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Abstract—This paper deals with the estimation of the
trajectory parameters for a target moving within a sensor
network. We are especially interested by fusing binary
information at the network level. This binary information
is related to the local target behavior; i.e. its distance
from a given sensor is increasing (-) or decreasing (+). In
this domain, seminal contributions include [3]. However, in
this rich framework we choose to focus on even simpler
observations so as to put in evidence the limits and the
difficulties of the decentralized binary framework. More
specifically, the binary sequences{−, +} can be (locally)
summarized by the times of closest point approach (cpa). So,
we consider that the available observations, at the network
level, are the estimated values of thecpa times. The analysis
is also greatly simplified if we assume that the target motion
is rectilinear and uniform or a leg-by-leg one. First, we
examine the observability requirements for the trajectory pa-
rameters. Though the observations do not permit a complete
observability, this study allows us to determine the observable
part of the state vector. Moreover, we show that observable
and unobservable parts are separated. Thus, it is possible
to develop simple and efficient methods for estimating the
observable parameters. In the case of a single-leg trajectory,
we resort to a simple maximum-likelihood estimator, while
for the case of multiple-leg trajectories other methods are
presented. It is then possible to give confidence intervals
for the unobservable components of the state vector. Finally,
the constant velocity assumption is relaxed through diffusion
process, whether continuous or discrete-time.

I. I NTRODUCTION

We consider a sensor network, made withN sensors
(e.g. video),with (known) positions. Each sensor can only
gives us a binary{−,+} information [3], i.e. whether the
target-sensor distance is decreasing (−) or increasing (+).
Even if many seminal contributions deals with proximity
important papers [1], [2], we decide here to focus on
the binary {−,+} information [3]. From this binary
sequence, it is possible to infer the time-period for which
the target-sensor distance is locally minimum. For the
i-th sensor, we denoteti

cpa
this time-period.

Of course, it may be argued that the (relatively) rich
binary{−,+} information has been considerably reduced.
However, it has the great advantage to put in evidence
the basic limitations of the treatments, the effects of the
process noise, etc. . All the derivations are made within a
unique and elementary framework.

This paper is organized as follows. First, the geometric
framework is introduced. Though quite elementary,

this section will be of constant use subsequently.
Then, elementary linear algebra is used to investigate
observability requirements when observations are only
made of the ti

cpa
. Even, if complete observability

cannot be achieved by using these observations it is
shown that the observable part can be separated from
the unobservable one, which is generally one-dimensional.

It is then possible to develop methods for estimating
the observable part of the target state vector. First, this is
done for a ”deterministic” target. If the target trajectoryis
deterministic, the difficulty we have to face is to estimate
the maneuver time-periodsTi. It is shown that when the
sensor network is sufficiently dense the error for estimating
them can be bounded above.
Then, we relax the hypothesis of deterministic velocity
and allow the target to have a diffusive motion. In a first
paragraph, we present a continuous-time modeling, and
the corresponding estimator of thetcpa. The accuracy of a
”continuous-time” estimator is considered, based upon the
general framework of stochastic processes. Then, we turn
toward a discrete-time modeling, and more specifically
a hierarchical Markov chain modeling. We conclude this
paper by simulation results, illustrating the accuracy of
the estimators and the pertinence of our derivations and
modelings.

II. FROM CARTESIAN TO CPA COORDINATES

(CONSTANT VELOCITY)

Consider that the reference sensor is located at the
origin O. The target starts from theM0 point and follows
a rectilinear and uniform trajectory (v: velocity vector).
Then, the closest-point-approach (cpa) point Mcpa is char-
acterized by: the vectors

−−→
OM cpa (

−−→
OM0 = x0) and−−−→

M0M cpa are orthogonal, so that we have (see fig. 1):

(x0 + tcpa vx) vx + (y0 + tcpavy) vy = 0 ,
so, that :

tcpa = − 〈x0,v〉
‖v‖2 , with: v = (vx, vy)

T
, x0 = (x0, y0).

(1)
Similarly, we obtain the following expression of the closest
distance from the sensor,cpa

∆
= ‖−−→OM cpa‖:
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Figure 1. The CPA geometry

‖−−→OM cpa‖ =
[
(x0 + tcpavx)

2
+ (y0 + tcpavy)

2
]1/2

,(2)

=

[
‖x0‖2 − 〈x0,v〉2

‖v‖2

]1/2

,

= ‖x0‖ | sin(x0,v)| =
|det(x0,v)|

v
.

So there is a1 : 1 mapping between Cartesian andcpa

coordinates defined as as follows:

(
x0

v

)
→





|det(x0,v)|
〈x0,v〉
θ
v = ‖v‖



 →





| det(x0,v)|
v = cparef

v
θ

− 〈x0,v〉
‖v‖2 = tref

cpa




,

(3)
whereθ is the target heading. Considering thatO is the
reference (ref) position and thatti

∆
=

−−→
OOi and denoting

ti
cpa

thecpa time for thei-th sensor, the following relation
will be of constant use subsequently:

ti
cpa

= −〈x0 − ti,v〉
v2

, (4)

= tref
cpa

+
〈ti,v〉

v2
.

Let us stress that the vectorti is assumed to be
known and that eq. 5 is only conditionnally valid. These
conditions will not be detailed here, but will be considered
in the next sections.

III. O BSERVABILITY ANALYSIS

We consider that the observation is restricted to the
tcpa. Various assumptions (about target trajectory) will
be considered, but in all the cases the approach we take
here is purely deterministic with a binary answer (yes
or no). For reasons that will appear clearly through the
observability analysis, let us denoteτi,j

∆
= tj

cpa
− ti

cpa
,

the difference ofcpa times. The aim of this section is
to find out whether it is possible to determine the target
trajectory parameters.

a) The case of a constant velocity vector: Assume
that the target follows a rectilinear trajectory, with a
constant velocity vectorv, then, from the previous section,
we know that:

τi,j =
〈tj − ti,v〉

‖v‖2 . (5)

Now, the question is: is-it possible that two velocity
vectors (sayv1 andv2) produce the same set of{τi,j } ,
i.e. τi,j(v1) = τi,j(v2) ∀(i, j). This would mean that:

〈tj − ti,
1

v2
1

v1 − 1

v2
2

v2〉 = 0 , ∀ (i, j) . (6)

If span[{tj − ti}] = R
2, then we deduce from eq. 6:

1

v2
1

v1 =
1

v2
2

v2 , (7)

so thatv1 = v2. Indeed, considering eq. 7 we deduce from
the equality of norms thatv1 = v2, the vector equality
v1 = v2 then follows straightforwardly. The velocity
vectorv is observable, but not the position vectorx0. This
is quite obvious sincetcpa can also be written as

tcpa = − 1

v2
〈x0 + λ v

⊥,v〉 ,

where v
⊥ is a vector orthogonal withv. Reciprocally,

if the tcpa are equal altogether, then under the
same conditions (span[{tj − ti}] = R

2), we have
〈x0,v〉 = 〈x′

0,v〉 which means thatx
′

0 = x0 + λ v
⊥.

Thus, we see that the dimension of the observable space
is equal to3. The only unobservable parameter is theλ
parameter. Of course, unobservability of theλ parameter
can be drastically mitigated if proximity sensors are
added in the sensor network. However, we shall focus
now on multileg target trajectory.

b) The case of a multileg trajectory: Assume now
that the target follows a multileg trajectory. For instance,
we shall first restrict to a two-leg trajectory and assume
that the ”maneuvering” timeT1 is known. This means that
we have:






1 − st leg: ti
cpa,1 = 〈−x0+ti,v1〉

v2
1

,

2 − nd leg: tj
cpa,2 =

〈−x0−T1 v1+tj ,v2〉
v2
2

,
(8)

where i are sensor index forcpa arising on the1-st leg,
andj for the2-nd leg. It is known (see previous paragraph)
that v1 andv2 are observable on each leg. Assume now
that eq. 8 holds true for two vectorsx0 andx

′

0, this would
mean that:





1 − st leg: 〈−x0+ti,v1〉
v2
1

=
〈−x

′

0+ti,v1〉
v2
1

,

2 − nd leg:
〈−x0−T1 v1+tj ,v2〉

v2
2

=
〈−x

′

0−T1 v1+tj ,v2〉
v2
2

(9)



Subtracting right member from left member on each row
of eq. 9, we deduce from eq. 9:

{
〈x′

0 − x0,v1〉 = 0 ,

〈x′

0 − x0,v2〉 = 0 .
(10)

Thus, if v1 andv2 are not colinear, then we deduce that
x0 = x

′

0. This reasoning can be easily extended to a
general multileg trajectory.
Consider now the observability ofboth T1 and x0, from
eq. 9 we have:






1 − st leg: 〈x′

0 − x0,v1〉 = 0 ,

2 − nd leg: − 〈x′

0−x0+∆ T1v1,v2〉
v2
2

+ ∆T1 = 0 ,

with: ∆T1 = (T
′

1 − T1) .
(11)

Practically, this means that we have:
{

x
′

0 = x0 + λ v
⊥
1 ,

〈λ v
⊥
1 + ∆T1 v1,v2〉 = ∆T1 v2

2 .
(12)

This equation has a certain importance since it shows that
we have only a single equation for determining the two
parametersλ and(T

′

1−T1). Following the same idea with
a 3-leg trajectory, we obtain the necessary conditions:





x
′

0 = x0 + λ v
⊥
1 ,

〈λ v
⊥
1 + ∆T1 v1,v2〉 = ∆T1 v2

2 ,
〈λ v

⊥
1 + ∆T1v1 + ∆T2 v2,v3〉 = (∆T1 + ∆T2) v2

3 ,
(13)

Again, we note that we have two linear
equations for determining3 unknown parameters
(λ, (T

′

1 − T1), (T
′

2 − T2)), and the same problem
whatever the number of legs. Denotingl the number
of legs, the dimension of the target state vector is
(2 l + 2), while under mild conditions the dimension
of the observable space is(2 l + 1). Of course isx0 is
known, then theλ parameter is zero, which means that
the target trajectory is completely observable. Moreover,
if only r0

∆
= ‖x0‖ is available, then the problem becomes

fully ”observable”, which means that the only ambiguity
which remains isx

′

0 = x0 − 2
〈x0,v⊥

1 〉
‖v1‖2 , which is the

symmetric (w.r.t.v1) trajectory.
However, even if we cannot have the complete
observability of the target state vector, we can infer
convenient estimates ofT1, T2 from the tcpa sequences
via the observability of thevi vectors.

We shall try now to investigate more precisely the
uncertainty in the target trajectory we can infer from eq.
13. Thus for a2-leg trajectory eq. 13 yields:

λ 〈v⊥
1 ,v2〉 + ∆T1

(
〈v1,v2〉 − v2

2

)
= 0 . (14)

If v1 = v2, the above equation becomes:

λ cos(θ/2) + ∆T1 sin(θ/2) = 0 , θ = ∡(v1,v2) .

Thus, we see that it is impossible to separate the
uncertainty we have inx0 (λ) in the first hand and in
T1 in the second one. Eq. 15 gives us the equation of

the domain -here a segment of a straight line- where the
maneuver can occurs. Practically, we have bounds about
∆T1 (time between2 tcpa) and/ or λ which alow us to
bound this domain.

For a p leg-by-leg trajectory, and denoting∆T
∆
=

(∆T1, · · · ,∆Tp−1), we have:

A ∆T = λ W ,
with:

A =





〈v1,v2〉 − v2

2
0 · · · 0

〈v1,v3〉 − v2

3
〈v2,v3〉 − v2

3
· · · 0

...
... 0

〈v1,vp〉 − v2
p 〈v2,vp〉 − v2

p 〈vp−1,vp〉 − v2
p





and:

W =
(
〈v⊥

1 ,v2〉, 〈v⊥
1 ,v3〉, · · · , 〈v⊥

1 ,vp〉
)T

.
(15)

Having studied the observability, we shall now turn
toward the estimation.

IV. M AXIMIZING THE LIKELIHOOD :

Let us denotêτi the estimated value ofti
cpa

on thei-th
sensor. We suppose thatτ̂i is normally distributed, i.e.:

τ̂i = τi(x0,v) + ei, ei ∼ N (0, σ2) ,
where:
τi(x0,v) = 〈−x0+ti,v〉

v2 .

(16)

As seen previously, it is not possible to inferboth
x0 and v from the {τ̂i}. However, if we are concerned
with the estimation ofv only, it is worth considering the
differences of the cpa times, i.e.τ̂i,j , with:

τ̂i,j = τi,j(v) + ei − ej ,
with:
τi,j(v) =

〈ti−tj ,v〉
v2 .

(17)

It must be emphasized that the vectors(ti−tj) (relative
positions of sensors) are assumed to be known and that the
τi,j(v) do not involve thex0 vector. Observation is now
made of the vector of̂τi,j differences, i.e.:

τ̂ = τ (v) + e ; ,
τ (v) = (· · · , τi,j(v), · · · ) , e = (· · · , ei − ej , · · · ) .

(18)
The noise vectore is still normally distributed with zero
mean, but with a non-diagonal covariance matrixR. The
likelihood functionL(τ̂ |v), then stands as follows:

L (τ̂ |v) = cst(det R)
−1/2

exp

(
−1

2
‖τ̂ − τ (v)‖2

R

)
.

(19)
The MLE estimation of thev vector is defined by
v̂ = arg max

v
L (τ̂ |v) and can be done by any

iterative method, or even an MCMC one if prior and
constraints are added. Now, the likelihood functional
L(v)

∆
=

∑

i,j

(τ̂i,j − τi,j(v) )
2 is not convex in general (see

the Hessian ofL (τ̂ |v) ) . However, assuming that thêτi,j

are tightly estimated, which means thatτ̂i,j = τi,j(v0),
wherev0 is the exact velocity vector, then the following



property holds true:

Proposition 1: Under the above assumption, the fol-
lowing implication is valid:

∇L(v) = 0 =⇒
∑

i,j

[τi,j(v0) − τi,j(v) ]
2

= 0 ,

wherev0 is the true target velocity. Thus, under identifi-
ability conditions, we havev = v0.

Proof: Let us recall the expression of∇L(v):

∇L(v) = −2
∑

i,j

(τ̄i,j − τi,j(v) )

×
(

1

v2
(ti − tj) −

2

v4
〈ti − tj ,v〉 v

)
,(20)

where, for the sake of brevity, we denoteτ̄i,j for τi,j(v0).
Thus,∇L(v) = 0 is equivalent to:

∑

i,j

(τ̄i,j − τi,j(v) )
1

v2
(ti − tj) =

2
∑

i,j

(τ̄i,j − τi,j(v) )
〈ti − tj ,v〉

v4
v .

(21)

For the rest of the proof, we denotēv, a vector for which
∇L(v̄) = 0 The above equality (eq. 21) is a vectorial
equality, which implies the following equality via a scalar
product with thev̄ vector.

∑

i,j

(τ̄i,j − τi,j(v̄) )
1

v̄2
(〈ti, v̄〉 − 〈tj , v̄〉) =

2
∑

i,j

(τ̄i,j − τi,j(v̄) )
1

v̄2
(〈ti, v̄〉 − 〈tj , v̄〉) ,

so that, we have:∑

i,j

(τ̄i,j − τi,j(v̄) ) τi,j(v̄) = 0 .

(22)

The same kind of result is obtained if we replace the scalar
product with thev̄ vector, by the scalar product with the
v0 vector, yielding:

∑

i,j

(τ̄i,j − τi,j(v̄) )
1

v̄2
(〈ti,v0〉 − 〈tj ,v0〉) =

2
∑

i,j

(τ̄i,j − τi,j(v̄) )
〈ti − tj , v̄〉

v̄4
〈v̄,v0〉 ,

or:(
v0

2

v̄2

) ∑

i,j

(τ̄i,j − τi,j(v̄)) τ̄i,j =

2 〈v̄,v0〉
v̄2

∑

i,j

(τ̄i,j − τi,j(v̄) ) τi,j(v̄) .

(23)

Now, we know from eq. 22 that∑

i,j

(τ̄i,j − τi,j(v̄) ) τi,j(v̄) is zero, hence we have

also: ∑

i,j

(τ̄i,j − τi,j(v̄)) τ̄i,j = 0 . (24)

Gathering eqs 22 and 24, we obtain:
∑

i,j

(τ̄i,j − τi,j(v̄)) τi,j(v̄) −
∑

i,j

(τ̄i,j − τi,j(v̄)) τ̄i,j = 0 ,

or:∑

i,j

(τ̄i,j − τi,j(v̄))
2

= 0 ,

(25)
which means that̄τi,j = τi,j(v̄), whatever the couple
(i, j). Finally, we have obtained that the equality∇L(v) =
0 implies the equalitȳτi,j = τi,j(v̄) , ∀(i, j), and under
identifiability condition we have then̄v = v0.

The previous reasoning can be easily extended to a
multileg scenario:{x0,v1, · · · ,vk}, with the same con-
clusion.

V. ESTIMATING THE MANEUVER TIME PERIODS

We have seen in the previous sections the importance
to have a convenient estimation of the maneuver time
periods (for a leg-by-leg trajectory). For the sake of
simplicity, we shall focus here on a unique velocity
change. To that aim, an original method has been
developed.

Let us consider the sensor network and more specifi-
cally the sensor pairs (see fig. 2). We define an equivalence
relationR on the sensors pairs(i, j), by:

(i, j) R (k, l) ⇐⇒ (ti − tj) = (tk − tl) . (26)
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Figure 2. The target changes its direction

We then consider each pair of sensors belonging to
given class of equivalence. As each pair is oriented in
the same way, the difference of thetcpa between the two
sensors of each pair should be the same for each pair of the
class, for a given velocity vector. Restricting to two classes
(1 and2), the situation can be modelled as follows:






∆1
tcpa

(v1) + ε1
1 ∆2

tcpa
(v1) + ε2

1

∆1
tcpa

(v1) + ε1
2 ∆2

tcpa
(v1) + ε2

2

...
...

∆1
tcpa

(v1) + ε1
p ∆2

tcpa
(v1) + ε2

p

− − − − − −
∆1

tcpa
(v2) + ε1

p+1 ∆2
tcpa

(v2) + ε2
p+1

...
...

(27)



along with:

∆1
tcpa

(v1) =
〈∆t,v1〉

v2
1

∆1
tcpa

(v2) = 〈∆t,v2〉
v2
2

. (28)

Notice that these quantities (e.g.∆1
tcpa

(v1)) does not
necessarily exist at each time-period. The errorsεI are
normally distributed. Rougly speaking, we have a time
series for the first class (left column of eq. 27) and the
second class (right column of eq. 27). Thus, if the target
maneuver then each time series can be separated in two
parts, from which we can infer the target velocity and an
estimation of the maneuver time-period.

A usual method we can resort is to model each time
series via a mixture of normal densities. There are many
methods to estimate the parameters of the mixture density
(e.g. EM [7], moments [6], etc.). Here, we choose to focus
on the moment method. We thus consider the following
modeling of the time series:

q(x,Θ) = π p(x, θ1) + (1 − π) p(x, θ2) , (29)

and our aim is to estimate the parameter vectorΘ =
(π, θ1, θ2). By writing the likelihood of our modeling, we
can express the theoretical moments of our sample, and
from the data we can determine the values of the empirical
moments [6]. Then, by equalizing the empirical and the
theoretical moments, we deduce a non-linear system, and
,solving it, an estimation of theΘ vector [5].
More precisely, we use the following equations, where
Mi is the i-th (theoretical) moment ofq(x,Θ), mi is the
empirical moment andxi = mi − Mi:

0 = π x1 + (1 − π)x2 , (30)

M2 = π x2
1 + (1 − π)x2

2 + η2 ,

M3 = π x3
1 + (1 − π)x3

2

+3η2(π x1 + (1 − π)x2) ,

M4 = π x4
1 + (1 − π)x4

2 ,

+6η2(π x2
1 + (1 − π)x2

2) + 3η4 ,

whereη2 is the variance ofε. For the uniqueness in the
method of moments in the case of mixtures law of two
normal distributions, see [4].

VI. STOCHASTIC VELOCITY MOTION

A. Diffusive continuous-time process

Up to now, it was considered that the target motion was
(piecewise)-deterministic, we shall now extend our anal-
ysis to a random motion, first modelled by a continuous-
time stochastic process. For the sake of brevity, we restrict
to a mono-dimensional analysis: e.g. a target evolving on
a known road network.

dxt = v dt + σ dwt , (31)

where(xt)t∈[0,T ] is the target position,(wt)t∈[0T ] a Brow-
nian motion (also known as a Wiener Process);v is

a constant andσ2 is the variance of the instantaneous
velocity. Such an Ito process has a quite simple solution:

xt = x0 + t v + σ wt . (32)

Let xc be the position of the closest point (cpa) for the
i-th sensor. Since the network topology is assumed to be
known, xc is perfectly known. We would like to have an
estimator of thetcpa time-period, for the stochastic process
described in eq. 32. For any sensor, a natural estimatort̂0
is defined by:

t̂0 = inf {t| xt ≥ xc} . (33)

The object of this paragraph is to investigate the statistical
properties of̂t0 (convergence, bias, variance, etc.). To that
aim, we first express the likelihood oft̂0. For a continuous-
time process, it is simply:

L(t̂0) =
∂

∂t
P (t̂0 ≤ t) . (34)

We then have to deal with1:

P (t̂0 ≤ t) = P (t̂0 ≤ t, xt ≥ xc) + P (t̂0 ≤ t, xt ≤ xc)

= P (t̂0 ≤ t, xt ≥ xc) see the footnote

= P (xt ≥ xc)

because{t̂0 ≤ t} ⊂ {xt ≥ xc} . (35)

So, to determine exactly the likelihood of our modeling,
we must calculateP (xt ≥ xc). The right calculation is
the following one:

P (xt ≥ xc) = P (x0 + t v + σ wt ≥ xc) ,

= P

(
wt ≥

(xc − x0 − t v)

σ

)
. (36)

Now, whent is fixed,wt follows a centered Gaussian law,
with a standard deviation equal to

√
t. So, we have:

P (xt ≥ xc) =

∫ ∞

bt

1√
2πt

e−u2/(2t)du , (37)

with :

bt =
(xc − x0 − t v)

σ
=

v

σ
(tcpa − t) .

To continue the calculation, we need to perform a dif-
ferentiation of an (improper) parametrized integral whose
both integrand and lower bound depend on the param-
eter (t). So, let us remind the Leibniz formula: assume
g(t) =

∫ β(t)

α(t)
f(t, u)du, then under appropriate conditions:

g′(t) =

∫ β(t)

α(t)

∂f

∂t
f(u, t)du + β′(t)f(β(t), t)

−α′(t)f(α(t), t) . (38)

Applied to eq. 38, Leibniz rule yields:

∂

∂t
P (xt ≥ xc ) =






1
2t

√
2πt

∫ ∞
bt

(
u2

t − 1
)
e−

u2

2t du ,

+ v
σ
√

2πt
e−

v2(tcpa−t)2

2tσ2 .

1Assuming σ

v
is very small, then the target has a very negligible

probability to come back underxc, and thenP (t̂0 ≤ t, xt ≤ xc)
becomes negligible



To simplify that expression, we first split the above
integral, yielding:

It =
1

2t
√

2πt

∫ ∞

bt

(u2

t
− 1

)
e−

u2

2t du , (39)

=
1

2t
√

2πt

∫ ∞

0

(u2

t
− 1

)
e−

u2

2t du ,

− 1

2t
√

2πt

∫ bt

0

(u2

t
− 1

)
e−

u2

2t du .

The first integral is zero. Thus, it is sufficient to consider
the second one:

It =
−1

2t
√

2πt

∫ bt

0

(u2

t
− 1

)
e−

u2

2t du , (40)

=
−1

2t
√

2πt

∫ bt

0

u2

t
e−

u2

2t du ,

+
1

2t
√

2πt

∫ bt

0

e−
u2

2t du .

Then, performing an integration by part, we obtain:

It =
bt

2t
√

2πt
e−

bt
2

2t du , (41)

so that, we finally obtain forLt an expression as simple
as:

Lt =
(tcpa + t) v

2σ t
√

2πt
exp

(
−b2

t

2t

)
. (42)

To ensure our estimator is a good one require additional
calculations. Using eq. 42, it is easily shown that the
likelihood is maximum for a value oft (say tmax given
by 2:

tmax = tcpa +

(
1 − 3

4

1

tcpa

)
σ2

v2
+ o(

σ2

v2
) . (43)

The proof of eq. 43, is sketched below:

• Differentiate (w.r.t.t) the densityLt,

• The derivative is zero for values oft which are roots
of a certain3-rd order polynomial,

• Obtain the exact expression of the real positive root
via the Cardan method, eq. 43 is deduced from the
above step via an expansion aroundtcpa.

Even if the density of̂t0 does not seem to be symmetric
(see eq. 42), we see thattmax is close totcpa as soon
as the ratioσ2/v2 is sufficiently small. A last step is to
calculate the expectation oft̂0. Under the same assumption
and using eq. 42, we have:

E
[
t̂0

]
= tcpa −

α

2
+

3α

8 tcpa

+ o(
σ2

v2
) , (44)

where:

α = −2σ + (8π + 16σ − 20)
σ2

v2

2τcpa is deterministic.

Noticing that α is usually quite smaller thantcpa, we
conclude that the bias of the estimator oftcpa is equal
to σ.
The expression of the variance of our estimator can be
calculated by the same way, which we do not provide here.
However, simulation results provide interesting results
about the effects ofσ on var(t̂0).

B. Discrete-Time Markov modeling

We can also consider a discrete-time modeling of
the time-varying target velocity. Instead of considering a
continuous Ito process, we turn now toward a hierarchical
Markov chain model. Let us define aN -state velocity
Markov chain. Assuming the velocity is one dimensional,
we have a N-by-N transition matrix for the velocity chain.
Then, the position chain is implicitly defined as in figure 3.
Then, the first part of our approach deals with the choice of

Position

Velocity

N7654321

3 4 521

Figure 3. Link between the position Markov chain and the velocity
Markov chain

the probabilities of transition for the velocity. They should
be chosen so that the stationary law would be as close as
possible to a normal law, whose mean is the right value
of the target velocity (sayi0). More precisely, we choose:

if i = i0
P (vn+1 = j|vn = i) = αk if | i − j |= k ,

if i < i0
P (vn+1 = j|vn = i) = βk if | j − (i + 1) |= k ,

if i > i0
P (vn+1 = j|vn = i) = γk if | j − (i − 1) |= k ,

where we have the following assumptions:
∑

αi =
∑

βi =
∑

γi = 1 , (45)

and,

∀(i, j) ∈ [0, k]2, i > j ⇒






αi < αj

βi < βj

γi < γj

The position chain is then straightforwardly deduced :

∀k ∈ N
∗
{

P (sn+1 = i + k|sn = i) = P (vn = k) ,
P (sn+1 = i − k|sn = i) = 0 .

Similarly to eq. 33, we define the discrete-timetcpa esti-
mator by:

k̂0 = inf{k|sk > scpa} , (46)

and the speed estimator :

v̂0 =
∆cpai,j

k̂0

(47)

We refer to the ”Simulations” section for experimental
results of that method.



VII. S IMULATION RESULTS

We shall now investigate the previous developments via
simulations. The simple maximum likelihood estimation
will be presented in a first part, in which we will deal
with a comparison between two sensor networks. Then
we will present few results about a diffusive target.

A. Basic MLE

To verify the effect of the sensor distribution, we test
two scenarios. In the first one, the sensors are uniformly
distributed over the surveillance domain. In the second
one, the sensors are put at random over the same domain.
Then, considering a constant speed target motion, the
effects of the changes in direction are examined. On fig.
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Figure 4. Uniformly distributed network

4 the distribution of the velocity estimator in the case
of a deterministic regular distribution of the sensors is
presented. In fig. 4, we can notice that it is for a middle
heading angle (around 45 deg. ) that the distribution seems
to be the less peaky (though unbiased). This result can
be compared with fig. 5 which presents the results for
a randomly distributed sensor network. This problem no
longer holds. This is also illustrated by fig. 6, where the
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Figure 5. Randomly distributed network

target heading is varying from0 to 80 deg. . Not surpris-
ingly, looking at the variance of the estimators (see fig. 7),
we notice that we have a400% increase of the variance
between the 0 degrees direction and the 40 degrees one
for a regular network, while this phenomenon does not
appear if sensors are put at random. Thus, the statistical
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behavior of the maximum likelihood estimator is tightly
dependent of the sensor distribution. However, this result
should be seriously mitigated for a a multi-leg trajectory,
since it has been shown that a regular repartition has
definite advantages for estimating both velocity, position
and maneuvers. More generally, optimizing the topology
of the sensor network seems to be an important direction
of future research in this context.

B. Continuous-time diffusive target

Assuming that the trajectory follows now a diffusive
process, our aim is to examine the statistical behavior of
the tcpa estimator we defined, and whose density has been
theoretically derived as a function of the process noise.
In fig. 8, we present the empirical histogram of thetcpa

estimator obtained via simulation and compared with the
exact density (see eq. 42). As we could expect, the two
distributions present a good agreement. Two important
facts have to be underlined. The first one is that even if
the mean of the distribution is not the actual value oftcpa,
the maximum of the likelihood corresponds to the real
value. The second one is that the distribution of the speed
estimator can be straightforwardly inferred from thet̂cpa

distribution, since both are deterministically related.

As in the deterministic section, we would like to know
the influence of the variance of the stochastic process on
the variance of thetcpa estimator (see fig. 9), and of the
velocity estimator (see fig. 10). Looking at both figures,
the effect of theσ parameter is quite visible. However,
while var

[
t̂cpa(σ)

]
depends (almost) linearly ofσ; the
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20 m, x0 = 0 m)

effect of σ on var(v̂(σ)) is quite non linear. So, a great
attention should be paid on the estimation of the variance
σ2 of the tcpa modeling.
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Figure 10. Variance of the velocity estimator

C. Diffusive Discrete-time Process

Finally, let us consider a discrete-time modeling of the
target velocity. A single result is proposed, but which
underline the accuracy of our discrete-time estimator. This
time, unlike the previous results, even the mean of the
estimator seems to fit the correct value. Once again, the
maximum of the likelihood corresponds to the correct
values of both thetcpa, and the speed.
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Figure 11. Left: Distribution of the estimator of the time n0 (
discrete-time tcpa). Right: Posterior distribution of the velocity. Modeling
parameters: v = 3, Nv = 5, Nc = 50

VIII. C ONCLUSION

In this paper, we chose to focus on the use of the
tcpa estimates at the level of information processing for
a sensor network. Though this information is rather poor,
it has been shown that it can provide clear insights about
the limitations of the trajectory estimation via binary in-
formations. Three different models of the target trajectory
have been considered; ranging from the deterministic one
to the continuous-time and discrete time random models.
The limitations due to the rough nature of the measure-
ments have been carefully considered. The fundamental
uncertainty about target position can be seriously reduced
via proximity sensors. Another way is to consider a
”sufficiently” dense network and using the information
given by the target maneuvers.
A large part of this paper is devoted to what happens
when the target departs from a deterministic model. For the
continuous-time model, it has been possible to perform a
theoretical analysis. The pertinence of the estimators has
been shown and original methods have been developed.
Perspectives for future work should be centered around the
use of the binary informations [3] for multitarget tracking.
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