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Abstract— Despite their importance in the search theory field,
the two problems we introduce in this paper have not been
widely studied in the literature. The first problem addresses
the optimization of the search for multiple moving targets. The
second one addresses the optimization of a cross-cueing problem,
i.e. the detection-confirmation problem. In this setup, the goal is
to maximize chances to detect a target and confirm the detection,
either by considering that two means of search are available
at a given time period or by a unique mean of search at two
consecutive time periods. In all the cases, the search optimization
is extended to a multiperiod search for moving targets. In order
to solve these two problems in a common framework, we present
an effective resolution method based on constraints dualization
and on a Forward and Backward algorithm.

Keywords: Search theory, Convex optimization,
Multitarget search, Cross-Cueing.

I. INTRODUCTION

This paper addresses two problems of importance in
the search theory field. The first one is the problem of
maximizing the detection probability for multiple targets,
while the second one consists in maximizing the detection
probability of detecting and confirming a target (cross-cueing).
It is worth stressing that they don’t have been the object of
great attention so far. First, search theory is usually restricted
to the search for a unique target, the reference [3] excepted.
Noticeable exceptions are papers devoted to search for a
unique target hidden among multiple false alarms [7] [8].
The problem is then to decide if a clue is a target or a false
alarm, and to optimize the search for this target. There are
also few papers on multiple detections, though the aim is to
search for track initialization [10].

Here, we introduce optimization of multitarget search
and cross-cueing problems in monoperiod and multiperiod
cases (one or more time steps). Both monoperiod problems
are solved in the same way: they are dualized. Actually,
the key is that the objective functionals we try to optimize
are sufficiently separable so that the dual functional can
be ”easily” calculated. Once the dual functional have been
calculated, the optimal dual parameters (related) are easily
obtained via any standard optimization algorithm. The
solution of the primal problem is then straightforwardly

deduced. It is also worth to stress that we are able to
have explicit expressions of the (sub)-gradient of the dual
functional. So, even if the mathematical background can
appear a bit impressive, the actual solution is very simple.

Extensions to multiperiod problems are also solved in the
same manner, using a Forward And Backward (FAB) algo-
rithm [1] [11] for both problems. Consequently, we choose to
present these two kinds of search problems in the same article.
This paper is organized as follows. We first introduce the
optimization framework. Two distinct parts are then devoted
to multitarget optimization and to cross-cueing optimization.
In each part, after presenting the optimization problem, we
introduce how to solve monoperiod search and, then, how to
solve multiperiod search. The final part of the paper is devoted
to results.

II. FRAMEWORK

This part is devoted to presentation of the optimization
framework.

1) The time: Notations are presented here in the multi-
period framework, i.e. there is a time index t which represents
the time-period where the search problem is considered. When
time index is omitted, it means that we consider notations
and/or problems in a monoperiod context.

2) The space of search: The search is conducted in a
discrete space, namely E. Each element of this set is called a
cell, denoted c and indexed by i. It represents the smallest area
for which search parameters are constant within. We consider
that the number of cells in the space of search is n. Thus
E = (c1, . . . , ci, . . . , cn).

3) The targets: We want to detect m targets hidden into the
space of search. Targets are referred via an index k. The only
available information concerning targets is a prior knowledge
on their location. We denote αk

i the probability of target k to
hide in cell ci.

∀k,
n∑

i=1

αk
i = 1. (1)

4) The resources: A limited number of sensors, S, is
available in order to detect the targets. These sensors are
indexed by s. Each one has a resource amount Φs,t (or
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capacity) available in order to carry the search out at each
time period t. Resources are continuous, indefinitely divisible
and must be allotted to cells of E in an optimal manner. Of
course, resources are limited i.e. :

∀s,∀t,
n∑

i=1

xs,t
i ≤ Φs,t. (2)

where xs,t
i is the amount of resource allotted to cell ci at time

t for sensor s. The search vector associated with the search
space for sensor s at time t is:

Xs,t = (xs,t
1 , . . . , xs,t

i , . . . , xs,t
n ). (3)

If the search is monoperiod and concerns a unique
search device, then the search vector is simply X =
(x1, . . . , xi, . . . , xn).

5) Detection functional: We introduce here the detection
functional for the monoperiod case. We will see later how to
extend this functional in a multiperiod framework.
Effectiveness of the search is characterized by the elementary
conditional non-detection probability p̄ k,s(xs

i ) which repre-
sents the probability of not detecting a target k with sensor s
given that the target is hidden in cell ci and that we apply an
elementary search effort xs

i on this cell. Some assumptions
are made to model p̄. For all sensors xs

i �−→ p̄ k,s(xs
i ) is

convex and non-increasing (law of diminishing return). Under
independence hypotheses, a usual model is [9]:

p̄ k,s(xs
i ) = exp(−wk,s

i xs
i ), (4)

where wk,s
i is a visibility coefficient which characterizes the

reward for the search effort xs
i applied in ci by sensor s in

order to detect the target k. An additional assumption to model
the non-detection probability is that sensors act independently
at cell level, which means that if S sensors are carrying
out the search, the probability of not detecting a target k,
P̄S

k (X1, . . . ,XS), is simply:

P̄S
k (X1, . . . ,XS) =

n∑
i=1

αk
i

S∏
s=1

p̄ k,s(xs
i ). (5)

The general framework having been defined, we will now
turn toward the two specific search problems we want to
investigate. Though they widely differ in their formulation,
we shall see that we use common tools to solve the related
optimization problems. In both cases, it is the separability
(both in space and time) which plays the major role.

III. OPTIMIZING THE SEARCH FOR MULTIPLE TARGETS

The problem here is to optimize multitarget search as a min-
max problem (see Pmt). We will present the optimization in
the case of a monoperiod search, and then the optimization in
the case of a multiperiod search.

A. Monoperiod search

1) Statement of the problem: We first consider that the
search is conducted by a unique sensor. Assume that we have
m targets to detect. Since the most dangerous target is the
target which is the more difficult to detect, we define the
multitarget non-detection functional (say P̄mt(X) ) by:

P̄mt(X) = max
k=1,···,m

(
P̄1(X, · · · , P̄k(X), · · · , P̄m(X)

)
, (6)

where X = (x1, . . . , xi, . . . , xn) is the vector representing
the search distribution. Our aim is to minimize the P̄mt(X)
functional with respect to resource consumption constraints.
We thus have to solve the optimization problem Pmt:

Pmt

∣∣∣∣∣∣∣∣
min
X

P̄mt(X)

s.t. :∑
i

xi ≤ Φ; ∀ i, xi ≥ 0.
(7)

Elementary functionals
{
P̄k (X)

}m

k=1
are convex and dif-

ferentiable. The continuity of P̄mt is preserved by the max
operator, but not the differentiability. Indeed, the set of
index k for which P̄k touches P̄mt at a given point X, i.e.
K(X) ∆=

{
1 ≤ k ≤ m : P̄k(X) = P̄mt(X)

}
, plays a major

part in the differentiability of P̄mt.
If K(X) is reduced to a unique element then, due to the
differentiability of the P̄k functionals, P̄mt is differentiable
in X. However, things are not as simple when K(X) is not
reduced to a single element. Though we may argue that such
points are rather rare, the fact is they are natural candidates
in order to minimize P̄mt (X) (see Fig. 1). In such cases, the
minimum of the P̄mt functional is achieved in a point for which
the functional is not differentiable. So, we have now to turn

Fig. 1. The definition of the P̄mt functional and its consequences.

toward the tools we need for solving our problem.
2) Elementary sub-differential calculus: When ϕ is a sim-

ple differentiable functional at X, it is well-known that when
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we move in any direction d ∈ R
n, we have (v: scalar):

∀ v > 0 , ϕ(X + v d) = ϕ(X) + v 〈∇ϕ(X),d〉 + v εd(v),
where: lim

v→0+
εd(v) = 0.

(8)
In Eq. 8, 〈., .〉 is the standard scalar product in R

n, while
∇ϕ(X) denotes the gradient of ϕ at the point X.
When K(X) is not reduced to a singleton, even if we know
that Eq. 8 is no longer valid, situation should be much
more comfortable if we were able to replace the linear form
〈∇ϕ(X),d〉 by another quantity. Actually, the following result
holds true:

∀ v > 0 , P̄mt(X + vd) = P̄mt(X) + v max
k∈K(X)

〈∇P̄k(X),d〉
+ v εd(v) ,

where: lim
v→0+

εd(v) = 0.
(9)

This means that the linear form 〈∇P̄mt(X),d〉 is replaced
by a maximum of linear forms, i.e. max

k∈K(X)
〈∇P̄k(X),d〉.

Moreover, from Eq. 9, we know that if X∗ is a (local)
minimum of P̄mt then we have:

max
k∈K(X∗)

〈∇P̄k(X∗),d〉 ≥ 0 , ∀d ∈ R
n. (10)

The usual condition for X∗ to minimize P̄mt is replaced by
the following one.

Proposition 1: Let
{
P̄1, · · · , P̄m

}
be m convex and differ-

entiable functionals R
n → R, then the following conditions

are equivalent:
1) X∗ is a minimum of P̄mt,
2) there exists positive real numbers {ρk}k∈K(X∗), sum-

ming to 1, such that:∑
k∈K(X∗)

ρk ∇P̄k(X∗) = 0.

The classical gradient vector is replaced by the convex en-
velop, denoted ∇̂P̄mt(X∗), which is defined as the convex
compact polyhedron spanned by the ∇P̄k(X∗) vectors, i.e. :

∇̂P̄ (X∗) =
{ ∑

k∈K(X∗)

ρk ∇P̄k(X∗) | ρk ≥ 0 ;
∑

k∈K(X∗)

ρk = 1
}
.

(11)
As an example, one can consider Fig. 1. Graphically 1, it is
obvious that there exist positive scalars ρ1 and ρ2, summing
to 1, and such that ρ1∇P̄1(X∗) + ρ2∇P̄2(X∗) = 0.

Let us now consider an extension to the previous analysis in
the case where we want to minimize the P̄mt functional under
constraints. To that aim, let us define the subset of constraints
Ω by:

Ω =
{
X| max

j=1,···,n1
hj(X) ≤ 0

}
, (12)

where the hj functionals (Rn → R) are assumed to be convex
and differentiable. The following proposition holds true [2].

1Note that ∇P̄1(X∗) and ∇P̄2(X∗) are positive and negative scalars (the
slopes) for this figure

Proposition 2: A necessary condition for the functional
P̄mt(X) to be minimum on Ω at a point X∗ ∈ Ω is that there
exits a vector Λ∗ of (Lagrange) multipliers:

λ∗ =
(
λ∗1, · · · , λ∗m ; µ∗

1, · · · , µ̄∗
n1

)
,

such that:

•
m∑

k=1

λ∗k ∇P̄k(X∗) +
n1∑

j=1

µ∗h
j ∇hj(X∗) = 0 .

• ∀k, λ∗k ≥ 0 ; λ∗k = 0 iff P̄k(X∗) < P̄mt(X∗) .

• ∀j, µ∗h
j ≥ 0 ; λ∗h

j hj(X∗) = 0.

(13)

The following Lagrange functional is then defined:

L (X,Λ) ∆=
m∑

k=1

λk P̄k(X) +
n1∑

j=1

µj hj(X) ,

and, as usually, a saddle point (X∗,Λ∗) is:

L (X∗,Λ) ≤ L (X∗,Λ∗) ≤ L (X,Λ∗) . (14)

Then we have:
Proposition 3: Let the functionals P̄k and hj be convex

and continuously differentiable. Then, the functional P̄mt(X)
achieves its minimum at the point X∗ ∈ Ω if and only if there
exits a vector of Lagrange multipliers Λ∗ such that (X∗,Λ∗)
is a saddle point of L (X,Λ).

For the sequel, we shall make a constant use of Prop. 2 and
3.

3) Solving the elementary monoperiod problem: For the
sake of simplicity, we first restrict to two targets. The problem
we have to solve is the following minimax problem:∣∣∣∣∣∣∣∣∣∣

min
X

[
max
1,2

(
P̄1(X), P̄2(X)

)]
s.t. :∑

i

xi ≤ Φ; ∀ i, xi ≥ 0.
(15)

Considering the results of the preceding section, we have to
consider the following Lagrange functional:

L (X, λ, µ) = λ P̄1(X) + (1 − λ) P̄2(X)

+µ

(∑
i

xi − Φ

)
−
∑

i

νixi,

with: 1 ≥ λ ≥ 0; µ ≥ 0 ; ∀i, νi ≥ 0.

(16)

Then by Prop. 2, the following condition is necessarily satis-
fied at a minimum X∗:

∀i, ∂L
∂xi

(X∗, λ, µ) = 0 ⇐⇒ ∀i, λw1
i α

1
i exp

(−w1
i xi

)
+

(1 − λ)w2
i α

2
i exp

(−w2
i xi

)
= µ− νi .

(17)
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The assumption xi > 0 imply νi = 0 (see Prop. 2). So,
under these conditions, the search effort is determined by the
following equation:

λw1
i α

1
i exp

(−w1
i xi

)
+ (1 − λ)w2

i α
2
i exp

(−w2
i xi

)
= µ .

(18)
Moreover, if xi = 0 then νi ≥ 0 and the condition Eq. 17
becomes:

λw1
i α

1
i + (1 − λ)w2

i α
2
i = µ− νi ≤ µ. (19)

Gathering Eqs. 18 and 19, the following condition has been
obtained:

xi > 0 ⇐⇒ λw1
i α

1
i + (1 − λ)w2

i α
2
i > µ .

Assuming that the Lagrange parameters λ and µ are
fixed and that xi(λ, µ) is strictly positive, then xi(λ, µ) is the
unique positive root of the equation:

λw1
i α

1
i exp

(−w1
i xi(λ, µ)

)
+

(1 − λ)w2
i α

2
i exp

(−w2
i xi(λ, µ)

)
= µ .

(20)

In general (except for w1
i = w2

i , ∀i), there does not exist
an explicit solution to Eq. 20. However, the solution is easily
obtained via any numerical procedure (e.g. 1-D dichotomy).
So, x∗i (λ, µ) is either 0 or the unique (strictly) positive root
of Eq. 20.
Once x∗i (λ, µ) has been obtained, we are able to calculate the
dual functional ψ(λ, µ):

ψ(λ, µ) = L
(
X∗

λ,µ, λ, µ
)
,

= λ P̄1

(
X∗

λ,µ, λ, µ
)

+ (1 − λ) P̄2

(
X∗

λ,µ, λ, µ
)

+ µ

(∑
i

x∗i (λ, µ)

)
.

(21)
The problem is now to optimize the dual functional ψ(λ, µ)
with respect to the {λ, µ} parameters. It is worth stressing
that ψ(λ, µ) is concave, and under mild conditions (no duality
gap) is differentiable. Assuming that x∗i (λ, µ) > 0, then
thanks to the implicit function theorem, the partial derivatives
∂

∂µ
x∗i (λ, µ) and

∂

∂λ
x∗i (λ, µ) are easily calculated, yielding:[

−λ(w1
i )

2
α1

i exp
(−w1

i x
∗
i (λ, µ)

)− (1 − λ)

(w2
i )

2
α2

i exp
(−w2

i x
∗
i (λ, µ)

)] ∂

∂µ
x∗i (λ, µ) = 1 ;

[
(w1

i )
2
α1

i exp
(−w1

i x
∗
i (λ, µ)

)− (w2
i )

2
α2

i exp
(−w2

i x
∗
i (λ, µ)

)]
+
[
−λ(w1

i )
2
α1

i exp
(−w1

i x
∗
i (λ, µ)

)− (1 − λ)

(w2
i )

2
α2

i exp
(−w2

i x
∗
i (λ, µ)

)] ∂

∂λ
x∗i (λ, µ) = 0 .

(22)

It can be shown that the partial derivatives
∂

∂λ
ψ(λ, µ) and

∂

∂µ
ψ(λ, µ) can be deduced from Eqs. 22.

In order to optimize ψ we simply employ the BFGS method

with the gradient described above (partial derivatives), which
gives the optimal couple (λ∗, µ∗) and then X∗ via Eq. 20. We
stress that the (apparently) difficult primal problem has been
reduced to the the maximization of a concave, bi-dimensional
concave functional. Of course, it is the separability properties
of the functional which render feasible this approach.

B. The multiperiod search

Assume now that we consider a multiperiod search. First, let
us define the multiperiod multitarget non-detection functional
for a Markovian target, with time horizon T . πk,t(j) is a (row)
vector representing the probability that the target k has attained
a cell j at time t, having remained undetected up to time t.
Then, we have:

∀k, πk,t(j) =
∑

i

πk,(t−1)(i) P̄ k,t(i, j) , (23)

In Eq. 23, P̄ k,t(i, j) is the probability that target k goes from
cell i (time period (t − 1) ) to cell j (time period t), being
undetected by the search effort put on the cell j at time period
t. We thus have:

∀k, P̄ k,t(i, j) = P k
i,j exp

(−wk
j x

t
j

)
,

where P k is a standard transition matrix for the target k. The
above equation can also be written in matrix form:

∀k, P̄ k,t = ∆̄k,t
mt P

k ,
with:
∆̄k,t

mt = diag
(
exp
(−wk

j x
t
j

))
.

(24)

Gathering Eqs. 23 and 24, we obtain the following recursion:

k = 1, · · · ,m, πk,t = πk,t−1 ∆̄k,t
mt P

k . (25)

Considering a T time-period search, we deduce that the
probability that the target k remains undetected within the
multiperiod search is:

P̄ k,T =
[ (

πk,1 ∆̄k,1
mt P

k · · · ∆̄k,(t−1)
mt P k

)
︸ ︷︷ ︸

Uk,t
mt

∆̄k,t
mt (26)

(
P k∆̄k,(t+1)

mt · · · P k∆̄k,T
mt 1

)
︸ ︷︷ ︸

Dk,t
mt

]
,

where πk,1 represents the prior knowledge on the location of
the target k, i.e. πk,1 = αk. We thus have:

k = 1, · · · ,m, t = 1, · · · , T P̄ k,T = Uk,t
mt ∆̄k,t

mt D
k,t
mt , (27)

where the Uk,t
mt (row) and Dk,t

mt (column) are propagated via
the following induction: Dk,t

mt = P k∆̄k,(t+1)
mt D

k,(t+1)
mt ,

Uk,t
mt = U

k,(t−1)
mt ∆̄k,(t−1)

mt P k .
(28)

Considering the optimization of the P̄ k,T , we see that the
complexity increases rapidly. However, this problem is dras-
tically simplified by considering that optimization has been
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split throughout the various time-periods. More precisely, we
consider the following problem:

min
Xt

{
max
1,···,m

[
P̄ 1,T , · · · , P̄m,T

] }
s.t. :

∑
i

xt
i = Φt t = 1, · · · , T .

(29)

We denote Xt = (xt
1, . . . , x

t
n) the search effort vector

at time-period t. The quantities Φt represent the amount of
resource available in order to carry out the search at the epoch
t. Then the FAB algorithm, introduced by Brown [1] [11],
simply consists in finding (recursively in time) the vector Xt,l∗

defined by :
Xt,l∗ = arg min

Xt,l

(
max

[
U1,t,l

mt ∆̄t
mt D

1,t,l−1
mt , · · · ,

Um,t,l
mt ∆̄t

mt D
m,t,l−1
mt

])
s.t. :

∑
i

xt,l
i = Φt .

(30)
In Eq. 30, the index l refers to the iteration number. It
worth also stressing that for the first iteration of the algorithm
(l = 1), the Dk,t,l−1

mt are not available and simply replaced by
1 vectors, which means that the algorithm works in the myopic
mode. The global convexity of the max

k
[P̄ k,T

mt ] functional

ensures convergence of this iterative multiperiod optimization
algorithm.
Let us now study the cross-cueing problem.

IV. OPTIMIZING THE CROSS-CUEING PROBLEM

The problem here is to optimize the cross-cueing search for
a unique target, Pcc. We will first present the optimization in
the case of a monoperiod search, and then the optimization in
the multiperiod case.

A. Statement of the problem

We want to optimize the probability to detect a unique
target twice, with two different sensors. We thus optimize the
following cross-cueing functional, Pcc(X1,X2):

Pcc(X1,X2) = P 2(X1,X2) =
∑

i

αi p
1(x1

i ) p
2(x2

i ), (31)

where p1(x1
i ) = 1 − p̄1(x1

i ) is the conditional detection
probability for sensor 1 and p2(x2

i ) = 1 − p̄2(x2
i ) is the

conditional detection probability for sensor 2. We thus aim
to solve:

Pcc

∣∣∣∣∣∣∣∣∣∣∣

min
X1,X2

−Pcc(X1,X2)

s.t. :∑
i

x1
i ≤ Φ1 ;

∑
i

x2
i ≤ Φ2 ;

∀i, x1
i ≥ 0 ; x2

i ≥ 0 .

(32)

In most cases, Pcc is not concave everywhere. However, it
has the great advantage to be separable. Considering the primal

problem (Pcc) leads to consider the following Lagrangian
functional.

L(λ, µ,X1,X2) = −
∑

i

αi p(x1
i ) p(x

2
i )

+λ

(∑
i

x1
i − Φ1

)
+ µ

(∑
i

x2
i − Φ2

)
.

(33)

The Lagrange multipliers λ and µ are positive, and the dual
functional ψ(λ, µ) is defined by:

ψ(λ, µ) = min
X1,X2∈R

2n
+

L(λ, µ,X1,X2)

where: X1 =
(
x1

1, · · · , x1
n

)
and X2 =

(
x2

1, · · · , x2
n

)
.
(34)

B. Solving the elementary monoperiod problem

For given values of λ and µ, we denote X∗ 1 and X∗ 2 the
search vectors which minimize L(λ, µ,X1,X2). Considering
the minimization of L(λ, µ,X1,X2) on the convex domain
R

2n
+

∆= W , a necessary condition for the vector X∗ ∆=
(X∗ 1,X∗ 2) to be a (local) minimum of L(λ, µ,X) is thus:

−∇L(λ, µ,X) (X∗) ∈ N (W,X∗) ,
where:

N (W,X∗) ∆= {w ∈W | 〈w,w′ − X∗〉 ≤ 0 , ∀w′ ∈W} .
(35)

N (W,X∗) is the normal cone to W , at X∗. Considering Eq.
35, the following (necessary) condition holds (assuming that
x∗1i > 0):

∂

∂x1
i

L(λ, µ,X∗) = 0 ,

⇐⇒
αiw

1
i

(
1 − p(x∗ 1

i )
)
p(x∗ 2

i ) = λ .

(36)

The multiplier λ being non negative, the following implica-
tions result straightforwardly from Eq. 35:{

x∗ 1
i > 0 ⇒ x∗ 2

i > 0 ,
αi w

1
i > 0 . (37)

Moreover, since µ is also positive, we have x∗ 1
i > 0 ⇐⇒

x∗ 2
i > 0. Denoting X 1

i
∆= p(x∗ 1

i ) and X 2
i

∆= p(x∗ 2
i ), if x∗ 1

i >
0, then X 1

i and X 2
i are the solutions of the following non-

linear system: 
αi w

1
i (1 −X 1

i )X 2
i = λ ,

αi w
2
i (1 −X 2

i )X 1
i = µ ,

X 1
i , X 2

i ∈ [0, 1] .
(38)

Subtracting the second row of Eq. 38 to the first row of Eq.
38, we obtain:

X 2
i = X 1

i +
(

λ

αiw1
i

− µ

αiw2
i

)
,

and, finally, the second order equation:

−αiw
1
i (X 1

i )2 +
(
αiw

1
i − λ+ µ

w1
i

w2
i

)
X 1

i − µ
w1

i

w2
i

= 0 .

(39)
The problem is then reduced to searching the roots of the
(above) second order equation lying in the [0, 1] interval. It is
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easily shown that there is at most one root in this interval. It
simply remains to test which couple (x1

i , x
2
i ) or (0, 0) provides

the lower value of L(λ, µ,X1,X2), for every cell ci. We can
point out that the separability of the cross-cueing functional
Pcc greatly simplifies the optimization problem.
The dual functional ψ(λ, µ) can now be calculated via Eq.
39. This is simply a two-dimensional functional, which is
furthermore concave. In order to optimize, we employ the
BFGS method along with the following gradient:

∑
i∈z

ϕ∗
1(cz,i)(λk, µk) − Φ1∑

i∈z

ϕ∗
2(cz,i)(λk, µk) − Φ2

 (40)

This optimization provides the optimal couple (λ∗, µ∗) and
then X∗ solution of the primal problem is straightforwardly
deduced.

C. The multiperiod search

a) The multiperiod multiresource cross-cueing problem:
Assume now that we consider a multiperiod search. Here again
the target is Markovian, and the time horizon is T . At a given
time-period, we consider the cross-cueing functional Pcc. First,
let us define the multiperiod non-cross-cueing functional for a
Markovian target. Let π̄t

cc(j) the (row) vector representing the
probability that the target has attained a cell j at time t, having
remained not cross-cued (ucc) up to time-period t. Then, we
have:

π̄t(j) =
∑

i

π̄(t−1)
cc (i) P̄ t

cc(i, j) . (41)

In Eq. 41, P̄ t
cc(i, j) is the probability that target goes from cell

i (time period (t− 1) ) to cell j (time period t), being ucc by
the search effort put on the cell j at time-period t. We thus
have:

P̄ t
cc(i, j) = Pi,j

[
1 −
(
1 − exp(−w1

j x
1,t
j )
)(

1 − exp(−w2
j x

2,t
j )
) ]

.
(42)

where P is a standard transition matrix. Again, the above
equation can also be written in matrix form:

P̄ t
cc = ∆̄t

cc P ,
with:

∆̄t
cc = diag

(
1 −
(
1 − exp(−w1

jx
1,t
j )
)(

1 − exp(−w2
j x

2,t
j )
))

.

(43)
Gathering Eqs. 41 and 43, we obtain the following recursion:

π̄t = π̄t−1 ∆̄t
cc P . (44)

Considering a T time-period search, we deduce that the proba-
bility that the target remains undetected within the multiperiod
search is:

P̄T
cc =

[ (
π1

cc ∆̄1
ccP · · · ∆̄(t−1)

cc P
)

︸ ︷︷ ︸
Ut

cc

∆̄t
cc , (45)

(
P ∆̄(t+1)

cc · · · P ∆̄(T )
cc 1

)
︸ ︷︷ ︸

Dt
cc

]
.

We thus have P̄T
cc = U t

cc ∆̄t
cc D

t
cc, where the U t

cc (row) and
Dt

cc (column) are propagated via the following induction: Dt
cc = P ∆̄(t+1)

cc D
(t+1)
cc ,

U t
cc = U t−1

cc ∆̄(t−1)
cc P .

(46)

Then, the extension of the FAB algorithm [1] [11] simply
consists in:

Xt,l∗ = arg min
Xt,l

[
U t,l

cc ∆̄t
cc D

t,l−1
cc

]
,

s.t. : ∀t, ∀l,
∑

i

x1,t,l
i = Φ1,t ;

∑
i

x2,t,l
i = Φ2,t .

(47)

In Eq. 30, the index l refers to the iteration index of the FAB
algorithm.

b) The multiperiod monoresource cross-cueing problem:
We present here a different version of the cross-cueing func-
tional, where our aim is to detect a target at a given time
period, say t, and to confirm it a the t + 1 time period,
using a unique search resource. Thus, a target is said detected-
confirmed if it has been detected at two consecutive time
periods.
Let us define as π̄t the (row) vector whose i-th component is
the probability that the target arrives in the cell i at period t
without being detected-confirmed by previous search efforts.
Conditioning on the elementary events, we have:

π̄t = π̄t−1 P̄ (t−1) + π̄t−2 P̄ (t−2) P (t−1) , (48)

where P t is the probability of detecting the target at time
t, and P̄ t the probability of not detecting the target at time
t. Now, the probabilities of elementary events can be easily
calculated:

P̄ (t−1) = ∆̄(t−1)P and P (t−1) = ∆t−1P ,
with:
∆̄t = diag (exp (−wt

ix
t
i)) and ∆t = diag (1 − exp (−wt

ix
t
i)) .

(49)
As Eq. 48 involves two time periods, we have:(

π̄t π̄t−1
)

=
(
π̄t−1 π̄t−2

) (
P̄ t−1 I

P̄ t−2P t−1 0

)
.

(50)
Considering a T time-period search, we thus have to minimize

P̄T
cc =

(
π̄T+1 π̄T

)( 1
0

)
, i.e.:

P̄T
cc =

(
π̄2 π̄1

)( P̄ 2 I
P̄ 1P 2 0

)
. . .

(
P̄T I
P̄T−1PT 0

)(
1
0

)
.

(51)
Once again, P̄T

cc has been split into three terms:

P̄T
cc = U t

cc

(
P̄ t I

P̄ t−1P t 0

)(
P̄ t+1 I
P̄ tP t+1 0

)
︸ ︷︷ ︸

Optimization with respect to t

Dt
cc .

(52)
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We set:

U12
cc =

(
π̄2 π̄1

)
, with π̄1 = α and π̄2 = αP ;

DT
cc =

(
1
0

)
.

(53)

The U t
cc (row) and Dt

cc (column) vectors are thus propagated
via the following induction:

U t
cc = U t−1

cc

(
P̄ t−1 I
P̄ t−2P t−1 0

)
,

Dt
cc =

(
P̄ t+2 I
P̄ t+1P t+2 0

)
Dt+1

cc .
(54)

We can note that in the time-splitting (Eq. 52) both U t
cc and

Dt
cc do not depend on ∆̄t (i.e. on the {xt

i }). We have again the
same sequential structure (FAB) of the optimization problem:

for t = 1 and t = 2 :

(X1,l∗,X2,l∗) = arg min
X1,l,X2,l

[(
π̄2 π̄1

)( P̄ 2,l I
P̄ 1,lP 2,l 0

)
(

P̄ 3,l−1 I
P̄ 2,lP 3,l−1 0

)
D12,l−1

cc

]
,

for t = {3, . . . , T − 1} :

Xt,l∗ = arg min
Xt,l

[
U t,l

cc

(
P̄ t,l I

P̄ t−1,lP t,l 0

)
(

P̄ t+1,l−1 I
P̄ t,lP t+1,l−1 0

)
Dt,l−1

cc

]
,

for t = T :

XT,l∗ = arg min
XT,l

[
UT,l

cc

(
P̄T,l I

P̄T−1,lPT,l 0

)
(

1
0

)
.

]
,

s.t.:

∀t, ∀l,
∑

i

xt,l
i = Φt,

∀t, ∀l, xt,l
i ≥ 0.

(55)

V. RESULTS

In this section we present results of optimization for both
multitarget and cross-cueing case studies. We consider the
same space of search for these two studies: targets are hidden
in the Laouzas lake area, in France. The following figure (Fig.
2) represents a map of this area. In this figure, the different

Fig. 2. A discrete map of the Laouzas lake area.

colours represents different kinds of grounds. Fields, forests,
mountains, high mountains, lakes and towns are represented
respectively by the yellow, green, brown, dark brown, blue and
gray colours.

A. Multitarget search

Here, we present result of the optimization in the case of
the detection of two moving targets. The targets are initially
located as in Fig. 3. The first target moves in the north-east

Fig. 3. Prior on the location of the targets.

direction, while the second moves in the south-east direction.
One sensor is available in order to carry out the search. Its
visibility over each of the target domains is represented in
Fig. 4. The search is made over a 3 time periods horizon.

Fig. 4. Visibility of sensor over the targets.

Resources available for the sensor at time periods 1, 2, and 3
are respectively 10, 20 and 30.
We now present resources sharing at each time period for the
myopic search plan (Fig. 5), i.e. first iteration of the FAB
algorithm, and for the optimal search plan (Fig. 6), i.e. last
iteration of the FAB algorithm (here l = 4). At a first

Fig. 5. Myopic search plan, multitarget search problem.

Fig. 6. Optimal search plan, multitarget search problem.

glance, the changes in the resource sharing between myopic
and optimal search plans provides only a modest decrease
of the non-detection probability: the non-detection probability
falls from 0.044 to 0.032. However, this small decrease must
be considered from the resource consumption point of view. In
fact, if we want to obtain the same non-detection probability
for a myopic search plan than for this optimal search plan, we
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must increase resource by 12% at each time period. Moreover,
it is worth stressing that the myopic plan is yet a fairly good
one.

1) The cross-cueing search: Let us now consider the cross-
cueing search for a moving target, in the case where we want to
detect and confirm the target at two successive time periods.
The target is initially located as shown in Fig. 7. It moves
north-east from its initial location. A unique sensor is available

Fig. 7. Prior on the location of the target.

in order to perform cross-cueing of the target. Fig. 8 presents
visibility of this sensor over the space of search. The search

Fig. 8. Visibility of the sensor over the space of search.

is made over a 6 time periods horizon. Resources available at
time periods 1, 2, 3, 4, 5 and 6 are respectively 20, 30, 50,
30, 60 and 40.
We now present resources sharing at each time period for the
myopic search plan (Fig. 9), i.e. first iteration of the FAB
algorithm, and for the optimal search plan (Fig. 10), i.e. last
iteration of the FAB algorithm.

Fig. 9. Myopic search plan, cross-cueing search problem.

The changes in the resources sharing between myopic and
optimal search plans provide a decrease of the ucc proba-
bility, which falls from 0.6961 to 0.5544. Fig. 11 illustrates
the evolution of the ucc probability along iterations of the
FAB algorithm. The decrease of the ucc probability between
myopic and optimal search plans corresponds to a saving in
resource consumption around 45% at each time period.

Fig. 10. Optimal search plan, cross-cueing search problem.

Iteration Iteration Iteration Iteration Iteration Iteration
1 2 3 4 5 6

Time 2 0.8693 0.6756 0.5908 0.5653 0.5584 0.5550
Time 3 0.8037 0.6674 0.5865 0.5633 0.5574 0.5549
Time 4 0.7537 0.6597 0.5819 0.5620 0.5560 0.5546
Time 5 0.7261 0.6251 0.5735 0.5595 0.5557 0.5545
Time 6 0.6961 0.6022 0.5686 0.5585 0.5549 0.5544

Fig. 11. Evolution of the ucc probability along FAB iterations

VI. CONCLUSION

We have studied there two problems of importance in the
search theory field, which had not been much studied before.
Both of them aims to optimize detection or cross-cueing for
moving targets.
By dualizing the constraints and using the separability
properties of the functionals, optimal solutions of the
monoperiod problems are quite economically obtained. These
algorithms are then easily extended to multiperiod search
via the temporal separability induced by the the Markovian
hypothesis we made about target motion. The framework we
developed here is sufficiently versatile to handle numerous
extensions. Results show that the algorithms are quite feasible
and reliable.
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