
TIME-SEQUENTIAL EXTRACTION OF MOTION LAYERS

Matthieu Fradet, Patrick Pérez* and Philippe Robert
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ABSTRACT

A new time-sequential approach for motion layer extraction is pre-
sented. We assume that the scene can be described by a set of lay-
ers associated to affine motion models. In one or more key frames,
the segmentation is obtained using a semi-automatic method. At a
subsequent instant, the first step of the proposed algorithm is the
prediction of the segmentation from one image to the next one, us-
ing motion models estimated for each layer. The second step is the
refinement of the predicted motion boundaries by graph cut. Only
the appearing areas and a strip around the predicted boundaries are
questioned. A new rigidity constraint improves the temporal consis-
tency of foreground rigid objects. Experimental results show that our
sequential approach is at least as effective as more complex simulta-
neous approaches while being less computationally demanding.

Index Terms— Motion Analysis, Video Segmentation, Motion
Layers, Motion Boundaries, Graph Cut.

1. INTRODUCTION

Despite its long history, the problem of segmenting video in regions
of similar motion is still a very active research topic in computer vi-
sion. Motion layer extraction has many applications, such as video
compression, mosaic generation, video object removal, etc. More-
over the extracted layers can be used for advanced video editing tasks
including matting and compositing.

The usual assumption is that a scene can be approximated by a
set of layers whose motions in the image plane are well described by
a parametric model. Motion segmentation consists in estimating the
motion parameters of each layer and in extracting the layer supports.

There are many different approaches. Only examples from dif-
ferent classes are mentioned below.

In [1] a dense motion field previously estimated is segmented.
Parametric models are iteratively a) estimated on rough regions,
b) used to refine the regions and c) finally updated according to the
new supports . Once convergence is obtained, segmentation map is
predicted for the next image, new motion models are estimated, etc.

Some authors [2, 3] propose to combine dense motion estima-
tion and parametric segmentation, while some others extract layers
either jointly [4], or one after another [5] using a direct parametric
segmentation with no optical flow computation.

More recently, video segmentation was formulated into the
graph cut framework. Sequential approaches such as [6] provide a
segmentation map for the current image taking into account the pre-
vious labeling only. But the whole segmentation is questioned again
in the subsequent image, at the expense of temporal consistency.

Some researchers moved naturally to simultaneous batch ap-
proaches [7, 8] to increase temporal consistency. To do so, they use
3D graphs at the pixel level that allow the simultaneous segmentation
of N images. Such methods remove certain artifacts that successive
2D graph optimizations can create. ([8] presents a method to extract

Fig. 1. Simplified Flow Chart of our Algorithm.

the hidden parts of motion layers too, but in this paper we consider
only the visible parts.)

The main limitation of simultaneous approaches is their compu-
tational complexity. The number N of processed images can cer-
tainly not cover a whole sequence due to complexity issues. Also,
assuming all pixel labels unknown within the temporal window of
interest does not allow any restriction of the area on which the graph
is built.

In contrast, we introduce a time-sequential approach which, with
modest user input in one or few frames, provides results at least as
good as those obtained by latter batch approaches at a lower compu-
tational cost.

In our work, we assume that the layers keep the same depth order
during the whole sequence. On the first image, as well as on few
subsequent images if necessary, the segmentation is obtained using
an interactive graph cut-based method that exploits both motion and
color information.

At current time t, the segmentation of image It is first predicted
by projection of the previous segmentation. A dense forward mo-
tion field between It and It+1 and a backward motion field between
It and It−1 are estimated. Based on them, forward and backward
affine motion models are estimated for each layer according to the
predicted segmentation. Predicted motion boundaries are finally re-
fined using graph cut to minimize an energy composed of motion,
color, spatial smoothness, temporal terms and a new rigidity con-
straint term. This is continued for all the images of the sequence.

A simplified flow chart of our sequential system after initializa-
tion is shown in Figure 1.

The paper is organized as follows. Section 2 addresses user in-
teraction. Section 3 presents the graph restriction and our motion
boundaries propagation and refinement algorithm. Experimental re-
sults are shown in Section 4.

2. INTERACTIVE SEGMENTATION OF ONE IMAGE

This step is systematically required for the first frame, but can also
be used later in the sequence for re-initialization if needed.

For the considered image It, the user provides some large and
loose seeds to mark the n different layers. These seeds are generally



Fig. 2. Example of polygonal seeds given by the user. Left to right:
original image, seeds, obtained segmentation in 5 layers. Depth dis-
play convention: the darker is the seed, the more distant is the layer.

polygonal regions, ordered by depth. An example of such seeds is
given in Figure 2.

The seeds are used as layer supports to compute Gaussian Mix-
ture Models (GMMs) in the RGB space. They are also used jointly
with a forward dense motion field to estimate one affine motion
model per layer.

Given the labeling f = (fp)p∈P with fp ∈ [0, n− 1] and P
the pixel set to be segmented, we consider the following objective
function, which is the sum of two standard terms (color data term
and spatial smoothness) described in [9], and of the motion-based
term described in [7]:

E(f) =
∑
p∈P

Cp(fp)︸ ︷︷ ︸
Ecolor(f)

+λ1

∑
(p,q)∈C

Vp,q(fp, fq)︸ ︷︷ ︸
Esmooth(f)

+λ2

∑
p∈P

Dp(fp)︸ ︷︷ ︸
Emotion(f)

(1)

Dp(fp) = arctan(‖It(p)− It+1(p’)‖2 − τ1) +
π

2
(2)

where C is the set of neighbor pairs with respect to 8-connectivity,
and λ1 and λ2 are positive parameters which weight the influence of
each term.

Cp(fp) is a standard color data penalty term at pixel p, set as
the negative log-likelihood of color distribution of the layer fp. This
distribution consists of the GMM computed on the seeds of the layer
fp.

Vp,q(fp, fq) is a standard contrast-sensitive regularization term.
Dp(fp) is a data penalty term at pixel p for the motion model

corresponding to layer fp (p’ is the correspondent in It+1 of p in
It according to this parametric motion model). This smooth penalty
and its threshold parameter τ1 allow a soft distinction between low
residuals (well classified pixels) and high residuals (wrongly classi-
fied pixels or occluded pixels). In our experiments we chose τ1 =
50. Adding this motion term solves more easily ambiguities due to
colors, with no need for the user to introduce additional seeds. If two
different objects have similar colors but different motions, an inter-
active method based on colors only would force the user to provide
additional seeds in such regions.

3. MOTION BOUNDARIES REFINEMENT

3.1. Graph Restriction

In our sequential approach, we propose to predict the labeling, and
hence motion boundaries, from the previous instant and to consider,
around these predicted boundaries, an uncertainty strip in which la-
beling can be modified. Notice that appearing areas have no pre-
dicted labels. That is why they are also considered as uncertain. In
the other areas, we assume that the predicted labels are correct and
associated pixels are ignored by the graph. Such an assumption re-
duces significantly the size of the graph and constrains the segmen-
tation both spatially and temporally.

Fig. 3. Graph Restriction. Case of a moving foreground object and
a stationary background. (Left, previous segmentation already ob-
tained.)

Figure 3 illustrates this graph restriction in a binary case. The
width w of the uncertainty strip is defined by the user. In our ex-
periments we chose w = 12. It includes 5 pixels on each side of
the boundaries, and 1 more pixel on each side to have boundary con-
ditions. Pixels belonging to these 1-pixel strips are considered as
seeds and provide hard constraints which are satisfied by setting to
specific values the weights of the links that connect these seeds with
the terminals (see [9]).

This way to build the graph is particularly well adapted to our
motion boundaries refinement.

3.2. Objective Function

Moreover, to increase the effect of temporal consistency, not only the
currently processed image and the previous one but also the next im-
age are taken into account, to form a triplet. Forward and backward
motion fields are consequently estimated. We compare these two
fields to improve accuracy of the estimated vectors in the occlusion
areas. A reliability index, based on the Displaced Frame Difference
(DFD) is computed for every motion vector of both fields:

rα(p)=max(0, 1−‖It(p)− It+α(p − dpα)‖
τ2

), α∈{−1,+1} (3)

where dpα is the motion vector, either forward or backward, esti-
mated at pixel p and τ2 is an empirical normalization threshold.

Then for a pixel whose forward vector has a lower reliability
than its backward vector, we correct the forward field by replacing
the forward vector with the opposite of the backward one. The same
correction is done for the backward field. This correction improves
the estimated motion fields before the motion model approximation
step. At the end of this motion estimation step, two corrected mo-
tion fields (forward and backward) and their associated pixel-wise
reliability maps are available.

The motion model parameters of each layer are recovered by a
standard linear regression technique but we use the reliability mea-
sure to weight the influence of each vector on the model.

The energy to be minimized at current instant extends (1) as
follows:

• The set of pixelsP is only a fraction of the original pixel grid,
as explained in 3.1.

• We keep the same expressions for color data and spatial
smoothness terms.

• We adapt the motion data term to our triplet-based sequential
setup. Thus, (2) becomes

Dp(fp)= min
α∈{−1,+1}

(arctan(‖It(p)− It+α(p’α)‖2−τ1)+
π

2
) (4)

where p’α is the correspondent in It+α of p in It according
to the affine motion model of the layer fp.



• Like in [6, 7, 8], we introduce a fourth term to enforce tem-
poral constraints. It maintains the temporal consistency of
the segmentation between current frame It and frame It−1

already segmented. Thanks to the estimated motion models,
we define the temporal term as follows:

Etemp(f) =
∑
p∈P

ψ(p) (5)

ψ(p) =

{
1 if fp 6= fp’ and f ′p 6= ∅
0 otherwise

(6)

where p’ is the correspondent of p in It−1 according to the
backward model of the layer fp, f ′p is the predicted label of
pixel p at instant t, and ∅ is the blank label for the appearing
areas without any predicted label.

• We add, when appropriate, a new rigidity constraint to in-
crease temporal consistency of foreground layers that remain
non-occluded and to avoid, this way, the insertion of the cor-
responding labels in the appearing areas:

Erigid(f) =
∑
p∈P

φ(p) (7)

φ(p) =

{
1 if fp ∈ Srigid and f ′p = ∅
0 otherwise

(8)

where Srigid is the set of labels corresponding to the layers
on which the rigidity constraint is applied.

The global energy to be minimized at every instant is:

E(f) = Ecolor(f) + λ1Esmooth(f) + λ2Emotion(f)

+ λ3Etemp(f) + λ4Erigid(f) (9)

where λ1, λ2, λ3 and λ4 are positive parameters which weight the
influence of each term. They are set by the user and depend on the
reliability of the motion estimation and on the characteristics of the
sequence. Energies (1) and (9) are minimized using graph cuts [10,
11]. As we want to handle an arbitrary number of layers, we use the
α-expansion algorithm [12] to solve the multi-labels problem.

4. EXPERIMENTAL RESULTS

The proposed algorithm was tested on the same three sequences that
are shown in [6, 7, 8]. Our algorithm provides dense segmentation
maps without any additional label for noise, occluded pixels or inde-
termination (contrary to [7, 8]).

Figure 4 shows our results on the Calendar sequence. Only one
additional user interaction on frame 40 was required. The obtained
segmentations are correct even at the end of the sequence, which is
usually not processed, where the ball and the train regions are not in
contact anymore. Thanks to our rigidity constraint the ball support
never stretches over similar color regions of the background.

Figure 5 shows the satisfactory results obtained for the Flowers
sequence even when the user only provides a segmentation map for
the first image. Branches structures are really thin and their precise
extraction would require a matting method.

Concerning the Carmap sequence, the main difficulty is the
large occlusion of the car whose front is hidden by the foreground
map at the beginning, and whose wheels and shadow are black like
the map edges. Moreover the motions of the map (notably the stem)
and of the background are almost similar.

Figure 6 shows the results obtained when the user provided
rough segmentation for the images 1 and 11, with and without rigid-
ity constraint on the map layer. The simultaneous approaches seem
to encounter the same difficulty to classify as “car” the front of the
car as soon as it appears to the right of the map. The contribution
of the rigidity constraint is noticeable: it avoids classification mis-
takes in uniform dark areas (wheels, shadow of the car and edges
of the map) where neither the color term nor the motion term are
sufficiently discriminative. Notice that even the stem of the map is
well segmented.

sequence image size mean graph size n CPU/frame
Calendar 352 x 240 11647 pix. 4 ∼ 6 s.
Flowers 352 x 240 22886 pix. 4 ∼ 6 s.
Carmap 320 x 240 9192 pix. 3 ∼ 3 s.

Table 1. Mean CPU times including all processings. (n is the num-
ber of layers).

All the experiments were performed on a P-4 3.6GHz machine.
Including all processings (motion estimation, GMMs computation,
graph construction, labeling . . . ), the time required for the segmen-
tation of one image mainly depends on the number of layers (see
Table 1). In [7], the segmentation of one image is less than 30 sec-
onds in average on a P-4 2.0GHz machine.

5. CONCLUSION

We presented a new sequential algorithm for motion layer extrac-
tion. We propose to predict motion boundaries from one image to
the next one and to refine them by graph cut. Only the appearing
areas and a strip around the predicted boundaries are questioned.
Results show that our sequential method is less expensive than com-
plex simultaneous methods while providing results of at least similar
quality. It includes an original rigidity constraint whose usefulness
was demonstrated. Moreover the user can interrupt the system as
soon as a segmentation map is not satisfactory, without having to
wait that the whole sequence is processed. However it turns out that
such interactions are rarely required.

The interactive initialization step could be avoided using an au-
tomatic process to estimate the number of layers and their initial pa-
rameters (e.g. split and merge process repeated until stability). But
note that if the initial segmentation is not accurate enough or if the
estimated number of layers is not appropriate, our algorithm will not
insure a fast convergence to expected segmentations.

In future work, we will integrate in our algorithm a step of gen-
eration of layer mosaic to store the disappearing areas. Such pro-
gressively built mosaics could help the segmentation of subsequent
images, notably in cases where disappeared areas reappear later in
the sequence after long occlusions.
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