
RESEARCH ARTICLE

Dynamic consistent correlation-variational approach for robust
optical flow estimation
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Abstract We present in this paper a novel combined

scheme dedicated to the measurement of velocity in fluid

experimental flows through image sequences. The pro-

posed technique satisfies the Navier–Stokes equations and

combines the robustness of correlation techniques with the

high density of global variational methods. It can be con-

sidered either as a reenforcement of fluid dedicated optical-

flow methods towards robustness, or as an enhancement of

correlation approaches towards dense information. This

results in a physics-based technique that is robust under

noise and outliers, while providing a dense motion field.

The method was applied on synthetic images and on real

experiments in turbulent flows carried out to allow a

thorough comparison with a state of the art variational and

correlation methods.

1 Introduction

There has been significant progress during recent years in

the analysis of particle image sequence to estimate fluid

velocities. On one hand regions-based techniques produce

velocities from maximum correlations between displaced

interrogation windows. These robust techniques provide

reliable but low-pass filtered vector fields, compared to the

density of particles. On the other hand model based mea-

surement techniques, known as optical flow approaches,

rely on a model, the so-called data term or observation

term, which relates the observed image intensity to the

displacements fields to estimate. Since the single use of

the data term leads to an improperly posed problem—only

the displacements along the direction of the intensity gra-

dient can be measured—additional assumptions have been

proposed. The local approach of Lucas and Kanade (1981)

tackles this problem while considering a local spatial

constancy assumptions on the optic flow field. Bigün

and Granlund (1988) extended this technique to local

spatiotemporal constancy assumptions. Like correlation

approaches, these local schemes are region-based methods,

providing robust but sparse estimations.

Alternatively, a relatively simple important idea in the

conceptual development of model-based measurement

technique is to introduce a regularization of the velocity

field to devise a global approach (Tikhonov and Arsenin

1977). Based on the minimization of an energy function,

composed of a data term and a regularization term, this

global scheme provides dense vector fields with spatial

coherence. It should be noticed, that contrary to approa-

ches using post-treatments to filter spurious vectors,

global approaches seek regular and coherent displace-

ments fields. This promotion of regular and coherent

solutions is conducted from the beginning of the mini-

mization. Hence, the key of global methods’s accuracy is

directly link with the regularization term. However, these

approaches provides a framework to introduce physics-

based constraints, thus giving opportunities to introduced

prior knowledges of the dynamics of fluids to extract the
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motion through image sequences. In this paper we

examines new physics-based constraints leading to

dynamic consistency.

The global scheme proposed by Horn and Schunck

(1981), using the optical flow constraint equation (OFC),

and a first-order regularization, was applied on particle

image by Ruhnau et al. (2005). However, this standard

approach was at the origin adapted to two-dimensional

(2D) rigid motions. With particle image of turbulent fluid

flows, the OFC equation—based on the variational for-

mulation of the brightness constancy assumption—is

violated due to out of plane motions, and the regularization

promotes smooth vector fields. The fluid dedicated

approach of Corpetti et al. (2002) uses a data term based on

the continuity equation and a second-order regularizer

constraining the gradients of the flow components diver-

gence and vorticity. This new method is able to extract the

apparent 2D motion of 3D flow while preserving the spatial

variations of the apparent divergence and vorticity. Applied

to particle images it provides reliable results (Corpetti et al.

2006). The optical flow method used by Corpetti et al.

based on the continuity equation is physically consistent

only for transmittance images. Recently, Liu and Shen

(2008) gave the mathematical definition and a physical

meaning of this optical flow formulation for particle ima-

ges. They showed that the continuity equation fortunately

leads to the physics-based data term they derived, with the

assumption that the boundary flux terms can be neglected

for particle images.

The accuracy of second-order regularization was

improved with carefully designed Helmholtz decomposi-

tion (Kohlberger et al. 2003) and discrete orthogonal

decomposition (Yuan et al. 2007). For 2D flows this last

method provides better results than advanced competitive

correlation approaches (Heitz et al. 2008). To obtain an

accurate estimation of the derivatives of the velocity,

Alvarez et al. (2008) proposed an optical flow approach

based on a second-order Taylor development of the flow. In

this technique the physical meaning was enhanced with

decomposition of the velocity gradient tensor into sym-

metric and antisymmetric parts, thus exhibiting the

vorticity and strain rate tensor. Recently, Rhunau and

Schnörr (2007) devised a physically grounded regulariza-

tion based on the Stokes equation, therefore restricted to

viscous flow (i.e. for very small Reynolds numbers).

Another way to introduce physics in the estimation of

motion is to satisfy the Navier–Stokes equations. This

approach was first introduced by Okuno et al. (2000) to

post-treat standard correlation measurements. Like the

method of Rhunau and Schnörr (2007), this physic-based

measurement technique provides estimations of the veloc-

ity and of the pressure. Using the incompressible velocity–

vorticity formulation of the Navier–Stokes equations,

Rhunau et al. (2007) developed a spatio-temporal regu-

larizer for a global approach equipped with an additional

constraint that mimics the small viscous term. In the con-

text of data assimilation into Navier–Stokes equations,

Cuzol et al. (2007) presented a Bayesian filtering technique

to track vorticity fields, and Papadakis et al. (2007) pro-

posed a promising variational data assimilation technique

to estimate an optimal dynamically consistent vector fields.

All the above-mentioned spatio-temporal techniques are

only valid for 2D flows, which represents a strong limita-

tion for the analysis of most of real flows.

Furthermore, variational approaches can exhibit other

limitations with particle image sequences. The variational

formulation is only suited for displacements smaller than

the shortest wavelength present in the image, i.e. smaller

then the size of the observed particles. To handle large

displacements the data term is generally embedded within a

multiresolution coarse-to-fine scheme (Bergen et al. 1992).

Standard multiresolution approach consists in deriving the

original frame into a pyramid of images, by successive

low-pass filtering (Gaussian smoothing) and regular sub-

sampling by a factor of two in each direction. The created

pyramid structure then allows multiscale motion estimation

by incremental procedure. Low resolution components are

estimated at coarsest level and then refined step by step: at

a resolution level, an increment velocity field is estimated

around the projection (by duplication or interpolation) of

the final estimate at previous resolution level. In general

the procedure of filtering and subsampling leads to a loss of

information. In the case of particle images of turbulent

fluid flows, small particles with large velocities, can be

smoothed out by the multiresolution procedure. Therefore,

due to this loss of information, the variational approach

will not extract reliable velocities. In presence of noise in

the image the multiresolution procedure enhances this

phenomenon. At the coarsest level, the subsampling pro-

cess keeps statistically more noise than particle information

when there is poor particle density and noise in the original

image. Bruhn et al. (2005) proposed a combined local–

global method which has the robustness of local methods

with the density of global approaches. Unfortunately, this

technique, not specifically suited for fluid flow, was not

tested on particle images.

In the present paper we describe a novel dynamic con-

sistent global approach combining the robustness of

correlation techniques with the high density of global

variational methods, constrained with Navier–Stokes

equations extending the estimations towards 3D flows

driven by shallow water equations. The proposed approach

is an adaptation of Héas et al. (2007) scheme—developed

for the measurement of atmospheric dynamics from satel-

lite image sequences—for laser sheet illuminated particle

image. This results in a physics-based technique that is
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robust under noise and outliers, while providing a dense

spatio-temporal coherent motion field.

This article is organized as follows. In Sect. 1, we

present multiscale motion estimation focusing on the fluid

dedicated variational methods. Then, in Sect. 2, we present

the collaborative correlation-variational approach, fol-

lowed by the description of spatio-temporal constraint. In

Sect. 6, results from synthetic images based on a DNS of

2D turbulence, and real images in the wake of a circular

cylinder, are presented and analyzed. We provide some

elements of comparison of our method with standard

optical flow techniques.

2 Multiscale motion estimation

2.1 Regions-based or local approach

A classical approach used with PIV is correlation-based

matching technique. The velocity u at point s is obtained

for continuous image fields by minimizing

uðsÞ ¼ Dt�1 arg min
w

Z

r2WðsÞ

�Iðrþ w; t þ DtÞIðr; tÞdr: ð1Þ

where W(s) denotes windows centered on different points

of the images and w is the displacement vector to estimate.

For local optical flow approaches, which belong to regions-

based methods, the negative product of the images is

replaced by the absolute value or the square of the DFD

equation (see Sect. 2.2).

These approaches suffer from several deficiencies:

traceable features must be sufficiently contrasted and must

persist over time on consecutive images. Furthermore, the

estimation prone to erroneous spatial variability, which can

be reduced with the use of filters. On the other hand, these

techniques constitute very fast methods and are generally

locally very robust to noise. These techniques are based on

disjoint local estimation, and thus produce sparse vector

fields estimated locally and independently.

2.2 Global or dense approach

2.2.1 Classical optical flow method

The apparent motion, perceived through variations of

image intensity I is called optical flow in the computer

vision community. All optical flow estimation methods rely

on the temporal conservation of some invariants. The most

common are photometric invariant which can easily be

extracted and may lead to dense measurements. In the case

of PIV of bi-dimensional flows, the gray level conservation

can be assumed, leading to an integrated non-linear

formulation called the displaced frame difference (DFD)

equation I(s ? u(s), t ? Dt) = I(s, t), or at time t, to a

linear differential formulation called the OFC equation

u(s) � rI(s) ? It(s) = 0, where s denotes the spatial coor-

dinates (x, y) and u(s) = (u, v)T the apparent motion field at

this point and at a given time t.

These two formulations cannot be used alone, as they

provide only one equation for two unknowns at each spa-

tio-temporal location (s, t). This is the well-known aperture

problem where the normal flow to the brightness gradient is

estimated while the tangential velocity component remains

undetermined. In order to remove this ambiguity one must

rely on other assumptions. The mainly used assumption is

local spatial or spatio-temporal constancy of the velocity

fields (Lucas and Kanade 1981; Bigün and Granlund 1988).

Alternate approaches, derived in the framework pro-

posed by Horn and Schunck (1981), have the great

advantage of producing dense vector fields with spatial

global coherence. They are based on the minimization of

an energy function J = Jd ? Jr composed of two terms.

The first term Jd is called the data term and implements the

OFC equation

Jdðu; IÞ ¼
Z

X

/ rIðsÞ � uðsÞ þ oIðsÞ
ot

� �
ds: ð2Þ

The penalty function / is usually the L2 norm but it may

be changed to a robust function attenuating the effect

of data that deviate significantly from the OFC (Black and

Anandan 1996). The second term Jr is called the

regularization term. It is usually a standard first-order

spatial smoothness term

JrðuÞ ¼ a
Z

X

/ðk ru k þ k rv kÞds; ð3Þ

where a[ 0 is a parameter controlling the balance between

the smoothness and the global adequacy to the brightness

constancy assumption. k�k stands for the Euclidean norm.

Function / may be the quadratic penalty if the searched

solution is smooth everywhere or a robust norm function if

one wants to handle implicitly the spatial discontinuities of

the field (Black and Anandan 1996).

2.2.2 Fluid dedicated optical flow method

With most of real turbulent flows, the OFC equation dose

not hold. To estimate the apparent motion (i.e. the velocity

in the image plane) of 3D flows, Corpetti et al. (2002, 2006)

proposed a data term based on the continuity equation. This

new constraint although derived for transmittance images is

fortunately suited for laser-sheet illuminated particle ima-

ges (Liu and Shen 2008). Liu and Shen demonstrated that

the optical flow is proportional to the path averaged velocity
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of particles across the laser sheet and proposed the fol-

lowing physics-based optical flow equation,

rðIðsÞ � uðsÞÞ þ oIðsÞ
ot
¼ f ðs; IÞ; ð4Þ

f ðs; IÞ ¼ Dr2I þ DcBþ cn � ðNuÞjC2

C1
; ð5Þ

where D is a diffusion coefficient, c is a coefficient

of particle scattering/absorption, B ¼ �n � rNjC2

C1
�r �

ðNjC2
rC2 þ NjC1

rC1Þ is a boundary term that is related

to N, the particle number per unit total volume, and its

derivatives coupled with the derivatives of the control

surfaces C1, C2 of the laser sheet illuminated volume. Since

the control surfaces are planar, there is no particle diffusion

by molecular process, and the rate of accumulation of the

particle in laser sheet illuminated volume is neglected, the

term f(s, I) ^ 0 and the physics-based OFC can be written

Jdðu; IÞ ¼
Z

X

/ rðIðsÞ � uðsÞÞ þ oIðsÞ
ot

� �
ds: ð6Þ

Furthermore in the case of fluid flows, it can be

demonstrated that a first-order regularization is not

adapted as it favors the estimation of velocity fields with

low vorticity (Corpetti et al. 2006). A second-order

regularization can advantageously be considered as

proposed by Suter (1994):

JrðuÞ ¼ a
Z

X

/ðk rnðsÞ k2 þ k rfðsÞ k2Þds; ð7Þ

where n ¼ curl u ¼ ou
oy � ov

ox and f ¼ div u ¼ ou
ox þ ov

oy stand

for the vorticity and divergence of the apparent velocity

u = (u, v)T. Note that in the case of bi-dimensional

incompressible flows, divergence of the apparent motion is

equal to zero. High-order regularization leads to non-trivial

minimization problems. As a consequence more sophisti-

cated discretization schemes have to be used. Using finite

mimetic differences, Yuan et al. (2007) proposed a high-

order motion estimator providing accurate measurements

(Heitz et al. 2008).

In the present study, to circumvent the difficulty of

implementing second-order smoothness constraint, the

second-order regularization term was simplified in a com-

putational point of view in two interleaved first-order div–

curl regularizations based on auxiliary variable n1 and f1

approximating the vorticity and the divergence of the flow

(Corpetti et al. 2002, 2006). Thus we have:

JrðuÞ ¼ a
Z

X

/½ðnðsÞ � n1Þ2 þ k k rn1 k2�ds ð8Þ

þ a
Z

X

/½ðfðsÞ � f1Þ2 þ k k rf1 k2�ds; ð9Þ

where k is a positive regularization parameter. Although

Yuan et al. (2007) numerical scheme provides better

results, here the Corpetti et al. regularization is used for

simplicity.

2.3 Multiresolution approach

A problem with variational approaches is large displace-

ment estimation. The intensity function must be locally

sufficiently close to a linear function. Since the larger the

displacement the more narrow the linearity domain is, large

displacements cannot be recovered directly. A common

way to overcome this limitation is to create a image pyr-

amid, constructed by successive low-pass filtering and

down sampling of the original images. In this framework,

principal components of displacements are first estimated

at coarse resolution where motion amplitude should be

sufficiently reduced in order to satisfy the linearity

requirement. Incremental displacement are then estimated

while going down the pyramid, and the solution is refined

(Bergen et al. 1992) (Fig. 1).

The multiresolution schemes estimates principal

component displacements only at coarse resolutions where

small particles are rubbed out. Hence, this approach

enables the characterization of large displacements of small

particles only in the case when their motion are close

enough to the principal component’s one. Since at the

coarsest level, the subsampling process keeps statistically

more noise than particle information, especially when there

is poor particle density or small particles (around 1–2 pixel

diameter) and noise in the image, the multiresolution

approach leads to erroneous estimations.

3 Collaborative correlation-optical flow scheme

To overcome the multiresolution limitations, we propose

an alternative approach relying on a unique representation

of the full resolution image. Thus, the proposed method

J 0,l

J 1,l

J 2,l

I 0,l

I 1,l

I 2,l dw2,l

w1 + dw1,l

w0 + dw0,l0 + 0,l

Fig. 1 Coarse to fine resolution with multiresolution representation

of the images
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tackles the non-linear estimation problem without making

successive approximations in the calculation of interpo-

lated images nor restricting itself to the characterization of

large displacements of sufficiently large structures. The

proposed method takes advantage of the non-linear for-

mulation of the motion estimation problem within a

differential framework appropriated for globalized local

smoothing. More explicitly, large displacements of both,

fine or large structures, can be recovered by correlation-

based methods for sufficiently contrasted and persisting

image regions. Thus, the idea of the method is to replace

the coarse estimates of the multiresolution scheme by a

dense large scale displacement estimate derived from a

collection of correlation-based vectors uc obtained by

Eq. 1.

A new functional was defined to estimate the vector

fields

JðuÞ ¼ JdðI; uÞ þ JrðuÞ þ Jcðu; ucÞ; ð10Þ

where Jc(�) is the energy function constraining estimated

displacements u to be close to a sparse correlation-based

vector field uc. Thus, functional Jc(�) is defined as a

quadratic distance between the solution and a collection of

correlation-based vectors uc
i = (ui, vi) located at the point

si = (xi, yi) and influencing their neighborhood according

to a bi-dimensional Gaussian N iðsÞ of mean si and of

variance r

Jcðu; ucÞ ¼ c
Z

X

XL

i¼1

giN iðsÞ k ui
c � uðsÞ k2 ds; ð11Þ

where gi and c denote respectively the confidence and the

functional weighting factors.

4 Spatio-temporal smoothing

4.1 Energy function

We propose to incorporate a priori physical knowledge on

fluid dynamical evolution in the combined correlation-

optical flow estimation scheme. In order to preserve

spatio-temporal consistency of displacement estimates, a

simplified Navier–Stokes dynamical model is adapted to

images depicting 3D fluid flows. A dense displacement

field is predicted by time integration of a physical

dynamical model. The propagated field is then introduced

in the estimation process as a spatio-temporal smoother. A

priori information introduced with this dynamic model may

enhance significantly the quality of estimates especially in

the case of noisy observations.

Keeping notations of the previous section, we define for

the estimation of variable u the new functional

Jðu; IÞ ¼ Jdðu; IÞ þ JrðuÞ þ Jpðu; upÞ þ Jcðu; ucÞ; ð12Þ

where Jp(�) is an energy function constraining

displacements u to be consistent with a physically sound

prediction up relying on Navier–Stokes equations. As

proposed in Héas et al. (2007), we define this functional as

a quadratic distance between the estimated field u and the

dense propagated field up = (up, vp):

Jpðu; upÞ ¼ b
Z

X

k upðsÞ � uðsÞ k2 ds; ð13Þ

where b denotes a weighting factor. This approach con-

stitutes an alternative to the spatio-temporal smoother

defined in Weickert and Schnörr (2001) and is to some

extent similar to the temporal constraint introduced in

Rhunau et al. (2007). It is important to distinguish this

a priori dynamical model from the model used for the data-

term. Indeed, from the probabilistic point of view, mini-

mizing the functional is analogous to searching the

maximum a posteriori estimate obtained by maximizing the

product of the likelihood probability distribution repre-

sented by the data-term and a priori probability distribution

represented by spatio-temporal smoothing.

4.2 Dynamical model

Dynamical models describing motion field evolution are

needed here for the prediction at time t ? Dt of a motion

field up using the previous estimation performed between

time t - Dt and t. In Weickert and Schnörr (2001), the

temporal derivative of the velocity vectors are constrained to

be weak, which is not consistent with fluid flow dynamics.

The smoothing proposed in Rhunau et al. (2007) constrains

the estimated vorticity to be close to a prediction. Relying on

Navier–Stokes equations adapted to shallow flows, the

propagation model in Héas et al. (2007) extends this 2D case

to flows driven by a shallow water evolution law.

In the present paper we chose to use the latter simplified

dynamical model for short time propagation of shallow

fluid motion and adapt it to laser-sheet illuminated particle

image. Let us present this evolution model. We assume

incompressibility of the flow of constant density q0.

Denoting respectively by F ¼ ðF u;F vÞ>; T ¼ ðT u; T vÞ>;
the viscous forces and turbulent dissipation at subgrid

scales the horizontal momentum equations read:

du
dt þ

�px

q0
¼ F u þ T u

dv
dt þ

�py

q0
¼ F v þ T v

(
ð14Þ

where the unknown quantities are the pressure function p

and horizontal motion field u = (u, v). An integrated

form of the momentum equations is produced by vertical

integration. It yields to the shallow water momentum
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equations of Saint-Venant (1871). However, a simplified

model of these equations can be obtained when relying on

the approximation that the vertical profile of horizontal

motion is constant within the flow. In other words, we

neglect horizontal motion vertical derivatives. By adding

the mass conservation model, we form a simplified shallow

water system which reads:

ut þrðuÞu� grh ¼ F þ T
ht þ u � rhþ hr � u ¼ 0;

(
ð15Þ

where h denotes the depth function, here the thickness of the

laser sheet. Consequently, denoting by m and ms the kinematic

viscosity and a subgrid turbulent viscosity, F and T are

replaced by diffusion terms in the above momentum

equations. Let us denote the vorticity by n = curl(u) and

the divergence by f = div(u). The previous system may be

expressed in its vorticity-divergence form:

nt þ u � rnþ nf ¼ ðms þ mÞDn

ft þ u � rfþ f2 � 2jJj � gDh ¼ ðms þ mÞDf

ht þ u � rhþ hf ¼ 0

8><
>: ð16Þ

where |J| is the determinant of the Jacobian matrix of

variables (u, v), ms = (CDx)
2|n| is the enstrophy-based

subgrid scale model proposed by Mansour et al. (1978),

and C the Lilly’s universal constant equal to 0.17.

For laser-sheet illuminated images of turbulent flows,

the thickness of the laser sheet is constant in space and

time. Hence, the vorticity-divergence equations provide a

dynamical model independent of variable h. Based on the

realistic assumption that in 3D flows the divergence of the

apparent motion is not weak due to out of plane motions,

the simplified vorticity-divergence model based on shallow

flows reads:

nt þ u � rnþ nf ¼ ðms þ mÞDn

ft þ u � rfþ f2 � 2jJj ¼ ðms þ mÞDf

(
ð17Þ

This model for shallow flows reduces in the 2D

incompressible case to the vorticity equation:

nt þ u � rn ¼ ðmþ msÞDn: ð18Þ

4.3 Algorithm of resolution

The curl and divergence completely determine the under-

lying horizontal velocity field and the current velocity

estimate can be recovered from these quantities up to a

laminar flow. Indeed, denoting the orthogonal gradient by

r? ¼ ð�o=oy; o=oxÞ>; the Helmholtz decomposition of

the field into a sum of gradients of two potential functions

is expressed as

u ¼ r?WþrUþ uhar; ð19Þ

where uhar is a harmonic transportation part

(div uhar = curl uhar = 0) of the field u and where the

stream function W and the velocity potential U correspond to

the solenoidal and the irrotational part of the field. The latter

are linked to divergence and vorticity through two Poisson

equations. Expressing the solution of both equations as

a convolution product with the 2D Green kernel G

associated with the Laplacian operator: W = G * n,

U = G * f, the whole velocity field can be recovered with

the equation

u ¼ r?ðG � nÞ þ rðG � fÞ þ uhar; ð20Þ

which can be efficiently solved in the Fourier domain. The

harmonic transportation component uhar is recovered by

subtracting to the field u its solenoidal and irrotational

parts.

Let us sum up this prediction process. The vorticity and

the divergence fields are developed in time in between

consecutive image frame using a discretized form of Eq. 17

and time increments dt. After each time increment, assuming

uhar constant within each frame interval, Eq. 20 is used to

update the velocity u needed by Eq. 17, with the current

vorticity and divergence estimates. To avoid instability, a

semi-implicit first-order upwind time discretization scheme

is used to integrate forward Eq. 17. Classical second-order

centered finite difference schemes are used for the

curl and divergence discretization. To solve the linear

system associated with the semi-implicit discretization

scheme, the matrix has been constrained to be diago-

nally dominant, which is a sufficient condition for a

well-conditioned inversion problem. This condition reads

1/dt C maxs(|u| ? |v| - |n|). Finally, the dynamical model

time integration procedure results in the predicted horizontal

motion field up.

The global algorithm to estimate dynamic consistent

multiscale motions is presented in Fig. 2

5 Numerical and experimental evaluation

This section compares results on synthetic and real image

sequences obtained with the following approaches:

• Correlation To estimate correlation-based velocity

fields, the commercial software DaVis 7.2 from LaVi-

sion was used. A multipass algorithm with a final

interrogation window size of 16 9 16 pixels and 50%

overlapping was applied. Image deformation and round

Gaussian weighting function were used. Spurious

velocities were identified with median filter and

replaced by the median. The vector fields obtained
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with this correlation technique were used in the

collaborative approach.

• Dynamic consistent correlation (this paper) This

approach is a filtering process of the correlation via a

second-order regularization and a dynamic consistency

satisfying the Navier–Stokes equations. This physics-

based post-treatment, obtained without the data term in

Eq. 12, provides a dense vector field (1 vector per pixel).

• Multiresolution (Corpetti et al. 2006) This fluid dedi-

cated optical flow approach uses second-order

regularization and multiresolution to handle large

displacements (see Sect. 2.2 for details).

• Dynamic consistent multiresolution (this paper) This

approach is an extension of the fluid dedicated

approach of Corpetti et al. (2006) with a spatio-

temporal constraint satisfying the Navier–Stokes

equations.

• Correlation variational (this paper) This collaborative

approach is an adaptation of Corpetti et al. (2006)

approach to handle large displacements with correlation

instead of multiresolution.

• Dynamic consistent correlation-variational (this paper)

As described above, this approach uses second-order

regularization, correlation to handle large displace-

ments and dynamic consistency satisfying Navier–

Stokes equations.

For all approaches the same set of parameters was used,

providing an optimal performance: a = 1,000, b/a = 1

with r = 8 pixels and c/a = 0.05.

5.1 Synthetic image sequence

To evaluate the performance of the collaborative approach

compare to state of the art optical-flow and correlation

approaches, a synthetic particle image sequence was gen-

erated based on the direct numerical simulation (DNS) of

2D turbulent flow (Carlier and Wieneke 2005). The present

flow contains typical difficulties for image-based mea-

surements techniques, like high velocity gradients and

large dynamic range. The Reynolds number based on the

length scale of domain of computation 2p and on the rms of

the forcing velocity was equal to 30,000. Figure 3 presents

the whole flow domain and the region considered for a

thorough comparison.

The image sequence was generated with a home-made

particle image generator involving comparable methods

than those developed for the EUROPIV Synthetic Image

Generator (Lecordier and Westerweel 2003). A velocity–

vorticity formulation of the Navier–Stokes equations was

adopted for the DNS. The vorticity equation was solved in

Fourier space using desaliased Fourier expansions in two

directions with periodic boundary conditions. The time

integration was third-order/three steps with a Runge–Kutta

scheme. The code is called pseudo-spectral. The coordinates

of each particles were calculated in the physical space inside

From time index t to the last image index:
– I(t) and I(t + ∆ t) ← read particle images
– uc(t) ← extraction of a correlation-based vector field with Eq. 1
– u(t) = 0, Ĩ(t) = I(t + ∆ t)
– u(t) ←Dynamic consistent multiscale motion estimation

– Introduction of functionals Jp(.) and Jc(.)
– Until convergence (alternate multigrid optimization) :

• u(t) ← GS(Eq. 12)1 w.r.t. u(t)
• ξ ← GS(Eq. 12) w.r.t. ξ
• ζ ← GS(Eq. 12) w.r.t. ζ
• Ĩ(t) ← compensate image I(t + ∆ t) with u(t)

– up(t + n∆ t) ← Propagation of u(t)
– From time index t to t + n∆ t with time steps δ t

• ξ and ζ ← via Eq.17, u(t) or up(t)
• up(t + δ t) ← via Eq.20, ξ and ζ

1“GS(Eq. 12)” denotes a Gauss-Seidel iteration used for the mini-
mization of Eq. 12. Note that in this algorithm the robust parameter
estimation steps have been omitted for clarity.

Fig. 2 Synthetic algorithm for dynamic consistent multiscale motion

estimation

Fig. 3 Two-dimensional turbulence test case—colormap of the

normalized vorticity with superposed velocity field

Exp Fluids

123



the vorticity equation computation using the Runge–Kutta

scheme of the DNS in order to use the intermediate velocity

components. However, a bicubic interpolation of the

velocity field was applied since the particles were not sup-

posed to be located at the nodes of the grid.

In the present evaluation the image pair considered led

to a maximum particle image displacement up to 6 pixels.

This particle image displacement was globally optimal to

minimize the RMS error provided by the variational

technique. This relatively small maximum displacement

necessitates a multiresolution pyramid with only two lev-

els. However, the addition of noise in the image pairs

enables to put variational techniques, involving multires-

olution scheme, on the wrong track.

In order to provide more realistic conditions the signal-

to-noise ratio (SNR) was increased, simulating a reduction

of the power of the virtual laser (Hain and Kähler 2007).

The noise was quantified with peak SNR (PSNR) which is

the ratio between the maximum possible power of a signal

and the power of corrupting noise that affects the fidelity of

its representation. Because many signals have a very wide

dynamic range, PSNR is usually expressed in terms of the

logarithmic decibel scale. The PSNR is most commonly

used as a measure of quality of reconstruction in image

compression. The PSNR is defined as

PSNR ¼ 10log10

d2

MSE

� �

where d is the dynamic of the grey level of the signal, here

the particles. For an image where the particle are

represented over 8 bits d = 28-1 = 255. MSE is the

mean squared error, which for two m 9 n images Io and Ir

where one of the images is considered a noisy

approximation of the other, is defined as

MSE ¼ 1

mn

Xm�1

i¼0

Xn�1

j¼0

jjIoði; jÞ � Irði; jÞjj2

Typical PSNR values for images of good quality lie

between 30 and 40 dB. Figure 4 shows particle images

influenced by the different levels of noise used for the

evaluation. In comparison with these synthetic particle

images, typical real particle images recorded with a high

speed camera (Photron APX) exhibit relatively low PSNR

values lying between 12 and 18 dB (see Fig. 5).

5.2 Real image sequence

The collaborative approach was also applied to a particle

image sequence recorded in one of the wind tunnels of the

Rennes regional Center of the Cemagref. The sequence

shows the near wake flow of a circular cylinder at Reynolds

number Re = 3,900.

The circular cylinder had a length L = 280 mm and a

diameter D = 12 mm. It was equipped with two thin

rectangular end plates with the specification recommended

by Stansby (1974). The distance between the end-plates

was 240 mm providing an aspect ratio L/D = 20. The

blockage ratio was 4.3%. The circular cylinder was

mounted horizontally at 3.5D from the entrance of the

testing zone. The free-stream velocity was adjusted at

4.8 m s-1.

2D2C PIV experiments were carried out with a LaVi-

sion commercial system including a NewWave laser Solo 3

Nd-YAG (Energy by pulse of 50 mJ) and 2 PCO cameras

SensiCam (CCD size of 1,280 9 1,024 pixels, pixel size of

6.7 9 6.7 lm2 and dynamics of 12 bits). A lens with focal

length of 50 mm and aperture of 5.6 was mounted on the

camera. The field of view was 3.6D 9 2.9D. The diameter

Fig. 4 Synthetic particle images (50 9 50 pixels) influenced by the

reduction of the power of a virtual laser. From left to right and top to

bottom, PSNR values equal 36, 24, 18 and 12 dB, respectively

Fig. 5 Particle image pair (50 9 50 pixels) recorded with a high

speed camera (Photron APX)
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of the particle seeding (diluted polyglycol in water) were

estimated to be less than 10 lm. Given the image magni-

fication (0.2), lens aperture and light wavelength, the

images of the seeding particles are diffraction limited with

a diameter of 1–2 pixels in diameter.

The correlation-based velocity fields were calculated

with the commercial software DaVis 6.2 from LaVision. A

multipass algorithm with a final interrogation window size

of 16 9 16 pixels and 50% overlapping was applied.

Image deformation and round Gaussian weighting function

were used. Spurious velocities were identified with median

filter, each vector component is checked independently and

replaced by the median following Westerweel (1994).

This investigation of the near wake flow is described in

detail in Parnaudeau et al. (2008).

5.3 Multiresolution limitations

In Fig. 6 the total RMS error of the approaches is given as

a function of the time for five image sequences character-

ized by different SNR. The same velocity field was used to

generate the five image sequences. For all methods the

RMS error was increasing with decreasing values of PSNR

(increasing noise). For images of poor quality (i.e.

PSNR = 12 dB), the large error observed for the multi-

resolution approach was mainly explained by the

inaccurate estimation of the large displacements. Figure 7

clearly illustrates this behaviour. It shows the vector field

of the exact solution for region of large displacements

(larger than 2 pixels) and the colormap of the deviation of

optical-flow from the exact velocity modulus. For regions

of large velocities the deviation from the exact solution was

larger than equal to 1 pixel. The corresponding RMS error,

out of the range of the Fig. 6, was equal to 1.2 pixel. Small

particles with large displacements in the images were

smoothed out by the down sampling of the multiresolution

scheme. In these regions the real motion information was

lost. As illustrated in Fig. 7, through the results of PSNR

equal to 18 and 12 dB, this effect was further promoted by

the addition of noise in the images.

The inaccurate estimation of the large displacements led

to a poor extraction of the dynamics especially at large

scales. Energy spectra reported in Fig. 8 give a quick view

of the distribution of energy at different scales for different

level of noise in the images. For PSNR = 12 dB, the

multiresolution approach completely failed to estimate the

dynamics in the flow. For PSNR = 18 dB and for larger

values of the SNR, the multiresolution showed consistent

energy distributions across the scales. Spectra of the error

(difference between the multiresolution’s estimation and

the DNS solution) are also shown in Fig. 8 indicating an
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Fig. 6 Effect of the noise on the total RMS error for the different

approaches and during the image sequences

Fig. 7 Colormap of the deviation of the multiresolution approach

from the exact velocity modulus—vector field of the exact solution

for displacements larger than 2 pixels. Top PSNR = 12 dB, bottom
PSNR = 18 dB
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improvement of the estimations with decreasing noise in

the images. Inspection shows that the variational approach

does not yields any windowing effect as it is observed for

the correlation in the form of a sinc function, visible at

small scales (for k = 1/16 = 0.0625). The monotonically

vanishing error spectra provided by the variational

approach clearly exhibit that the dense information

estimated was consistent with the DNS reference down to

the smallest scales. These behaviours can also be seen with

the results of the third international PIV Challenge for the

variational approach of Corpetti et al. (2006) and the

correlation techniques (see Figs. 1–17 in Stanislas et al.

2008) (Fig. 9).

The accuracy of the small scales dynamics is directly

linked with the regularization involved to tackle the aper-

ture problem. The regularization is conducted from the

beginning of the minimization process and complement the

information of the data term with a spatial coherence.

Hence, this global variational technique extracts dense

vector fields (one vector per pixel), beyond the density

associated to the particles. We will see in the following that

the introduction of physics-based regularization can

improve the estimation of the vortex dynamics at small

scales. Further informations about this subject can be found

in Heitz et al. (2008).

5.4 Correlation-variational approach

As shown in Fig. 6 the combined correlation-variational

approach resulted in lower RMS error. Compared to the

correlation method, the proposed technique allowed the

estimation of the large displacements with a lower devia-

tion from the exact velocity modulus (see Fig. 10). The

improvement that could be gained with the proposed

approach is exhibited in Fig. 9, giving the distribution of

the energy estimated across the spatial scales. The error

spectra plotted in inset shows that the combined scheme

smoothed out the window effect due to the correlation. The

benefit of the combined technique was especially observed

for image sequences with large noise. However, for images

with less noise, the colormap of the deviation from the

exact velocity modulus plotted in Fig. 11, indicates that the

proposed approach yielded a finer description of the vortex

filaments. In the present study, as given by the parameters

we manually set for best performance, the contribution of

the data term of the variational approach was poor and the

proposed correlation-variational global scheme behaved

mainly as a regularizer of the correlation vector fields,

denoising the vector fields and giving an enlargement of

the dynamics. As already discussed above, the second-

order variational technique used in this study gives results

comparable with the most performing correlation tech-

niques. Better performances, i.e. enlarged dynamic range

with high accuracy, could be provided by the global vari-

ational scheme proposed by Yuan et al. (2007), using

mimetic finite difference to compute second-order regu-

larization, or other physics-based regularization techniques

(Heitz et al. 2008).

The combined variational-correlation scheme was also

evaluated with real images of turbulent flows. Figure 12

shows the estimated velocity fields using variational

technique with multiresolution and the proposed correla-

tion-variational approach. The multiresolution method

under-estimated the external high velocity which was

approximately two times smaller than the ground truth.

This large error was reduced significantly by using the

proposed collaborative approach. It should be noticed that

in Corpetti et al. (2006) the same multiresolution technique

succeeded in estimating the fluid motions in comparable

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1.010.0100.0

E
(k

)/
U

2 o

k [px− 1]

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.001 0.01 0.1

DNS
12dB
18dB
24dB
36dB

Correlation36dB

Fig. 8 Spectral response of the multiresolution approach for different

levels of noise in the images. Spectra of the error for the same data are

shown in inset

1e-16

1e-14

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

1.010.0100.0

E
(k

)/
U

2 o

k [px− 1]

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.001 0.01 0.1

DNS
Dynamicconsistentcorrel.-variational

Correlation-variational
Correlation

Fig. 9 Spectral response of different approaches for PSNR = 12 dB.

Spectra of the error for the same data are shown in inset

Exp Fluids

123



Fig. 10 Deviation of different approaches from the exact velocity

modulus and corresponding vector field—from top to bottom
militarisation, correlation, correlation-variational, dynamic consistent

correlation-variational. PSNR = 12 dB

Fig. 11 Deviation of different approaches from the exact velocity

modulus and corresponding vector field—From top to bottom
multiresolution, correlation, correlation-variational, dynamic consis-

tent correlation-variational. PSNR = 36 dB
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wake flow. However, in that experiment the observed

particle diameters were around 3–4 pixels, whereas in the

present case they were around 1–2 pixels. In Fig. 13, the

vorticity colormaps of correlation-based and combined

approaches are shown. Although the vorticity was com-

puted on the finest grid provided by each methods (8 pixels

for the correlation and 1 pixel for the collaborative tech-

nique), less noisy vorticity maps are obtained by the

combined scheme, associated with a finer description of the

flow. This evaluation with experimental data indicates that

the proposed collaborative approach yielded reliable results

where classical optical flow techniques failed, with an

enlargement towards small spatial scales compared to

correlation-based technique.

5.5 Spatio-temporal regularization

As shown in Fig. 9 for images with large noise, the

improvement of the estimation with the addition of the

dynamic consistency is quite efficient. The enlargement

of the dynamic range resolved was almost of one decade.

In addition, the computational cost associated to this

spatio-temporal regularization was rather low (four times

less) compared to the computation cost of the correlation-

variational step. However, this computational cost could

be larger if the time separation between the images was

increased, like in some real-time PIV experiments. The

decay of the RMS observed in Fig. 6, indicated that the

proposed approach was able to enhance the estimations

over several frames, the main improvement being pro-

vided from the first to the second frame. During the

following time steps the spatio-temporal regularization

enhanced the descriptions of the spatial scales ranging

between 30 and 10 pixels, corresponding to the size of

Fig. 12 Instantaneous vector field with horizontal velocity color

map, in near the wake of a circular cylinder at Re = 3,900. Top
optical-flow approach (Corpetti et al. 2006), bottom proposed

collaborative approach

Fig. 13 Instantaneous vector field with vorticity colormap, in the

near wake of a circular cylinder at Re = 3,900. Top correlation

approach, bottom proposed collaborative approach
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the vortices shown in Fig. 3. This phenomenon was also

observed in the distribution of spectra during the time

sequence, plotted in Fig. 14 and in the low deviation

from the exact velocity given in the Fig. 10 where less

spurious vectors can be seen compared to the other

approaches.

6 Conclusion

In this paper, we have proposed and evaluated a new

method for robust and dense estimations of instantaneous

velocities of fluid flows from image sequences. This

method is a collaborative approach satisfying Navier–

Stokes equations and combining variational methods with

correlation technique. The novel scheme has been specifi-

cally designed to provide physics-based, robust over noise

and dense estimations. For laser sheet illuminated particle

images of 3D turbulent flows a dynamic model has been

derived from Navier–Stokes equations following shallow

flow assumptions.

The developed approach has been tested on synthetic

particle images based on 2D turbulence and on real

image sequence recorded in the wake of a circular cyl-

inder. In each cases, we compared our results with the

ones issued from PIV and optic-flow. It was pointed out

that for image sequence with large noise the collabora-

tive scheme re-enforced fluid dedicated variational

methods towards robustness, enlarging the range of

scales that can be resolved with correlation-based

techniques.
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Cuzol A, Hellier P, Mémin E (2007) A low dimensional fluid motion

estimator. Int J Comput Vis 75(3):329–349

Hain R, Kähler C (2007) Fundamentals of multiframe particle image

velocimetry (PIV). Exp Fluids 42:575–587
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