
Target Tracking within a Binary Sensor Network
Adrien Ickowicz

IRISA/CNRS, 35042, Rennes, France

J.-Pierre Le Cadre,
IRISA/CNRS,35042, Rennes,France

Abstract

The aim of this paper is to present a new algorithm for
target tracking within a binary sensor network. The present
work is based on our previous results developed in [1]. A
novel tracking method is proposed and its performance
through a very classical trajectory model is evaluated.
For a given target, this algorithm provides an estimation
of its velocity and then of its position. The greatest
improvements are made through a position correction and
velocity analysis.

1. INTRODUCTION

Sensor networks are systems made of many small and
simple sensors deployed over an area in an attempt to
sense events of interest within that particular area. In
general, the sensors have limited capacities in terms of
say range, precision, etc. The ultimate information level
for a sensor is a binary one, referring to its output.
However, it is important to make a distinction according
to the nature of this binary information. Actually, it
can be related to a0 − 1 information (non-detection or
detection) or to relative{−,+} motion information. For
example, if the sensors are getting sound levels, instead
of using the real sound level (which may cause confusion
between loud near objects and quieter close objects), the
sensor may simply report whether the Doppler frequency
is suddenly changing, which can be easily translated
in whether the target is getting closer or moving away.
Moreover, low-power sensors with limited computation
and communication capabilities can only perform binary
detection. We could also cite video sensors, with the
intuitive reasoning: the target is getting closer if its size is
increasing. The need to use that kind of sensor networks
leads to the development of a model for target tracking
in binary sensor networks.

We consider a sensor network, made withN sensors
(e.g. video), with known positions. Each sensor can only
gives us a binary{−,+} information [2], i.e. whether the
target-sensor distance is decreasing (−) or increasing (+).
The main problem with that kind of sensors is that it gives
us no direct information on the position or the velocity of
the target. In a previous article [1], we concentrated on
the estimation of the parameters of a deterministic target
trajectory, via batch algorithms. In the present article we
release the assumption of (piecewise) constant velocity
motion, and we try to follow both position and velocity in

real time. In particular, it is shown that it is the trajectory
”diversity” which renders this possible.

Obviously, tracking a diffusive Markovian target widely
differs from the (batch) estimation of deterministic param-
eters. However, both problems present strong similarities.
Indeed, the geometrical properties remains the same at
each instant. The paper is organized as follows. Once
the target motion model has been introduced, the most
important properties we used to perform the tracking are
presented. Then, the method which allows us to perform
adapted corrections for tracking the target is presented. It
is the main contribution of this paper. The performance
of the tracking algorithm is illustrated via several simula-
tion results and we conclude on further works about the
tracking in binary sensor networks.

2. TRACKING WITH BINARY SENSORS

A. Target Motion Model

The target is assumed to evolve with a Markov motion,
given by:

xk|xk−1 ∼ N (Fkxk−1,Qk) (1)

for k = 1, 2... whereN (µ, σ2) is a gaussian distribution
with mean µ and varianceσ2. The starting position is
assumed to be unknown.

B. Sensor Measurement Model and Analysis

At each time period, each sensor gives us a{+,−}
information, meaning that the target is getting closer or
moving away. Given all the sensors reports at the time-
period t, we can easily define a space where the target is
assumed to be at this time-period. This is the fundamental
uncertainty we have att, and the area of this domain is, of
course, directly related to the network parameters (sensor
number, network geometry, etc.).

C. Velocity Estimation

We can estimate the direction of the target based on the
simple information given by the sensors. Obviously, that
estimator will only be precise if the number of sensors is
significantly great. To perform that estimation, we can use
several methods, such as the Projection Pursuit Regression
Method, or the Support Vector Machine Method. The
SVM method chosen for our algorithm as a most common
method, and is presented in the next paragraphs.

1) Binary Sensor Network Observability Properties:
Let us denotesi a sensor whose position is represented
by the vectorti. Similarly, the vectorxt represents the
position vector of the target at the time-periodt. Let us
denotedi(t) the (time-varying) distance from sensorsi to
the target at timet. Then, we have that:

di(t) ց⇐⇒ ḋi(t) < 0 , or: 〈xt − ti,vt〉 < 0 , (2)

wherevt is the instantaneous target velocity. We thus have
the following lemma.

Lemma 1:Let si (resp.sj) a sensor whose target dis-
tance is decreasing (resp. increasing) at the time-periodt,
then we have:

〈tj ,vt〉 < 〈x
t
,vt〉 < 〈ti,vt〉 . (3)

If we restrict to binary motion information, we consider
that the outputsi(t) of a sensor (at timet) is +1 or −1
according to the distancedi(t) is decreasing or increasing,
so that we have:

{

si(t) = +1 if ḋi(t) < 0 ,

sj(t) = −1 if ḋj(t) > 0 .
(4)

Let us denoteA the subset of sensor whose output is
+1 andB the subset of sensors whose output is−1, i.e.
A = {si| si(t) = +1} and B = {sj | sj(t) = −1} and
C(A) and C(B) their convex hulls, then the following
property holds[2]:

Proposition 2: C(A)
⋂

C(B) = ∅ and xt /∈
C(A)

⋃

C(B).
Proof: The proof is quite simple and is reproduced

here only for the sake of completeness. First assume that
C(A)

⋂

C(B) 6= ∅, this means that there exists an element
of C(B), lying in C(A). Let s be this element (andt its
associated position), then we have (t ∈ C(B)):

t =
∑

j∈B

βj tj , βj ≥ 0 and
∑

j∈B

βj = 1

so that we have on the first hand:

〈t,vt〉 =
∑

j∈B

βj 〈tj ,vt〉 < 〈xt,vt〉 (see eq. 3),

and, on the other one (t ∈ C(A)):

〈t,vt〉 =
∑

i∈A

αi 〈ti,vt〉 ≥

(

∑

i∈A

αi

)

min
i

{〈ti,v(t)〉}

> 〈xt,vt〉 .
(5)

Thus a contradiction which shows thatC(A)
⋂

C(B) = ∅.
For the second part, we have simply to assume thatx(t) ∈

C(A) (xt =
∑

i∈A

αi ti, αi ≥ 0), which yields:

〈xt,vt〉 =
∑

i∈A

αi 〈ti,vt〉 ≥ min
i∈A

〈ti,vt〉, (6)

which is clearly a contradiction, idem ifX(t) ∈ C(B).
���

So,C(A) andC(B) being two disjoint convex subsets,
we know that there exists an hyperplane (here a line)
separating them. Then, letsk be a generic sensor, we can
write tk = λ vt + µ v⊥

t , so that:

〈tk,vt〉 = λ ‖vt‖
2

> 0 ⇐⇒ λ > 0 . (7)

This means that the line spanned by the vectorv⊥
t sepa-

ratesC(A) andC(B). Without considering the translation
and considering again the

{

vt,v
⊥
t

}

basis , we have :

{

tk ∈ A ⇐⇒ λ ‖vt‖
2

> 〈xt,vt〉 ,

tk ∈ B ⇐⇒ λ ‖vt‖
2

< 〈xt,vt〉 .
(8)

Thus in the basis(vt,v
⊥
t), the line passing by the point

(

〈xt,vt〉

‖vt‖
2 , 0

)

and whose direction is given byv⊥
t is

separatingC(A) andC(B).

2) The Support Vector Machine (SVM) approach [3]:
As seen previously, the problem we have to face is to
optimally separate the two classes of sensors (i.e. the+
and−). So, we can use the general framework of SVM,
widely used in the classification context. The set of labeled
patterns{ (y1,x1), · · · , (yl,xl) } (yi ∈ {−1, 1} and xi

sensor positions) is said to be linearly separable if there
exists a vectorw and a scalarb such that the following
inequalities hold true:

{

〈w,xi〉 + b ≥ 1 if : yi = 1 ,

〈w,xi〉 + b ≤ −1 if : yi = −1 .
(9)

Let H(w, b)
∆
= {x|〈w,x〉 + b = 0} (w: normal vector) be

this optimal separation plane and define the margin (marg)
as the distance of the closest pointxi to H, then it is easily
seen thatmarg = 1

‖w‖ . Thus, maximizing the margin lead
to consider the following problem:
∣

∣

∣

∣

∣

∣

min
w,b

τ(w)
δ
= ‖w‖2

,

s.t. :yi (〈w,xi〉 + b) ≥ 1 ∀ i = 1, · · · , l yi = ±1 .
(10)

DenotingΛ the vector of Lagrange multipliers, dualization
of eq. 10 leads to consider again a quadratic problem, but
with more explicit constraints [3], i.e. :

∣

∣

∣

∣

∣

∣

max
Λ

W (Λ) = −
1

2
ΛT D Λ + ΛT 1 ,

s.t. :Λ ≥ 0 , ΛT Y = 0 ,

(11)

where 1 is a vector made of1 and Y T = (y1, · · · , yl)
is the l-dimensional vector of labels, andD is the Gram
matrix:

Di,j = 〈yixi, yjxj〉 . (12)

The dualized problem can be efficiently solved by classical
quadratic programming methods. The less-perfect case
consider the case when data cannot be separated without

errors and lead to replace the constraints of eq. 10 by the
following ones:

yi (〈w,xi〉 + b) ≥ 1 − ξi , ξi ≥ 0 , i = 1, · · · , l . (13)

Consider now a multiperiod extension of the previous
analysis. Let us restrict first to a two-period analysis, we
shall consider two separating hyperplanes (sayH1,H2)
defined by:
{

〈w, x1
l 〉 + b1 ≷ ±c1 according to: y1

l = ±1 ,

〈w, x2
l 〉 + b2 ≷ ±c2 according to:y2

l = ±1 .
(14)

It is also assumed that these two separating planes are
associated with time periodsT andT + ∆T , ∆T known.
It is easily seen that the margin for the separating plane
H1 is c1

‖w‖ , while for the planeH2 it is c2

‖w‖ . Thus, the
problem we have to solve reads:
∣

∣

∣

∣

∣

∣

∣

min
w,c1,c2,b1,b2

[

max
1,2

(

‖w‖2

c2
1

,
‖w‖2

c2
2

)]

,

s.t.: y1
l

(

〈w, x1
l 〉 + b1

)

≥ c1 , y2
l

(

〈w, x2
l 〉 + b2

)

≥ c2 ∀l.
(15)

At a first glance, this problem appears as very complicated.
But, without restricting generality, we can assume that

c1 < c2. This means thatmax
1,2

(

‖w‖2

c2
1

,
‖w‖2

c2
2

)

=
‖w‖2

c2
1

.

Making the changes1
c1

w → w
′

and b1
c1

→ b
′

1 then leads
to consider the classical problem:
∣

∣

∣

∣

∣

∣

∣

min
w

′
,b

′

1,b
′

2

‖w
′

‖
2

s.t. : y1
l

(

〈w
′

, x1
l 〉 + b

′

1

)

≥ 1 , y2
l

(

〈w
′

, x2
l 〉 + b

′

2

)

≥ 1 ∀l.

(16)
Let w∗ be the (unique) solution of eq. 16, then a straight-
forward calculation yields the distanced(H∗

1,H
∗
2) between

the two separating planes, i.e.:

d(H∗
1,H

∗
2) =

|b∗1 − b∗2|

‖w∗‖
.

Finally, we deduce that the estimated velocity vectorv̂ is
given by:

v̂ = α w∗ and: v̂ =
1

∆T
d(H∗

1,H
∗
2) . (17)

The previous analysis can be easily extended to an
arbitrary number of periods, as long as the target
trajectory remains rectilinear. Another definite advantage
is that it can be easily extended to multitarget tracking.

3) The effect of target acceleration:To illustrate the
effect of velocity change for estimating the target position,
let us consider a very simple example. Assume that the
target motion is uniformly accelerated, i.e. :

xt = x0 + t ẋ0 +
t2

2
ẍ0 . (18)

We have now to deal with the following question: Is the
target trajectory fully observable? To that aim, we first

recall the following result. Considering a dense binary
network, two target trajectories are said indistinguishable
iff they provide the same (binary) information which is
equivalent to the following conditions:

{

ẋt = ẏt , 〈yt − xt, ẏt〉 = 0 ∀t . (19)

Expliciting the second condition of eq 19, with the target
motion model 18, we obtain that the following condition
holds (∀t):

〈y0 − x0, ẏ0〉 + t〈ẏ0 − ẋ0, ẏ0〉 + 1
2 t2〈ÿ0 − ẍ0, ẏ0〉 ,

+t〈y0 − x0, ÿ0〉 + t2〈ẏ0 − ẋ0, ÿ0〉 + 1
2 t3〈ÿ0 − ẍ0, ÿ0〉 = 0 .

(20)
Thus, 〈yt − xt, ẏt〉 is a zero polynomial, which means
that all its coefficients are zero. For thet3 coefficients we
obtain the condition〈ÿ0 − ẍ0, ÿ0〉 = 0. Similarly with the
〈yt −xt, ẋt〉 = 0 condition, we obtain〈ÿ0 − ẍ0, ẍ0〉 = 0.
Subtracting these two equalities yield‖ÿ0 − ẍ0‖ = 0 , or
ẍ0 = ÿ0.

Quite similarly, we obtain the equalitẏx0 = ẏ0 and the
last equality:

〈y0 − x0, ẏ0 + tÿ0〉 = 0 ∀t . (21)

Assuming that the couple{ẏ0, ÿ0} spans the sensor space
then we deduce thatx0 = y0. So, it has been shown that
it was the target acceleration which render the problem
fully observable. This reasoning can be extended to a wide
variety of target modeling.

3. TARGET TRACKING

The main issue with the SVM estimation is that it only
provides us the general direction of the target within a
deterministic framework. Moreover, it is highly desirable
to develop a reliable algorithm for target tracking (velocity
and position). To solve this problem, we build a two-
step algorithm. In the first step, we perform a correction
through the estimated unitary velocity vector at each time-
period t, called λt. Then, in a second time, we perform
a correction through the orthogonal-estimated (unitary)
velocity vector, also at each time-period, calledθt. These
two corrections give us a better estimation of both the
velocity and the position of the target. We refer to fig. 1
for the presentation of the rationale of the two correction
factors.

A. Theλ factor

To build that correction factor, we started with a very
simple assumption. At each periodt, the sensors provide
binary motion information. Thanks to the first part of this
article, we know that the target is in the (special) set lying
between the two same-sign-sensors set. Then, starting from
the previous estimated position of the target, we move
the estimated target through the estimated velocity vector
direction until it stands in that special set. We now define
this operator in a mathematical way:
Let v̂t be the estimated normalized velocity vector at time
t.

Step 1 : Estimating the direction of the velocity

Time t

Time t−1

Esitmated Direction

True Trajectory

{−} Sensor

{+} Sensor

Estimated Trajectory

Time t

Correction

Step 2 : Correction through the velocity direction

Time t−1

Time t
between t and t−1
Estimated Trajectory

Step 3 : Correction through the orthogonal velocity direction

Correction

Time t−1

Fig. 1: Correction scenario.

Moreover, let{t(−)
i }i (respectively{t(+)

i }i) be the coor-
dinates of the sensors (si) giving a {−} (respectively a
{+}) at time t.
We sort vs

(−)
i = 〈v̂t, t

(−)
i 〉 (respectively vs

(+)
i =

〈v̂t, t
(+)
i 〉). Then, following a very simple geometrical

reasoning, we note that〈v̂t; X̂t〉 should be betweenvs
(−)
max

andvs
(+)
min. To ensure that property, we define the follow-

ing correction factor:

λt =
vs(+,−)

moy −〈v̂t,x̂t−1〉

〈v̂t,v̂t−1〉
,

with the following definition ofvs
(+,−)
moy :

vs
(+,−)
moy =

vs(−)
max+vs

(+)
min

2 ,

(22)

To calculate this factor, we consider the projection equal-
ity:

〈v̂t, (x̂t−1 + λt v̂t−1)〉 = vs(+,−)
moy (23)

which means that the projection of the corrected value is
equal to the mean value of the projection. Geometrically,
this means that the position of the target is estimated to
be in the center of the special set defined by the sensors.
The value of the correction factorλt (see eq. 22) is
then straightforwardly deduced from eq. 23. Similarly, the
target position is updated via:

x̂corr
t = x̂t−1 + λt v̂t−1 . (24)

Here the correction factorλt has been calculated via the
average value of the projection. This is an arbitrary choice
and we can consider the lower or the upper bound of the
projection with no significant difference on the results of
the algorithm.
Obviously, if the estimation of the position is not very
good, the estimated velocity value (clearly based onλt)
will be quite different from the real value of the velocity.
The next correction factor is based on the assumption that
the target velocity changes are upper and lower bounded.

B. Theθ correction factor

We assume that the velocity of the target has bounded
acceleration. Then, if the velocity estimated at a certain
time t is too different from the velocity estimated at time
t − 1, this means that the estimated position of the target
is far from the right one. Then, in that precise case, we
consider an orthogonal correction, throughv̂t

⊥.
For that deterministic algorithm we decided to perform
a very simple modeling of the velocity. Indeed, we take
as a right value for the velocity the simple mean of the
k previous values of the estimated velocity (mt,k). We
calculate in addition the variance (σt,k), and the factorθt

can be non-zero iff the estimated value of the velocity at
time t is not in the interval given by[mt,k − σt,k;mt,k +
σt,k]. We then look forθt such that:

〈x̂corr
t + θt v̂⊥

t − (x̂t−1 + θt v̂⊥
t−1); v̂t−1〉 = mt,k . (25)

The previous equation needs some explanation. Given
that x̂t is the estimated target position at timet, we
would like to correct the value to be closer to the right
position. The only way we can deal with it, is to correct
the estimated value of the velocity.̂xcorr

t − x̂t−1 is the
previous calculated correction. If the difference between
that estimation and the valuemt,k is too important, we try
to reduce that difference with a translation of the positions
at time periodst and t − 1. As we want the positions to
stay in the special set defined by the sensors, the direction

of that translation is given bŷv⊥
t for the position at time

t, and v̂⊥
t−1 for the position at timet − 1.

Performing straightforward calculation, leads to consider
the following correction factor:

θt =
mt,k − λt

〈v̂⊥
t ; v̂t−1〉

. (26)

Obviously, as we could expect when presenting the
method, if the target motion is rectilinear and uniform
, no correction factor can be calculated. Then, the final
estimated position is given by:

x̂
fin
t = x̂corr

t + θt v̂⊥
t . (27)

C. The final correction step

Noticeably the most important step of the algorithm, i.e.
the θ correction factor, is based on the estimation of the
velocity change. Indeed, the best the estimation of the
velocity is, the best we can estimate the position. Then,
our aim is to perform a better analysis of the target motion.
Considering that from time to time, the estimation of the
position increases in quality, a promising way should be
to perform a feedback of the newest corrector to the oldest
position estimation. We denotêzt the updated estimated
position of the target at timet. Then, according to the
previous paragraph, the estimated position is updated via:

∀j < t : ẑj = x̂
fin
j +

t
∑

i=j+1

θiv̂
⊥
i . (28)

With this new estimator we will be able to perform a
better analysis of the target motion (position and velocity).

D. The tracking algorithm

With the definition of the correction factors, the theoretical
part of the algorithm is finished. Then, it is presented as
follows, at time periodt:

1) Get the binary information of each sensor, and then
the target position set.

2) Estimate the velocity direction at timet via a SVM
method

3) Perform theλ calculation, and add that correction
to the estimated velocity at timet − 1. The time-t-
position is then updated.

4) Check if the estimated velocity at timet − 1 is too
different from the modeled value, and in this case,
calculateθt.

5) Update the position at timet, and in this case, the
velocity at timet − 1 with the correctionθ.

Steps 2 and 3 can be inverted with no damage in the
process. This is the main part of the algorithm. However,
there is no mention in that enumeration of the initializa-
tion. There are two main state vectors that have to be

initialized. The position and the velocity. The position is
assumed to be unknown, but thanks to the sensors, we can
have a space where the target is assumed to be at first. We
use here a uniform law for the initialization, given that
we have no further information about where the target can
start.
The initialization of the velocity is not far from that
solution. Indeed, with the binary information, we can
provide a convenient estimate of the velocity direction.
Even if we don’t have a precise idea of the speed value,
we can then start the algorithm.

4. SIMULATION RESULTS

We will present in that section the results of the tracking
algorithm. We consider here that the target starts from the
[100, 100] position and that its initial velocity vector is the
[1, 1] vector. The number of sensors is equal to70, in a
quite wide space (300mx300m). The variance of the target
motion is not very important, and the tracking duration is
T = 30 seconds.
One simulation is presented in figure 2. In red is rep-
resented the real target trajectory, quite diffusive, and in
green the estimated successive positions. The initialization
is not very bad because the number of sensors is quite
important, which means that the uniform set is not too
large. After the first step, the estimation seems to hang
the real trajectory, and follows the target well (less than
10 meter error). However, when the target turns right,
we loose some precision, mainly because the correction
factors seemed to be “lost”. The reason for that behavior
is that the SVM method provides us a bad estimation
of the velocity vector. Then, the algorithm provides a
correction in a bad direction, which moves away from the
real trajectory. During a few seconds, the estimation works
quite bad, before hanging again the target direction, and
then performing a quite good estimation of the velocity.
Unfortunately, there is no evidence in that example that
increasing indefinitely the tracking duration results in an
estimated position closer and closer to the real target
position. This is precisely the aim of the two next figures,

Fig. 2: Trajectory Estimation of a target. In Red, the real trajectory, in
green the estimated one.

3 and 4. The first one shows the mean square error of the
estimated position of the target through the trajectory. The
total time isT = 30 seconds, and we can see an amazing

and remarkable decrease of that MSE in the first seconds.
It seems however that there is a limit to that decrease.
Indeed, the MSE will not converge to a zero value, even
if we could perform a long-time tracking. Clearly, the
limitation is due to the binary information at first, and
certainly to the number of sensors in a second time. Some
further work could certainly exhibits a strong link between
the number of sensors and the MSE of the position.

In the same way, the velocity estimation has some

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Time t

M
S

 E
rr

or

Mean Square Error of the estimation of the position

Fig. 3: MSE of the estimator of the target position.

acceptable MSE through out the tracking process. Despite
the clearly strong peak at the beginning, the curve then
stands to an acceptable but non zero value. The effect is
more obvious than in the position case, surely because
of the velocity modeling we make in the algorithm, which
forces the velocity estimation to very bad evolution. A clue
could be to perform a most sophisticated modeling of the
velocity, but given the binary information, this won’t be
easy. This is another work in progress for the evolution of
our algorithm.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

time t

M
SE

 o
f t

he
 V

el
oc

ity

Mean Square Error of the estimator of the velocity

Fig. 4: MSE of the estimator of the target velocity.

5. CONCLUSION

A new method for tracking both position and velocity
of a moving target via binary data has been developed.

Though the instantaneous data are poorly informative, our
algorithm takes benefit of the network extent and density
via specific spatio-temporal analysis. This is remarkable
since the assumptions we made about target motion are
not restrictive. Noticeably also, our algorithm is quite fast
and reliable. Furthermore, it is clear that performance
can be greatly improved if we can consider that the
acquisition frequency is (far) greater than the maneuver
frequency. In particular, we can mix the present method
with the one we developed in [1].

However, some important questions remain. The first
one concerns the velocity modeling. We focused on this
paper on the adaptability of the different correction factors,
but we didn’t pay much attention to that modeling, which
can definitely improve the estimation quality. Moreover,
our tracking algorithm is basically deterministic even
if the target motion modeling is basically probabilistic.
Thus, it should be worth to calculate the first correction
factor (λ) via a likelihood, such thatxcorr does not
always stays in the mean of the special set. Moreover,
that likelihood should be related to all the sources of
sensor uncertainty. In addition, the present algorithm
gives a slow response to sudden target maneuver. A
remedy should be to incorporate a stochastic modeling of
such event in our algorithm.

The second correction factor (θ) may also be improved
via a stochastic approach. Instead of considering a cor-
rection only related to the estimated velocity estimated,
we could immerse this correction within a stochastic
framework involving bothv̂t and θ. These observations
are part of our next work on that very constrained but
also quite exciting tracking framework. The last important
point is multiple target tracking. Even if our work in this
area is quite preliminary, it is our strong belief that our
spatio-temporal separation based algorithm should be the
natural way to overcome the association problems.

REFERENCES

[1] A. I CKOWICZ, J.-P. LE CADRE, A new method for target trajectory
estimation within a binary sensor network.Proc. of the 10th Eu-
ropean Conference on Computer Vision: Multi-camera and Multi-
modal Sensor Fusion Algorithms and Applications Workshop, Oct
2008.

[2] J. ASLAM, Z. BUTLER, F. CONSTANTIN, V. CRESPI, G. CYBENKO,
D. RUS, Tracking a moving object with a binary sensor network.
Proc. of the 1st international Conference on Embedded Networked
Sensor Systems, Nov 2005, pp. 150–161.

[3] C. CORTES, V. VAPNIK, Support-Vector Networks. Machine Learn-
ing, 20, 1995, pp. 273–297.

[4] J.H. FRIEDMAN and J. H. TUCKEY, A Projection Pursuit Algorithm
for Exploratory Data Analysis. IEEE Trans. Comput.23, 1974,
pp. 881–889.

[5] J. H. FRIEDMAN and W. STUETZLE, Projection Pursuit Regression.
J. Amer. Stat. Soc.,76, 1981, pp. 817–823.

[6] L. L AZOS, R. POOVENDRAN and J.A. RITCEY , Probabilistic
Detection of Mobile Targets in Heterogeneous Sensor Networks.
Proc. of the 6-th IPSN, Apr. 2007.

[7] X. WANG and B. MORAN , Multitarget Tracking Using Virtual
Measurements of Binary Sensor Networks.Proc. of the 9-th Int.
Conf. on Information Fusion, Jul. 2006.

