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ABSTRACT
The complexity of dynamical laws governing 3D atmo-
spheric flows associated with incomplete and noisy obser-
vations make the recovery of atmospheric dynamics from
satellite images sequences very difficult. In this paper, we
face the challenging problem of estimating physical sound
and time-consistent horizontal motion fields at various at-
mospheric depths for a whole image sequence. Based on
a vertical decomposition of the atmosphere, we propose a
dynamically consistent atmospheric motion estimator relying
on a multi-layer dynamical model. This estimator is based
on a weak constraint variational data assimilation scheme
and is applied on noisy and incomplete pressure difference
observations derived from satellite images. The dynamical
model consists in a simplified vorticity-divergence form of a
multi-layer shallow-water model. Average horizontal motion
fields are estimated for each layer. The performance of the
proposed technique is assessed on real world meteorological
satellite image sequences.

Index Terms— Data assimilation, pressure images,
motion estimation, optical-flow, simplified shallow-water
modeling, optimal control theory,

I. INTRODUCTION

Geophysical motion characterization and image sequence
analysis are crucial issues for numerous scientific domains
involved in the study of climate change, weather forecasting
and climate prediction or biosphere analysis.
In the context of image-based geophysical motion anal-

ysis, standard techniques from computer vision, originally
designed for bi-dimensional quasi-rigid motions with stable
salient features, appear to be not well adapted [1]. The design
of techniques dedicated to fluid flows has been a step for-
ward, towards the constitution of reliable methods to extract
characteristic features of flows [2], [3], [4]. However, for
geophysical applications, existing fluid-dedicated methods
are all limited to frame-to-frame estimation and do not rely
on physical conservation laws.

Geophysical flows are quite well described by appropriate
physical models. As a consequence, the inclusion of physical
evolution laws should constitute a very powerful mean for
the motion analysis of satellite image data, in comparison to
standard variational or statistical generic image based motion
estimation techniques.
Variational data assimilation [5], [6], derived from optimal

control theory [7], offers a global optimal formulation allow-
ing combining physical models and different kinds of obser-
vations. Since its introduction, the variational assimilation
technique commonly known as 4D-Var has been widely used
for several atmospheric applications [8], [9]. Most of these
methods directly assimilate image data. They do not depend
on pseudo-measurements obtained by external techniques but
rather propose to include directly a differential observation
operator borrowed to image features estimation techniques.
In the same way than [10], the technique proposed in

this paper exploits such framework to estimate atmospheric
motion directly from satellite image sequences.

II. DATA ASSIMILATION
In this section we present the variational data assimilation

used for an imperfect dynamical model. We refer the reader
to [5], [7], [6] for complete methodological aspects of data
assimilation and applications concerning geophysical flows.
The problem consists in recovering, from an initial condi-

tion, a system’s stateX partially observed and driven with an
approximately known dynamics. This formalizes as finding
X(s, t), for any location s at time t ∈ [t0, tf ], that satisfies
the system:

∂X

∂t
(s, t) + M(X(s, t)) = νm(s), (1)

X(s, t0) = X0(s) + νn(s), (2)
Y(s, t) = H(X(s, t)) + νo(s, t), (3)

where M is the non-linear operator relative to the dynamics,
X0 is the initial vector at time t0 and (νn, νm) are
(unknown) additive control variables relative to noise
on the dynamics and the initial condition respectively.
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Besides, noisy measurements Y of the unknown state
are available through the non-linear operator H up
to νo. To estimate the system’s state, a common
methodology consists in defining a cost-function J =
1

2

“R tf

t0
‖Y − H(X(νm, νn))‖2

R−1
dt + ‖X(s, t0) − X0(s)‖2

B−1

+
R tf

t0
‖∂X

∂t
(s, t) + M(X(s, t))‖2

Q−1
dt

”
to minimize. We have

introduced the information matrices R, B, Q relative to
the covariance of the errors (νm, νn, νo). The Mahalanobis
distance used reads ‖X‖A−1 = XT A−1X . It can be shown
that canceling the gradient δJX(θ) leads to the following
incremental algorithm [11]:

1) Starting from X̃(s, t0) = X0(s), perform a forward
integration: ∂X̃

∂t
+ M(X̃) = 0

2) X̃(s, t) being available, compute the adjoint vari-
ables λ(s, t) with the backward equation:

λ(tf ) = 0 ;

−
∂λ

∂t
(t) + (∂XM)∗ λ(t) = (∂XH)∗R

−1(Y − H(X̃))(t)

(4)

3) Update the initial condition : dX(t0) = Bλ(t0);
4) λ being available, compute the state space dX(t) from

dX(t0) with the forward integration

∂dX

∂t
(t) +

„
∂M

∂X̃

«
dX(t) = Qλ(t) (5)

5) Update : X̃ = X̃ + dX
6) Loop to step (ii) until convergence

We have here introduced the adjoints variables λ, the tangent
linear operators ∂M/∂X̃ and ∂H/∂X̃ and their adjoints
(∂XM)

∗ and (∂XH)
∗. Intuitively, the adjoints variables

λ contain information about the discrepancy between the
observations and the dynamical model. They are computed
from a current solution X̃ with the backward integration
(4) that implicates both the observations and the dynamical
operators. This deviation indicator between observations and
model is then used to refine the initial condition (step 3) and
to recover the system state through an imperfect dynamical
model where errors are Qλ (step 4). If the dynamics is
supposed to be perfect, the associated error covariance Q
is null and the algorithm only refines the initial condition.
However from an image analysis point of view, a perfect
modeling appears to be limited since the different models on
which we can rely are usually inaccurate due, for instance, to
3D-2D projections, varying lighting conditions, completely
unknown boundary conditions at the image boarders, etc.

III. DATA ASSIMILATION FOR MULTI-LAYER
SHALLOW-WATER MODEL

In this section, the variational assimilation framework
is used to estimate atmospheric motion fields from sparse
pressure difference images.
Input data: we deal with top of cloud pressure im-

ages of kilometer order that are routinely provided by the
EUMETSAT consortium. From a set of Meteosat Second

Generation (MSG) channels, sparse top of cloud pressure
images related to the different layers of the atmosphere
are derived from a radiative transfer model using ancillary
data, namely temperature and humidity profiles obtained by
analyzes on short term forecasts (see [12], [13] for details).
We denote by Ck the class corresponding to the k-th layer.
Some image are shown in figure 1 for 2 levels of the
atmosphere.
Dynamics As satellite images supply only sparse data of

partially visible 3D cloud layers for which only inaccurate
pressure vertical coordinates can be indirectly inferred, we
focus in this work on the simpler task of estimating inte-
grated horizontal wind fields over successive atmospheric
layers. The layering of atmospheric flow in the troposphere
is valid in the limit of horizontal scales much greater than
the vertical scale height. Thus for layers of a thickness
on the order of scale of 1km, this hypothesis is roughly
valid for horizontal scales greater or equal to 100 km. It is
thus impossible to truly characterize a layered atmosphere
with a local analysis performed in the vicinity of a pixel
characterizing a kilometer order scale. We then filter the
Hydrostatic Primitive Equations (HPE) with a Gaussian
kernel function Kδx

, neglect their vertical derivatives and
consider that filtered horizontal winds ṽ

k, which have been
vertically averaged, are equal to filtered horizontal winds on
layer upper surfaces sk+1. Starting from the HPE under these
assumptions yields to (see [14] for details):

ṽ
k
t + ∇(ṽk)ṽk − ρ

−1

0 ∇p̃(sk+1) +

»
0 −1
1 0

–
f

φ
ṽ

k = νTΔ(ṽk),

(6)
where ṽ

k = (uk, vk)T denotes the horizontal velocity
field for the layer k, ρ0 the density, p̃ the pressure, fφ

the coriolis force, νT a diffusion coefficient and ∇(ṽk) =
(∇ũk, ∇ṽk)� and Δ(ṽk) = (Δũk, Δṽk)�. Let us denote
the vorticity by ζ̃k = curl(ṽk) and the divergence by
D̃k = div(ṽk). The previous system may be expressed in
its vorticity-divergence form:8<

:
ζ̃k

t + ṽ
k · ∇ζ̃k + (ζ̃k + fφ)D̃k = νTΔ(ζ̃k),

D̃k
t +ṽ

k · ∇D̃k+(D̃k)2−2|J |−ρ−1

0 Δp̃(sk+1)+fφζ̃k =

νTΔ(D̃k),
(7)

where |J | is the determinant of the Jacobian matrix of
variables (ũk, ṽk). For vorticity based large eddy simulation
formulations, we may rely on enstrophy-based sub-grid
models [15]. This sub-grid dissipation model is based on
Taylor’s vorticity transfer and dissipation by small scales
theory ([16]) and reads: νT = (Cδx)2|ζ̃k|. In the momentum
conservation formulations of equation (6) and equation (7),
dynamical models predict the evolution of velocity compo-
nents (ũk, ṽk) and of divergence and vorticity (ζ̃k, D̃k). In
both models, one of the major difficulties is induced by the
dependence to the pressure variable p̃(sk+1) which is an
unknown variable of the k-th layer state. Thus, we search
instead to derive a dynamical model which is independent of
the pressure unknown. Opposite to the classical formulation,
the vorticity-divergence equations have the advantage of pro-
viding such a model for the vorticity evolution. As regards
the divergence, since at large scales, it can be considered
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weak almost everywhere, we will rely on an approximate
evolution law. We assume here that the divergence is ad-
vected by the flow and a noise variable that encodes the
uncertainty on the model. More precisely we will assume
that the divergence map is a function of a stochastic process
representing a particle position and is driven by the following
stochastic differential equation:

dx(t) = ṽ
k(x(t))dt +

√
2νT dB(t). (8)

This equation states that the particle position is known only
up to an uncertainty that grows linearly with time. Here Bt

denotes a standard Brownian motion of IR2. The process xt

starts at point, xo. After some manipulations detailed in [14]
(through the Ito formula, the Kolmogorov’s forward equation
and assuming that the divergence of the flow is given by
its expectation), the simplified filtered vorticity-divergence
model for the layer k can be defined:j

ζ̃k
t + ṽ

k · ∇ζ̃k + (ζ̃k + fφ)D̃k = νTΔζ̃k,

D̃k
t +ṽ

k · ∇D̃k + (D̃k)2 = νTΔD̃k.
(9)

In this model we assume that the divergence of the flow
is weak and is similar to the divergence expectation. The
divergence equation does not describe anymore the evolution
of the flow divergence but the evolution of its expectation.
The expectation of the divergence value is advected by the
flow and dissipates due to a subgrid isotropic uncertainty.
This hypothesis is quite natural in large scales modeling.
The model in (9) constitutes our dynamical model for the
assimilation process.
State variables We choose to represent the system state

X (i.e. the velocity field) through the curl and divergence
components: X =

[
ζ̃k, D̃k

]T

as their evolution can be de-
scribed by equation (9) and since they completely determine
the underlying 2D velocity up to a harmonic transportation
component. As shown in [14], the field can be represented by
its div-curl components as ṽk = ∇

⊥(G∗ ζ̃k)+∇(G∗D̃k) =[
∇
⊥G∗, ∇G∗

]
︸ ︷︷ ︸

HG

[
ζ̃k

D̃k

]
︸ ︷︷ ︸

X

, where G is the 2D Green kernel

associated to the Laplacian operator and where HG can
efficiently be computed in the Fourier domain.
Image observation operator In order to define an obser-

vation operator that links the unknown motion field ṽ
k to

images of pressure differences hk
obs(s, t), we use the mass

conservation law of equation:

∂hk
obs(s, t)

∂t
+ ∇h

k
obs(s, t) · ṽ

k(s, t) + h
k
obs(s, t)divṽk(s, t) ≈ 0,

However, this formulation cannot be used alone to estimate
ṽ

k as it provides only one equation for two unknowns at
each spatio-temporal location (s, t), with therefore a one-
dimensional family of solutions in general. To remove such
ambiguities, a common approach consists in assuming a
spatial coherence of wind field estimates in a given neigh-
borhood (similar to the well-known approach of [17] used
in computer vision). In the present case, this assumption is
coherent since unknowns are velocity vectors ṽ

k(s, t) that

are spatially filtered within a neighborhood of size δx. The
measured motion field should thus obey to the constraint:

Kδx ∗

„
∂hk

obs

∂t
+ ∇h

k
obs · ṽ + h

k
obsdivṽk

«
≈ 0, (10)

where Kδx
is the Gaussian kernel of standard deviation δx.

Recalling that ṽk = HGX (with X = [ζ̃k, D̃k]T ), one can
easily define our observation system Y = H(X) with Y =

Kδx
∗ ∂hk

obs(s,t)
∂t

and H(X) = − (
Kδx

∗ ∇hk
obs

)T
HG(X) −(

Kδx
∗ hk

obs

)
∇

T
HG(X).

IV. EXPERIMENTS

We present a qualitative evaluation of our method on MSG
image sequences acquired on north of Atlantic Ocean during
part of one day (5-June-2004) from 13h30 to 15h45 UTC
at a rate of an image every 15 minutes. This benchmark
data is composed of 10 frames sequences of top of cloud
pressure and cloud-classification images. The image spatial
resolution is 3 × 3 km2 at the center of the whole Earth
image disk. The cloud-classifications were used to segment
images into K = 3 broad layers, at low, intermediate and
high altitude. In figure 1 we present a sample of the motion
fields estimated for two different layers together with the
original observations. The motion fields estimated for the
different layers are consistent with a visual inspection of the
sequence. In particular, several motion differences between
layers are very relevant. For instance, near the bottom left
corner of the images, the lower layer possesses a southward
motion while the intermediate layer moves northward. A
complete evaluation can be founded in [14].

V. CONCLUSION
In this paper, we have proposed an assimilation approach

enabling, for the first time, a dynamically consistent
estimation of a sequence of dense and layered atmospheric
wind fields from an entire satellite image sequences. The
motion estimator is applied to sparse pressure difference
images corresponding to a stack of layers in a stratified
atmosphere. A method was proposed to derive such images
from top of cloud pressure images and classification, which
are routinely supplied by the EUMETSAT consortium. The
dynamical constraint of our system suggested relying on a
simplification of the vorticity divergence form of a shallow-
water dynamics for which the momentum equations are
independent of the layers thickness. The mass conservation
law complements this dynamics and provides the basis of
an original image-adapted observation operator.
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[12] P. Héas, E. Mémin, N. Papadakis, and A. Szantai, “Layered estimation
of atmospheric mesoscale dynamics from satellite imagery,” IEEE

Trans. Geoscience and Remote Sensing, vol. 45, no. 12, pp. 4087–
4104, 2007.

[13] H.J. Lutz, “Cloud processing for meteosat second generation,” Tech.
Rep., European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT), Available at : http://www.eumetsat.de, 1999.
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