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Abstract. The aim of this paper is to present a new concept for target
motion analysis within a binary sensor network. For the sake of sim-
plicity, we focus on a constant target motion. The binary information
represents a very rough information about the perception of the target
motion by an elementary sensor, i.e. is the target approaching or going
away. Collecting these binary informations, a first step is to determine
the information we can extract at the network level about target motion.
Then, based on this step, new concepts are introduced for infering the
target motion parameters. One is based upon the separation properties
and relies on the SVM formalism; while the other one uses the concept of
the velocity plane and the PPR (Projection Pursuit Regression) frame-
work. Moreover, theoretical results about the convergence of this method
are also presented.

1 Introduction

We consider a sensor network, made with N sensors (e.g. video),with (known)
positions. Each sensor can only gives us a binary {−,+} information [1], i.e.
whether the target-sensor distance is decreasing (−) or increasing (+). This
”choice” can result from severe communication requirements or from the dif-
ficulties from fusing inhomogeneous data. Even if many important works deal
with proximity sensors [6], [5], we decide here to focus on the binary {−,+}
information [1]. Here, the aim is to estimate the parameters defining the target
trajectory. Even if our methods can be rather easily extended to more com-
plex models of target motion, we decide to focus here on a constant velocity
movement. Actually, this framework is sufficiently general to present the main
problems we have to face, as well as the foundations of the methods we have to
develop for dealing with these binary data. See fig. 1 for an example.
In a first time, the observability requirements are considered. Then, we turn

toward the development of specific estimation methods. Especially, the new con-
cept of the velocity plane is introduced as an exhaustive representation of the
spatio-temporal sequence of binary data. It is then used both in a separation-
oriented framework (SVM) and in a projection pursuit regression (PPR) one.
The corresponding methods are carefully presented and analyzed. Simulation
results illustrate the behavior of these methods.
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Fig. 1. A view of a getting closer car

2 Binary Sensor Network Observability Properties

Let us denote si a sensor whose position is represented by the the vector ti

Similarly, the vector xt represents the position vector of the target at the time-
period t. Let us denote di(t) the (time-varying) distance from sensor si to the
target at time t. Then, we have that:

di(t) ց⇐⇒ ḋi(t) < 0 , or: 〈xt − ti,vt〉 < 0 , (1)

where vt is the instantaneous target velocity. We thus have the following lemma.

Lemma 1 Let si (resp. sj) a sensor whose the target distance is decreasing
(resp. increasing) at the time-period t, then we have:

〈tj ,vt〉 < 〈x
t
,vt〉 < 〈ti,vt〉 . (2)

If we restrict to binary motion information, we consider that the output si(t)
of a sensor (at time t) is +1 or −1 according to the distance di(t) is decreasing
or increasing, so that we have:

{
si(t) = +1 if ḋi(t) < 0 ,

sj(t) = −1 if ḋj(t) > 0 .
(3)

Let us denote A the subset of sensor whose output is +1 and B the subset of
sensors whose output is −1, i.e. A = {si| si(t) = +1} and B = {sj | sj(t) = −1}
and C(A) and C(B) their convex hulls, then we have [1]:

Proposition 1 C(A)
⋂

C(B) = ∅ and xt /∈ C(A)
⋃

C(B).

Proof: The proof is quite simple is reproduced here only for the sake of
completeness. First assume that C(A)

⋂
C(B) 6= ∅, this means that there exists

an element of C(B), lying in C(A). Let s be this element (and t its associated
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position), then we have (t ∈ C(B)):

t =
∑

j∈B

βj tj , βj ≥ 0 and
∑

j∈B

βj = 1

so that we have on the first hand:

〈t,vt〉 =
∑

j∈B

βj 〈tj ,vt〉 < 〈xt,vt〉 (see eq. 2),

and, on the other one (t ∈ C(A)):

〈t,vt〉 =
∑

i∈A

αi 〈ti,vt〉 ≥
(
∑

i∈A

αi

)
min

i
{〈ti,v(t)〉} > 〈xt,vt〉 .

(4)

Thus a contradiction which shows that C(A)
⋂

C(B) = ∅. For the second part,

we have simply to assume that x(t) ∈ C(A) ( xt =
∑

i∈A

αi ti, αi ≥ 0), which

yields:

〈xt,vt〉 =
∑

i∈A

αi 〈ti,vt〉 ≥ min
i∈A

〈ti,vt〉, (5)

which is clearly a contradiction, idem if X(t) ∈ C(B).
���

So, C(A) and C(B) being two disjoint convex subsets, we know that there
exists an hyperplane (here a line) separating them. Then, let sk be a generic
sensor, we can write tk = λ vt + µ v⊥

t , so that:

〈tk,vt〉 = λ ‖vt‖2
> 0 ⇐⇒ λ > 0 . (6)

This means that the line spanned by the vector v⊥
t separates C(A) and C(B).

Without considering the translation and considering again the
{
vt,v

⊥
t

}
basis ,

we have : {
tk ∈ A ⇐⇒ λ ‖vt‖2

> 〈xt,vt〉 ,

tk ∈ B ⇐⇒ λ ‖vt‖2
< 〈xt,vt〉 .

(7)

Thus in the basis (vt,v
⊥
t ), the line passing by the point

(
〈xt,vt〉
‖vt‖2 , 0

)
and whose

direction is given by v⊥
t is separating C(A) and C(B). We have now to turn to-

ward the indistinguishability conditions for two trajectories. Two trajectories are
said indistinguishable if they induce the same outputs from the sensor network.
We have then the following property [1].

Proposition 2 Assume that the sensor network is dense, then two target tra-
jectories (say xt and yt) are indistinguishable iff the following conditions hold
true: {

ẏt = λt ẋt (λt > 0) ∀t ,

〈xt − yt, ẋt〉 = 0 ∀t .
(8)
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Proof: First, we shall consider the implications of the indistinguishability.
Actually, the two trajectories are indistinguishable iff the following condition
holds:

〈tj − ti, ẋt〉 ≤ 0 ⇐⇒ 〈tj − ti, ẏt〉 ≤ 0 ∀t ∀(ti, tj) . (9)

We then choose tj − ti = α ẋ⊥
t (i.e. ti and tj both belongs to the line separating

A and B) and consider the following decomposition of the ẏt vector:

ẏt = λt ẋt + µt ẋ⊥
t ,

so that we have:
〈tj − ti, ẏt〉 = αµt ‖ẋ⊥

t ‖
2 ≤ 0 . (10)

Now, it is always possible to choose a scalar α of the same sign than µt. So, we
conclude that the scalar µt is necessarily equal to zero. Thus , if the trajectories
xt and yt are indistinguishable we have necessarily:

ẏt = λt ẋt , ∀t .

Furthermore, the scalar λt is necessarily positive (see eq. 9). Then, the lemma 1
inequalities yield:

〈tj − ti, ẋt〉 < 〈xt − yt, ẋt〉 < 〈ti − tj , ẋt〉 . (11)

Choosing once again tj − ti = α ẋ⊥
t , we deduce from eq. 11 the second part of

prop. 2, i.e. 〈xt −yt, ẋt〉 = 0 ∀t . Considering now the distance between the two
indistinguishable trajectories, we have (ẏt = λt ẋt) :

d

dt
‖xt − yt‖2

= 2 〈xt − yt, ẋt − ẏt〉 = 0 , (12)

so that we have ‖xt − yt‖ = cst.
Reciprocally, assume that the two conditions ẏt = λt ẋt and 〈xt − yt, ẋt〉 = 0
hold true ∀t, are the two trajectories then indistinguishable? It is sufficient to
remark that:

〈yt, ẏt〉 = 〈xt + (yt − xt), ẏt〉 = 〈xt, ẏt〉 = λt 〈xt, ẋt〉 ,

〈ti, ẏt〉 = λt 〈ti, ẋt〉 .
(13)

Since the scalar λt is positive this ends the proof.
���

Let us now consider the practical applications of the above general results.

Rectilinear and uniform motion

Admitting now that the target motions are rectilinear and uniform (i.e. xt =
x0 + t ẋ). Then prop. 2 yields ẏ = λ ẋ (λ > 0) and:

〈yt − xt, ẋ〉 = 〈y0 − x0, ẋ〉 + t (1 − λ) ‖ẋ‖2
= 0 ∀t . (14)

Then, from eq. 14 we deduce that λ = 1 and y0 = x0 +α ẋ⊥. So that, the target
velocity is fully observable while the position is uniquely determined modulo a
α ẋ⊥ translation.
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leg-by-leg trajectory

Consider now a leg-by-leg trajectory modeling. For a 2-leg one, we have for two
indistinguishable trajectories:

{
xt = x0 + t1 v1

x + (t − t1) v2
x ,

yt = y0 + t
′

1 v1
y + (t − t

′

1) v2
y ,

(15)

where vi
x is the velocity of the x(t) trajectory on the i-th leg and ti is the

epoch of maneuver. Furthermore, we can assume that t1 < t
′

1. Considering the
implications of prop. 2 both for t < t1 and for t > t

′

1, we know that if the
trajectories are indistinguishable we must have:

v1
x = v1

y and: v2
x = v2

y . (16)

So, our objective is now to prove that we have also t1 = t
′

1. Considering prop. 2,
we thus have the following system of equations :






〈y0 − x0 + (t − t1)
(
v1

x − v2
x

)
,v1

x〉 = 0 for : t1 < t < t
′

1 (a),

〈y0 − x0 + (t − t1)
(
v1

x − v2
x

)
,v2

x〉 = 0 for : t1 < t < t
′

1 (b),

〈y0 − x0 + (t
′

1 − t1)
(
v1

x − v2
x

)
,v2

x〉 = 0 for : t
′

1 < t (c) .

(17)

Now, on the 1-st leg we have also 〈y0 − x0,v
1
x〉 = 0 (see prop. 2 for t = 0), so

that eqs 17a,b yield:

〈
(
v1

x − v2
x

)
,v1

x〉 = 〈
(
v1

x − v2
x

)
,v1

x〉 = 0 . (18)

This means that v1
x and v2

x are both orthogonal to the same vector (v1
x−v2

x), so
they are collinear, and we straightforwardly deduce from eq. 18 that v1

x = v2
x.

Finally, it has thus been proved that t1 = t
′

1 and this reasoning can be extended
to any leg number. The observability requirements having been considered, we
turn now toward the development of the algorithmic approaches. Let us first
introduce the following functional.

3 The stairwise functional
Our fist aim is to estimate the target velocity, within a batch processing frame-
work. We assume that N binary ({−,+} sensors are uniformly distributed on
the field of interest (see fig. 2).
Each sensor will be coupled with a counter, that will be increased by a unity

each time-period the sensor gives us a {+}, an will keep its value each time the
sensor gives us a {−}. Then, at the end of the trajectory, each sensor has a entire
value representing the number of periods the target was approaching. Within a
given batch, the outputs of the sensor counters can be represented by a stairwise
functional (see fig. 3).
Then, once this stair is built, we can define what we call the velocity plane.
This plane is the tangent plane of the stairwise functional, which means that its
direction gives the direction of the stair, while its angle θ gives the slope. The
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Fig. 3. The theoretical stairway of the trajectory.

direction of the plane gives us the target heading, while the target speed v is
given by:

v =
1

tan(θ)
. (19)

Thus, estimating the velocity is equivalent to estimating the velocity plane
parameters. Mathematical justifications are then presented. The target moves
with a constant velocity v. Considering the results of section 2, its starting
position is given by the following equation:

x(0) = x0 + λ v⊥ , λ ∈ R ,
so, that :
x(t) = x0 + λ v⊥ + t v

(20)

This means that at each time period t ∈ R+, the possible positions x(t) define
a (moving) straight line, whose direction is v⊥. Let us consider now the scalar
product 〈x(t),v〉, then we have:

∂

∂ t
〈x(t),v〉 = v2 . (21)

This is clearly constant, which means that the surface is a plane. The conclusion
follows: the stairwise plane is an exhaustive information for the velocity vector.
We provide in the next section two solutions to estimate the velocity plane from
the observed data, and give some asymptotic results about the estimation.
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4 Statistical Methods to Estimate the Velocity Plane
We showed that estimating the velocity plane allows us to estimate the velocity
vector. Wile there exists several methods to do that, we shall focus on two of
them.

4.1 The Support Vector Machine (SVM) approach [2]
As seen previously, the problem we have to face is to optimally separate the
two classes of sensors (i.e. the + and −). So, we can use the general framework
of SVM, widely used in the classification context. The set of labeled patterns
{(y1,x1, · · · , yl,xl} (yi ∈ {−1, 1} and xi sensor positions) is said to be linearly
separable if there exists a vector w and a scalar b such that the following in-
equalities hold true:

{
〈w,xi〉 + b ≥ 1 if : yi = 1 ,

〈w,xi〉 + b ≤ −1 if : yi = −1 .
(22)

Let H(w, b)
∆
= {x|〈w,x〉 + b = 0} (w: normal vector) be this optimal separation

plane. and define the margin (marg) as the distance of the closest point xi to
H, then it is easily seen that marg = 1

‖w‖ . Thus, maximizing the margin lead to

consider the following problem:
∣∣∣∣∣∣

min
w,b

τ(w)
δ
= ‖w‖2

,

s.t. : yi (〈w,xi〉 + b) ≥ 1 ∀ i = 1, · · · , l yi = ±1 .

(23)

Denoting Λ the vector of Lagrange multipliers, dualization of eq. 23 leads to
consider again a quadratic problem, but with more explicit constraints [2], i.e. :

∣∣∣∣∣∣

max
Λ

W (Λ) = −1

2
ΛT D Λ + ΛT 1 ,

s.t. : Λ ≥ 0 , ΛT Y = 0 ,

(24)

where 1 is a vector made of 1 and Y T = (y1, · · · , yl) is the l-dimensional vector
of labels, and D is the Gram matrix:

Di,j = 〈yixi, yjxj〉 . (25)

The dualized problem can be efficiently solved by classical quadratic program-
ming methods. The less-perfect case consider the case when data cannot be
separated without errors and lead to replace the constraints of eq. 23 by the
following ones:

yi (〈w,xi〉 + b) ≥ 1 − ξi , ξi ≥ 0 , i = 1, · · · , l . (26)

Consider now a multiperiod extension of the previous analysis. Let us restrict
first to a two-period analysis, we shall consider two separating hyperplanes (say
H1,H2) defined by:

{
〈w, x1

l 〉 + b1 ≷ ±c1 according to: y1
l = ±1 ,

〈w, x2
l 〉 + b2 ≷ ±c2 according to: y2

l = ±1 .
(27)
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It is also assumed that these two separating planes are associated with time
periods T and T + ∆T , ∆T known. It is easily seen that the margin for the
separating plane H1 is c1

‖w‖ , while for the plane H2 it is c2

‖w‖ . Thus, the problem

we have to solve reads:
∣∣∣∣∣∣∣

min
w,c1,c2,b1,b2

[
max
1,2

(‖w‖2

c2
1

,
‖w‖2

c2
2

) ]
,

s.t.: y1
l

(
〈w, x1

l 〉 + b1

)
≥ c1 , y2

l

(
〈w, x2

l 〉 + b2

)
≥ c2 ∀l.

(28)

At a first glance, this problem appears as very complicated. But, without restrict-

ing generality, we can assume that c1 < c2. This means that max
1,2

(‖w‖2

c2
1

,
‖w‖2

c2
2

)
=

‖w‖2

c2
1

. Making the changes 1
c1

w → w
′

and b1
c1

→ b
′

1 then leads to consider the

classical problem:

∣∣∣∣∣∣

min
w

′
,b

′

1,b
′

2

‖w‖2

s.t. : y1
l

(
〈w′

, x1
l 〉 + b

′

1

)
≥ 1 , y2

l

(
〈w′

, x2
l 〉 + b

′

2

)
≥ 1 ∀l.

(29)

Let w∗ be the (unique) solution of eq. 29, then a straightforward calculation
yields the distance d(H∗

1,H∗
2) between the two separating planes, i.e.:

d(H∗
1,H∗

2) =
|b∗1 − b∗2|
‖w∗‖ .

Finally, we deduce that the estimated velocity vector v̂ is given by:

v̂ = α w∗ and: v̂ =
1

∆T
d(H∗

1,H∗
2) . (30)

The previous analysis can be easily extended to an arbitrary number of periods,
as long as the target trajectory remains rectilinear. Another definite advantage
is that it can be easily extended to multitarget tracking.

3D-SVM We can also mix the SVM ideas with that of section 3. Indeed, instead
of focusing on a 2-D dataset, we can consider a 3-dimensional dataset (sensor
coordinates and values of the sensor counters). The second 3-D dataset is the
same, but the value of the counter is increased with unity. So, the separation
plane is 2-D, and will be as closed to the velocity plane as the sensor number
can allow. See fig. 4 for a more explicit understanding. The results of the SVM
estimation of the velocity plane are discussed in the Simulation Results section.

4.2 Projection Pursuit Regression

The projection pursuit methods have first been introduced by Friedman and
Tuckey [3]. Then, they have been developed for regression with the projection
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Fig. 4. The theoretical stairway of the trajectory.

pursuit regression (PPR) by Friedman and Stuetzle [4]. PPR is mainly a non-
parametric method to estimate a regression, with however a certain particularity.
Indeed, instead of estimating a function f such as Yi = f(Xi)+εi, where Xi and
Yi are known, and εi assuming to follow a certain law, PPR estimates g such as
Yi = g(Xi θ) + εi. The first step of the algorithm is to estimate the direction θ,
and then ĝ. In our specific case, θ will represent the direction of the target, and
ĝ will give us the value of the velocity.

Modeling Let Yi be the value of the i-th sensor counter. Xi are the sensor
coordinates. If n(Xi θ) is the value of the counter i at the end of the track, and
p the probability to have the right {+,−} decision, we then have (B: binomial):

L(Yi|Xi θ) = B(n(Xi θ), p) (31)

Assuming in a first time that p = 1, the two parameters we would like to estimate
are the θ parameter and the n(.) function.

The PPR method in the network context We have some additional con-
straints on n(.). First of all, it only takes integer values. Then, it is an increasing
function (because p = 1). The optimization problem we have to solve is the
following:

θ̂ = arg min
θ

∑
(n̂(Xi θ) − Yi)

2 , (32)

where n̂ is calculated in a quite special way. First, we define a non parametric
estimation of a function f, via:

f̂(u) =

∑
YiKh(Xi θ − u)∑
Kh(Xi θ − u)

. (33)

Then, we sort (X θ)i into a vector (Xθ)(i) from the smallest to the biggest. After
which we define n̂(.) via:

{
n̂(X θ(i)) = f̂(X θ(i)) if f̂(X θ(i)) ≥ f̂(X θ(i−1)) ,

n̂(X θ(i)) = f̂(X θ(i−1)) otherwise .
(34)
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Sometimes, due to the integer value of the estimated n(.) function, we have to

deal with many possible values of θ̂. Then, in this case, we choose the mean value
of θ. Due to the specific behavior of our target and our modeling, we know in
addition that the general form of n (say ñ) is given by:

ñ(u) =
∑

iI[(Xθ)⊥+(i−1)v,(Xθ)⊥+iv](u) . (35)

The next step is then to estimate v. Such an estimation is given by the following
optimization program:

v̂ = arg min
v

∑
(ˆ̃n(Xθ̂i) − Yi)

2 (36)

Convergence We will study if the estimation is good with an infinite number
N of sensors. Assuming we have an infinite number of sensors in a closed space,
this means that each point of the space gives us an information {+,−}. We then
will have the exact parameters of the stairwise functional. To that aim, we will
show in the following paragraph that the probability of having a sensor arbitrary
close to the limits of each stair steps is 1. We assume that the sensor positions
are randomly distributed, following an uniform law. Then, y being fixed:

L(X|Z) = U[Binf ;Bsup] (37)

If the velocity vector v is denoted with [a; b], then:

Binf = − b
a
y − cinf

a
, Bsup = − b

a
y − csup

a
, (38)

where (cinf , csup) only depends on v and x0, which means that they are deter-
ministic, and independent from X. It is quite obvious that Binf represents the
smaller x-limit of a step, when Bsup represents its higher x-limit. Then, con-
sidering the velocity plane, Binf and Bsup both belong to the plane. Denote
u = infi(Xi), then:

∀ε > 0 P (|u − Binf | < ε) = P (u − Binf < ε) , (39)

= P (u < ε + Binf) .

We know that:

L(X|Z) = U[Binf ;Bsup] ⇒ P (inf Xi ≤ t) =






0 if t ≤ Binf ,

1 − (
Bsup−t

Bsup−Binf
)N if t ∈ [Binf ;Bsup] ,

1 if t > Bsup .
(40)

Then, we have the following probability calculations:

∀ε > 0 P (|u − Binf | < ε) = P (u < ε + Binf) ,

= 1 − (
Bsup − (ǫ + Binf)

Bsup − Binf
)N1[Binf ;Bsup]((ε + Binf)) ,

=






0 if ε ≤ 0
1 − (1 − ε

Bsup−Binf
)N if ǫ ∈]0;Bsup − Binf ]

1 if ε > Bsup − Binf .

(41)
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Given the above equation, 1 − ε
Bsup−Binf

is smaller than one, which means that

(1− ǫ
Bsup−Binf

)N converges to 0 as N increases to infinity. Thus, we have finally:

∀ε > 0 lim
N→∞

P (|u − Binf | < ε) = 1 . (42)

ending the proof.

5 Simulation Results
We shall now investigate the previous developments via simulations. The first
figure (fig.5) will show the stair built by the previously explained method (N :
fixed). The position of the sensors are considered random, following a uniform
law on the surveillance set. To evaluate the performance of our methods, we
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Fig. 5. 2D sensor position and velocity’s direction projection. N=100 sensors, Velocity
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decided to calculate the mean square error of the two estimated parameters,
which are the velocity value and the velocity direction. Fig. 6 shows the two
MSEs values for both direction and velocity values, assuming the sensor number
is growing from 10 to 100, and the velocity vector is the [1, 2] vector (m/s).
Providing 2000 simulations, the MSEs seems to be unstable. However, the two

parameter estimation methods leads to a very different conclusion. In the case
of the direction estimation, the PPR method works highly better than the SVM
method, and seems quite stable as the sensor number N grows. On the other
side, the SVM method is more erratic.One possible explanation is that the PPR
method has been first developed for the particular case of direction estimation,
while the SVM method is more focused on the margins maximization, which
means in our case a simultaneous estimation of both parameters. The conclu-
sions we can make on the velocity value estimation are rather opposite. The
MSE becomes reasonable only for the SVM method, and for a number of sen-
sors up to 60. Indeed, we have a 0.05 m/s error on a velocity value estimation
for a theoretical value of

√
5. As erratic as the SVM’s MSE was in the direction

estimation, it was however less erratic than the result we have for the PPR value.
One answer to the MSE erratic value for the PPR could be to find a best way
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Fig. 6. Mean Square Error of the Velocity Estimators. Green for the SVM, Blue for
the PPR.

to estimate the velocity value. Indeed, in our case, we choose for estimating
functional a sum of indicators functions. However, it is not clear that this op-
timization gives a single minimum solution. There could be a finest functional
that could lead to a most robust optimization solution, and this would be the
subject of future works.

6 Conclusion
In this paper, we chose to focus on the use of the {−,+} at the level of informa-
tion processing for a sensor network. Though this information is rather poor, it
has been shown that it can provide very interesting results about the target ve-
locity estimation. The theoretical aspects of our methods have been thoroughly
investigated, and it has been shown that the PPR method leads to the right
velocity plane if the number of sensors increase to infinity. The feasibility of the
new concept (”velocity plane”) for estimating the target trajectory parameters
has been put in evidence. The proposed methods seem to be sufficiently general
and versatile to explore numerous extensions like: target tracking and dealing
with multiple targets within the same binary context.
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