[N?=5N-2+4i(1+ 5 - J)]
Qs(,N) = B -1+2G+20-%)] .

Finally, we have thus obtained:

1

(e —fan) " ler —fa) = T g)

5 [Qu(l,N) + 21 6Qa(I,N) + 12 82Q3(I,N)] [ley — fay)? (84)

11These two vectors are made of zeros excepifandy I-th components
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Appendix B

This appendix deals with the calculation of the coefficieptfor the least square criterion. Denotipg (i = 1,--- ,n) the
functions defined by; 2 Lt i, » the coefficientsy; are the solutions of the following optimization problem:

61 den inf >

min [lg = > vgill3 (85)

whereg is the normal density given by eq. 64, ahe- |2 is the L2 norm. It is then known that the; are the solutions of the
following linear system:

Yillerlls +72(p2, 1) + -+ mlpn, 1) = (g, 1),
: (86)
Y1, on) +2{p2, 0n) + -+ Anllenll; = (g, 0n) -
The norms4|goi||§, as well as the scalar produgts;, ;) are straightforwardly calculated , yielding:
n 1
HPj) = TN - 87
(i 1) 6 inf(é,j) den (®7)
and solving the linear system given by eq. 86:
D =g g ) = 60— D{g, 01 — i) — (i + 1){g, 05 — ira) - (88)
Then, from the above equation (eq. 88), we have:
Z Z’YT = 2 <g’ ZZ l[bll’!f7 sup]> ’
i=1 (89)

Z ,YZ = |nf7bgﬁp]> .

From eq. 89, we deduce the slopefdfA s . > 0) as a function ofV (see eq. 44):

6 n , n i
o = - § . E i

slo s ; 2 p (90)
- - <12 Q,Zz L i) — 1[z,;f,bgp]>> : (91)

Obviously, the slopslo is positive (see eq. 91).

Appendix C

Here, our iam is simply to recall a classical statisticalesAssume that the random variable has the following (condi-
tional) distribution:
X [m~N(m,a?), (92)

with m ~ N (6, s?). Then, integrating overn, we have:

/}R f(a | m)g(m) dm

_ [,
R2TOS

h(z)

(93)

Performing the integration w.r.t. the parameter is quite easy since it involves a quadratic form iand the result is as
simple as:
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h(z)

which shows that the random variabteis normally distributed, with mea#y and variancéo? + s?). So, the uncertainty in
the meann simply results in an incresed variance.

Appendix D

The aim of this appendix is the calculation of the valuesgf 03, vy ands3. Calculations are a bit long but elementary, so
we then just express here the main stages to perform theéseBirkt, we have:

K K
mog = Exy ZZQN(Zkalk’)(mlkxl;c + Y, Yu, — A, )\l;)‘| ;
k=1k'=1
K K
o5 = Vxy ZZO‘N(llmlk’)(xlk Ty 4 Y Y, — A )\l;)] )
k=1k'=1
K K (95)
vo = 4Exy [ZZWM@') ((yzk =)y, — Ay) + 2, xz;)] ;
k=1k'=1
K K
s = 16Vxy [ > > 0k lk) ((yzk = M) (W — Aig) + ’Ik/) ] :
k=1k'=1

These calculations are routine exercises, only the lastizdion require (a bit) more attention. In the independase:
Vxy(zy) = V(@)E@?) + V(y)E(?). (96)

The (small) problem we have to solve is the calculation ofgbeond term. This is achieved via classical results about
moments of a normal random variable:

Vy [ = 2] =l — )Y —E*[(ge — M)
= Elyp —4yi e +6y2A2 — 4y + ] — (14 23)?%,

(97)
= 34+6A2+ A —1-2)\2 -\,
2+4)07 .
Finally, we have:
o= BT 070 k) (14 AD) (98)
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