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ABSTRACT
This paper presents a content-based approach for temporal
segmentation of videos. Tracked objects are characterized by
their 2D trajectories which are used in a meaningful way to
model visual semantics, i.e., the observed single video ob-
ject activities and their interactions. To this end, hierarchi-
cal Semi-Markov Chains (SMCs) are computed in order to
take into account the temporal causalities of object motions.
Object movements are characterized using local invariant fea-
tures computed from the curvature and velocity values while
interactions are represented by the temporal evolution of the
distance between objects. We have evaluated our method on
squash video sequences, and have favorably compared with
other methods including Hidden Markov Models (HMMs).

Index Terms— Video signal processing, Hidden Markov
models, Motion analysis, Pattern classification.

1. INTRODUCTION
Understanding activities and behaviors in videos is of increas-
ing interest in a number of applications such that video surveil-
lance, sports video exploitation, video on demand . . . Object
detection and tracking now provide reliable information (i.e.,
mobile object’s trajectories) that may be helpful for semanti-
cal analysis of videos.

The typical structure for content-based video analysis re-
lies on the “frame-based” approach, including first a shot bound-
ary detection and, in a second stage, shot classification and
characterization by keyframes [5, 10, 3]. These methods are
well-suited for broadcast applications but do not focus on the
available object-based information embedded in the videos.
However, when considering the problem of video-surveillance
and sports video analysis, this traditional video analysis struc-
ture is not adapted since such actions are often filmed using
a single camera (for example, crossroads or parking surveil-
lance scene are often continuously filmed using only one sin-
gle fixed camera). Considering a shot analysis (segmentation
and classification) approach is then unadapted since the whole
sequence would be identified as a single shot. Considering the
high-level information provided by the video object detection
and tracking techniques may then be of crucial interest.

Several works tackle the issue of using video object for

semantical analysis. Günsel et al. [6] developed an object-
based indexing of video filmed by a single camera, dealing
with the motion and shape properties of the viewed objects
and considering the camera motion and the object trajectories
and interactions. A work by Hervieu et al. [7, 8] proposed
a HMM-based shot classification method and rare event de-
tection using the mobile object trajectories that may be used
after a shot segmentation and a tracking processing. However,
it did not account for interactions between objects. A system
that efficiently models interactions between moving entities
in a video surveillance context and relying on Coupled Hid-
den Markov Models [1] was also proposed by Oliver et al.
[11]. Hongeng et al. [9] described a complex event recogni-
tion method based on the definition of scenarios and relying
on the use of multi-agent Semi-Markov Chains (SMCs) to an-
alyze object trajectories.

In this paper a method is proposed for recognizing ac-
tions in videos and, thus, allowing for temporal segmentation
of videos filmed by a single camera. Invariant features (to
translation, rotation and scale transformation) are computed
on the object trajectories. In contrast to previous works, these
invariant features are adapted to learning and processing the
same activities filmed by different cameras (one single cam-
era for each considered video) in a justified way. To this end,
a hierarchical SMC-based modeling is proposed where each
considered SMC state corresponds to a semantic phase of the
viewed activity, providing an efficient modeling to detect and
segment phases in video surveillance and sports videos.

In Section 2, we introduced the translation, rotation and
scale invariant features. In Section 3, an original SMC-based
method for temporal segmentation and activity phases recog-
nition is proposed. In Section 4, the data set used to test the
method is presented, results are then described and analyzed.

2. INVARIANT ACTIVITY FEATURES

To process different video shootings, a model of activity should
be invariant to irrelevant transformation of the data. In the
video context, invariance to 2D translation, 2D rotation and
2D is often a desirable component.



2.1. Kernel approximation
A video object V Ok is characterized by a trajectory Tk, which
is composed of a set of nk points corresponding to the tem-
poral successive positions of the moving object in the image
plane, i.e., Tk = {(x1,k, y1,k), .., (xnk ,k, ynk,k)}.
Relying on the works of Hervieu et al. [7, 8] we reliably com-
pute the local differential trajectory features (i.e., u̇t,k, v̇t,k,
üt,k and v̈t,k, u and v being defined below) from a continu-
ous representation of a curve approximating the trajectory Tk

defined by {(ut,k, vt,k)}t∈[1;nk] with:
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2.2. Invariant feature for individual video object activity
characterization
In this subsection, the chosen feature providing an invariant
representation of the activity embedded in a single moving
video object is presented. To have the desired invariant repre-
sentation of a video object V Ok, a relevant feature was con-
sidered, defined by:

γ̇t,k =
v̈t,ku̇t,k − üt,kv̇t,k
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velocity of point (ut,k, vt,k).

It can be shown [7] that γ̇t,k is invariant to translation,
rotation and scale in the frame. The considered feature vector
used to characterize a given activity of a video object V Ok is
the vector containing the successive values of γ̇t,k :

Vk = [γ̇1,k, γ̇2,k, ..., γ̇nk−1,k, γ̇nk ,k].

2.3. Invariant feature for interaction characterization
Taking into account the interaction between two video objects
is of crucial interest to have a representation of complex ac-
tivities in videos. A way to characterize these interactions is
to consider the spatial distance. At each successive time i,
this distance between two video objects V Ok and V Ol repre-
sented by two trajectories Tk and Tl is defined by:

di =
√

(ui,k − ui,l)2 + (vi,k − vi,l)2.

More specifically, the normalized distance is computed, i.e.:
d̃i = di/dnorm.

The distance di is trivially a translation and rotation invari-
ant feature that may help characterizing interactions between
video objects. To also have a scale invariant feature, a contex-
tual normalizing factor dnorm has to be known and computed
in the considered videos (in the processed squash videos, the
distance between the two sides of the court has been consid-
ered). The feature vectorD used to characterize a given inter-
action between two video objects V Ok and V Ol is the vector
containing the successive values of d̃i:

D = [d̃1, d̃2, ..., d̃nk−1, d̃nk
].

Hence, considering the Vk and D feature vectors helps
characterizing invariantly (to translation, rotation and scale
transformations) both the single video objects activities and
the interactions between video objects.

3. SUPERVISED MODELING OF ACTIVITY USING
HIERARCHICAL SMC

The use of SMCs to model activities is based upon a specific
modeling of the feature (i.e., γ̇ and d̃) used to characterize
the SMCs states. Each of these features is modeled, in a first
layer, using a HMM-based approach proposed in [7, 8]. In a
second stage, these HMM-based modelings will be used in a
hierarchical way to model activities using SMCs (see Fig. 1).

3.1. Feature modelings using HMMs
Tackling with the first layer modeling of the features (i.e., γ̇i

and d̃), the HMM modeling proposed in [7] has been used to
build a probabilistic modeling of the spatio-temporal behavior
of the Vk and D feature vectors.

To model activities involving two distinct video objects,
a common HMM modeling will be used both for the γ̇i and
d̃ features. In the following, we present this HMM used to
model the γ̇ of the two video objects. The d̃ features are fur-
ther modeled using the same HMM-framework.

The considered HMM framework is based upon a proper
quantization of γ̇. An interval [−I, I ] containing a given per-
centage Pv of all the computed γ̇ (for any video object) is
defined. A quantization is performed on [−I, I ] into a fixed
numberN of bins (defined as the states of the HMMs, [7]).

The HMM modeling the video object V Ok is then char-
acterized by:

- the state transition matrix Ak = {aij,k} with

aij,k = P [ qt+1,k = Sj | qt,k = Si ], 1 ≤ i, j ≤ N,

where qt,k is the state variable at instant t and Si is its value
(corresponding to the ith bin of the quantized histogram);

- the initial state distribution πk = {πi,k}, with πi,k =
P [ q1,k = Si ], 1 ≤ i ≤ N ;

- the conditional observation probabilities B = {bi(γ̇t)},
where bi(γ̇t) = P [γ̇t | qt = Si], since the computed γ̇t are
the observed values.

The conditional observation probabilities are independent
for any video object, and defined as Gaussian distributions of
mean µi (corresponding to the median value of the histogram
bin Si). Their standard deviations σ are specified so that the
interval [µi − σ, µi + σ] corresponds to the bin width [7].

Empirical estimations of A and π are given by (see [4]):
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where H(i)
t,k = P (γ̇t|qt = i). Training videos are used to find

the parameters of the HMMs modeling φ, i.e., the B, A and
π parameters for each of the defined HMMs.



3.2. Activity modeling by hierarchical SMC

As showed on Fig. 1, the HMM-based modelings defined in
the previous subsection are used to characterize activities in
a higher sense. The states S ′

i of the SMC modeling defines
activity phases (such that “rally” and “passive” phases in a
squash game, for example) and SMCs are used to model their
respective state duration sdi. Each of these SMC states is
respectively hierarchically characterized by two HMMs de-
scribing the activities of two video objects (using the γ̇ fea-
ture of each of the two video objects), and one other HMM
describing the interactions (i.e, describing the d̃ feature). In
addition to these three HMMs, the states durations are also
modeled, for each SMC state, by Gaussian Mixture Models
(GMMs) using forward-backward procedures (initializations
of these procedures being computed using K-means).

Fig. 1. Hierarchical SMC modeling with 2 states corresponding to different activity
phases S′

1
and S′

2
with 2 video objects V O1 and V O2. Each of these states is charac-

terized by three HMMs (modeling γ̇
S′

i
1

, γ̇
S′

i
1

and d̃S′

i for the considered state S′

i) and
by a GMM modeling sdi , the state duration density in the SMC state S′

i.

As well as with φ, training videos are used to findψ which
are the state duration modeling parameters.

Suppose a state sequence s that has R segments, and let
qr be the time index of the end-points of the rth segment,
such that the data points in the rth segment are y(qr−1+1,qr] =
yqr−1+1, . . . , yqr

and s′qr−1+1 = . . . = s′qr
(s′ being the SMC

state sequence). A′ is the SMC state transition probability
matrix at {qi}, so that in the proposed modeling with only
two SMC states (Fig. 1), a′21 = a′12 = 1 and a′11 = a′22 = 0.

Hence, after training, the whole modeling parameter set
θ = {A′, φ, ψ} is available. Thus, to retrieve the temporal
phases of the activity and, hence, to process a temporal seg-
mentation of the video, a Viterbi decoding is processed.

The Viterbi algorithm find the SMC state sequence that
maximizes the likelihood. This likelihood P (y, s′|θ) is de-
fined such that, for an observation sequence y, and the corre-
sponding SMC state sequence s′:

P (y, s′|θ) =

R
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×
R

∏

r=1

P (sdi = qr − qr−1|ψ;S′

i = s′qr
)

×

R
∏

r=1

P (yqr−1
|φ;S′

i = s′qr
).

4. EXPERIMENTS
To test the proposed temporal segmentation modeling, sports
videos have been treated, and more specifically squash videos.
The data were taken from the “CVBASE’06” sports video
database [2] which gives the squash videos (see Fig. 2 that
presents one frame of the squash video) as well as the squash
players respective coordinates in the images (i.e., the video
trajectories) and the game phases (“rally” and “passive” phases)
to be used as ground truth for the results evaluation.

Fig. 2. A frame of a squash video (this whole squash video contains 15508 frames).

The first half of the squash video (about six minutes long)
was used for training a hierarchical SMC with two states S ′

1

and S′

2 corresponding to the two activity phases “rally” and
“passive” (Fig. 4 shows the training result when fitting a
GMM on the duration state distribution of the SMC “rally”
state). The second half were used to test the proposed mod-
elings. Fig. 3 presents the squash players trajectories of one
squash video respectively used for training and testing.

Fig. 3. Left: training trajectories corresponding to the trajectories of 2 squash players
in the video plane (in blue and red) during the first half (about 5 minutes) of a squash
video. Right: test trajectories corresponding to the trajectories of 2 squash players (in
green and magenta) during the second half of the squash video.



The considered results were obtained using a Pv param-
eter value (as defined in Subsection 3.1) equal to 95%, a h
parameter value (as defined in Subsection 2.1) fixed to the
constant 3. Presented results corresponds to the best obtained
ones when testing the method with a large range of N values.

These experiments are of great interest since it is hard,
when only considering the players movements, to visually de-
termine if the two squash players are in a “rally” phase or in
a “passive” phase. Indeed, the players movements are often
very reduced both in the “rally” phase (where the placement
of the player is more important than its mobility) and in the
“passive” phase. Furthermore, inside the “rally” phases, there
are periods were the players are almost static, so that it looks
like a “passive” phase. When trying to visually proceed a
temporal segmentation, squash phases characterization can be
done by using the relative distance evolution (i.e., the evolu-
tion of the d̃ feature).

Hence, very satisfying results were obtained since preci-
sions of about 88% of good phase segmentations were reached
using the SMC modeling for the processed squash videos (see
Fig. 5), retrieving the exact number of activity phases (e.g.,
the number of played points) with little lags. Using a HMM
having the same structure as the SMC (but with state dura-
tions not modeled by GMMs, i.e. state duration in state i fol-
lows a geometric law in regards of a′ii) gave little less accurate
segmentations (about 85% of good phase segmentation). Re-
sults below 70% of good phase segmentation were obtained
when not considering the d̃ feature, highlighting the inherent
information of the temporal trends of the distance (i.e., of the
interactions). Additional experiments (that can not be devel-
opped by lack of space) are also carried out to further assess
the performances of the method with more video objects and
activity phases, for example on basket-ball videos.

Fig. 4. Duration state density modeling using GMM for one considered SMC state
(i.e. phase “rally”). The x-axis corresponds to the observed state durations.

5. CONCLUSION

This paper presents a SMC-based method for recognizing ac-
tivities involving several video objects. Single video object
behaviors as well as interacting processes are taken into ac-
count in the same framework. Feature are extracted and de-
fined so that they are invariant to translation, rotation and
scale transformation, hence providing an activity representa-
tion that may be independent of the considered video. The
developed approach has been tested on large squash videos,
with two interacting video objects and a two phases activity
modeling, providing promising results. Extensions to more
interacting video objects with a larger activity phases number
are currently being investigated using the same framework.

Fig. 5. Up: Result of a processed temporal segmentation results plotted in blue. The
“1” and “2” values respectively correspond to the “passive” and “rally” phases. Down:
Ground truth plotted in red, the “0” and “1” values here respectively correspond to the
“passive” and “rally” phases. The x-axis corresponds to the frame index.
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