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Abstract: In surveillance or exploration mission in a known environment, the localization of the dedicated
sensor is of main importance. In this paper, we discuss the path planning problem for the lo-
calization algorithm which correlates range and bearing measurements and a map composed of
several features. The sensor motion is designed from an information measure derived from the
Fisher Information Matrix. It is shown that a closed form expression of the cost can be obtained.
The optimal features location can be neatly geometrically interpreted. An integral cost which
includes the sensor perception limitation is then formulated. It is used in a dynamic programming
framework to tackle the path optimization problem.

1 INTRODUCTION

The path planning problem for map-based lo-
calization consists in designing the best trajec-
tory for a mobile in a known environment, which
guarantees the highest performance of positioning
during its execution. Data collected from sen-
sors are “matched” to a prior map to estimate
the state (e.g., position and heading). Depend-
ing on the sensor dynamic and the observation
models, different localization algorithms can be
used. When the system is linear or near linear
with Gaussian noises, Kalman-based approaches
are relevant (Thrun et al., 2005; S. Thrun and
Dellaert, 2000). In this paper, we introduce a
framework to compute “optimal” path for a mov-
ing vehicle which collects range and bearing data
from 2D features. One of the main challenges
is to choose an appropriate measure to be op-
timized. In random estimation, the Fisher In-
formation Matrix (FIM) can be used. We con-
sidered a D-optimal design (Paris and Le Cadre,
2002). The first interesting result of this work is
the derivation of a closed form expression for the
FIM determinant. It is shown that it depends on
groups of two or three features. Then, a geomet-

ric analysis of the optimal features placement can
be done. By exploiting this measure, we intro-
duce an integral cost functional for a path space,
which is composed of elementary moves with con-
stant velocity and constant heading. Moreover,
the sensor field of view limitations are included to
the cost computation. At last, we formulate the
problem as finding an optimal path on a graph
by means of dynamic programming. The paper
ends with one illustrative example.

2 PROBLEM FORMULATION

We consider a moving sensor evolving accord-
ing to the dynamic model

ẋt = vt cosϕt,

ẏt = vt sin ϕt,

ϕ̇t = ωt. (1)

where its state Xt
∆
= [xt, yt, ϕt] is composed of its

2-D position and its orientation. A feature map of
its environment is available for localization pur-
pose. In equation 2, we assume that the known



control ut
∆
= [vt, ωt] ∈ U ⊂ R

2. During its dis-
placement, the mobile gets sensor measurements
from detected features which are in the embedded
map. Let us denote ft

∆
= {f1, . . . , fmt

} the set of
mt features visible and used in the localization
process at time t. Each feature is defined by its

2D position in a global frame Rg
∆
= (O,−→u ,−→v ):

fi ↔
(
xi, yi

)
∈ D ⊂ R

2. (2)

and the “sensor-feature” vector δpi(t)
∆
=

[
xi − xt, yi − yt

]∗
. The measurements vector is

the stacked vector Zt =
[
zt
1, . . . , z

t
mt

]
where zt

i is
the range and bearing measurement for feature
fi. So, the observation model stands as follows :

Zt = Ht(Xt, ft) + Wt. (3)

where the 2 × ith and 2 × i + 1th elements of
Ht(Xt, ft) are the components of the two dimen-
sional vector h(Xt, fi) given by

zt
i = h(Xt, fi) + wi

t. (4)

h(Xt, fi)
∆
=

{ √

(xt − xi)2 + (yt − yi)2

atan2(
yi−yt

xi−xt
) − ϕt

(5)

The noise vector wi
t is modelled by an i.i.d. Gaus-

sian process with zero mean and covariance ma-
trix Σi

t. Moreover, we suppose that Σi
t = Σ, ∀i

and

Σ =

(
σ2

r 0
0 σ2

ϕ

)

. (6)

We also consider that wj
t and wl

t are independent
for l 6= j. So in light of (2), the likelihood function
is given by

p (Zt|Xt) ∝ exp

(

−
1

2

mt∑

l=1

‖zl − h(Xt, fl)‖
2
Σ

)

. (7)

If X̂t is one estimate based on the measurement
Zt (e.g., the maximum likelihood estimate), the

covariance error eXt
= Xt − X̂t is lower bounded

by the Cramer Rao Bound (CRB) (Van Trees,
1968).

Cov(eXt
) ≻ F−1(t). (8)

The calculation of the FIM F (t) is given in our
case by,

F =

mt∑

i=1

(
∂h(Xt, fi)

∂Xt

)∗

Σ−1

(
∂h(Xt, fi)

∂Xt

)

. (9)

The elementary gradient vector can be derived
straightforwardly

∂h(Xt, fi)

∂Xt

=

(
ci si 0
− si

ρi

ci

ρi
−1

)

. (10)

where αi(t)
∆
= ∠

−→u δpi(t), ρi
∆
= ||δpi(t)||, ci

∆
=

cosαi and si
∆
= sin αi. Let us also introduce the

following notations :

• ~c
∆
= [c1 · · · cmt

]∗, ~s
∆
= [s1 · · · smt

]∗,

• ~cρ
∆
= [ c1

ρ1
· · ·

cmt

ρmt

]∗, ~sρ
∆
= [ s1

ρ1
· · ·

smt

ρmt

]∗.

• 1mt

∆
= [1 · · · 1]∗, 0mt

∆
= [0 · · · 0]∗

Without loss of generality, we set σd = σϕ = 1

then we can rewrite1

F (t) = G(t)G(t)∗. (11)

with

G(t) =

G1(t)
︷︸︸︷

G2(t)
︷︸︸︷





~ct ~sρ
t

~st −~cρ
t

0mt
1mt



 .
(12)

G(t) is a 3×2mt matrix with columns Gi are part
of the subset G1(t) or G2(t) :

G1(t) =
{

Gi1 , 1 ≤ i1 ≤ mt|Gi1 =
(
ci1 si1 0

)∗
}

,

G2(t) =
{

Gi2 , 1 ≤ i2 ≤ mt|Gi2 =
(

si2

ρi2

−
ci2

ρi2

1
)∗}

.

In this paper, we are dealing with the optimiza-
tion of the sequence of displacement which pro-
vides the “best” estimate of the state. This can
be achieved using an appropriate measure of in-
formation gain. We adopt here a D-optimal de-
sign considering the determinant of the FIM2. In
the next section, we show that this measure is a
function implying the estimated bearings angles
(αi(t))

mt

i=1 and relative ranges (ρi(t))
mt

i=1.

3 DERIVATION OF det(F )

Let us define L(t) as the determinant of the
FIM at time t in position Xt. From (11), we
have

L(t) = det (G(t)G(t)∗). (13)

Using the Binet-Cauchy formula3, we can notice
that

L(t) =
∑

1≤i<j<k≤2mt

{det(Gi, Gj , Gk)}
2
. (14)

1* is the transpose operator
2other matrix operator can be used, such as the

trace
3det(AB) =

P

S
det(As) det(Bs), S = {1, · · · , n},

if A ∈ MK(m,n) et B ∈ MK(n, m), As is the m × n
matrix whose columns are those of A with in S



hence to compute L(t), we have to enumerate the
different cases in accordance with the column vec-
tors (Gi, Gj , Gk) are in G1 or G2. In the following,

we denote dijk
∆
= det(Gi, Gj , Gk). If all columns

are in G1, dijk is trivially equal to zero. Using de-
terminant computation properties and relations
betweeen trigonometric functions, we get

a) Gi, Gj ∈ G1 and Gk ∈ G2

d1
ijk = sin(αi − αj).

b) Gi ∈ G1 and Gk, Gj ∈ G2

d2
ijk =

cos(αi − αk)

ρk

−
cos(αi − αj)

ρj

.

c) Gi ∈ G1, Gj and Gk ∈ G2

d
3
ijk =

sin (αi − αk)

ρiρk

+
sin (αi − αj)

ρiρj

+
sin (αj − αk)

ρjρk

.

In conclusion, we notice that L(t) is the sum of
three terms L1(t), L2(t) andL3(t) which charac-
terize interactions between pairs and triplets of
visible features.

L(t) = a1L1(t) + a2L2(t) + a3L3(t). (15)

with L1(t) =
∑mt

i=1

∑mt

j>i g1 (fi, fj), L2(t) =
∑mt

i=1

∑mt

j=1

∑mt

k>j g2 (fi, fj , fk) and L3(t) =
∑mt

i=1

∑mt

j>i

∑mt

k>j g3 (fi, fj , fk) where (gl)l∈{1,2,3}

are respectively given by the square of dl
ijk in the

above cases. Coefficients (al)1≤l≤3 depend on σr

and σϕ.

4 THE OPTIMAL PLACEMENT

OF THE FEATURES

We now study the location of the features
which provides the best performance of estima-
tion around a given mean state X̄. The anal-
ysis takes into account the sensor field of view
and only consider L1(t) (pairs interaction). Such
an approximation is valid when

σd

ρ
≪ σϕ. Let

(fi)1≤i≤n be visible from state X̄. We introduce

P = (x̄; ȳ), (~vi)1≤i≤n, Dm, ~v− and ~v+ (see figure

1). Dm is the angular aperture of the sensor field
of view. An analogy can be made with the rea-
soning in (Gu et al., 2006) for multiple UAVs co-
operation for sensing. The derivation made here
is nevertheless simpler and more geometrically in-
tuitive.

Proposition 1 Maximizing L1(t) is equivalent

to find the configuration (~v1
∗, . . . , ~vn

∗) which min-

imizes || ~vT || = ||
∑n

i=1 ~vi||
2.

P v−

v+

f1

f2

α2

α1
2α2

2α1

~v1 ~v2

Dm

2Dm

Figure 1: sensor features spatial configuration.

Indeed, using classic trigonometric properties4 we
can show that L1 = 1

4

(
1 − ||

∑n
i=1 ~vi||

2
)
.

4.1 Optimal placement for D
m

<
π

2

In this context, the value of the angle made by
vectors ~vi and ~vj is strictly smaller than π. So
|| ~vT || > 0. Let i0 ∈ {1, · · · , n} and θi0 = ∠ ~v− ~vi0 .

We also denote ~vi0
∆
=
∑

j 6=i0
~vj and θi0 = ∠ ~v− ~vi0

|| ~vT ||
2 = || ~vi0 + ~vi0 ||

2

= 1 + || ~vi0 ||
2 + 2|| ~vi0 || cos

(

θi0 − θi0

)

.

As Dm < π
2 , ~vi0 is also between ~v− and ~v+.

So, for a given placement of vectors {~vi}i6=i0
,

|| ~vT || is minimized for θ∗i0 which makes g(θi0) =

cos
(

θi0 − θi0

)

minimum.

Proposition 2 In the optimal configuration,

each vector ~vi is on the frontier of the visibility

cone.

Proof. 0 ≤ θi, θi0 ≤ 2Dm ⇒ θi
0
− 2Dm ≤ θi0 −

θi0 ≤ θi0 . Moreover, θi0 − 2Dm > −π et θi0 < π.
We can easily deduce that

θ∗i0 =

{

2Dm if |θi0 − 2Dm| > θi0

0 if |θi0 − 2Dm| < θi0

.

which proves that either ~vi0 = ~v− or ~vi0 = ~v+.
Let us denote n− and n+ the number of vectors
~vi respectively equal to ~v− and ~v+ (n−+n+ = n).
n− must verify the relation

|| ~vT ||2 = 2(1 − a)n2
− − 2(1 − a)nn− + n2 ∆

= f(n−).

with a = cos(2Dm) (a < 1). f is minimal for
n− = n

2 , so

• if n is even, n− = n+ = n
2 and which provides

L1 =
n2

4
sin2(Dm) .

4sin2 a = 1
2
(1−cos 2a) and cos(a−b) = cos a cos b+

sin a sin b



• else we can set n− = n−1
2 and n+ = n+1

2 , then

L1 =
n2 − 1

4
sin2(Dm) .

4.2 Optimal placement for D
m

>
π

2

In this case, we have to make a different reason-
ing according to the parity of n. When n is even,
the optimal solution is obvious as we can place
the features so that ~vT = ~0. Indeed, it is enough
to choose { ~v1, · · · , ~vn} pairwise such that their
difference angle is equal to π (i.e. orthogonal as-
signment of features). We can notice that, there
are plenty of such configurations and the cost is

L1 =
n2

4
. Otherwise, if n is odd, it is more dif-

ficult to find a placement which gives ~vT = ~0.
Nevertheless, we can search among a particular
class of configurations with ~vi0 = − ~vi0 . Assum-
ing i0 = n, one way to obtain ~vn collinear and
opposite to ~vn, is to choose {~v1, · · · , ~vn−1} where

∃ϕ ∈
]π

2
, π
[

,

{
∠~vi ~vn = ϕ, ∀i ∈ {1, · · · , n−1

2 },
∠ ~vn ~vji

= ϕ, ∀ji = i + n−1
2 .

Given ∠ ~v−~vi = θp, ∀i ∈ {1, · · · , n−1
2 } and sup-

posing ~v− = ~u, then

~vn = cos(ϕ + θp)~u + sin(ϕ + θp)~v,
~vi = cos(θp)~u + sin(θp)~v, ∀i,
~vji

= cos(2ϕ + θp)~u + sin(2ϕ + θp)~v, ∀ji.

and ∀i ∈ {1, · · · , n−1
2 }

~vi + ~vji
= cos(θp) + cos(2ϕ + θp)~u

+ sin(θp) + sin(2ϕ + θp)~v. (16)

Using trigonometric properties, we get that:

~vi + ~vji
= 2 cos(ϕ) (cos(ϕ + θp)~u + sin(ϕ + θp)~v)

= 2 cos(ϕ) ~vn.

To make ~vT = ~0 , we must force

~vn +

n−1

2∑

i=1

~vi + ~vji
= ~0,

which is equivalent to the following condition on
ϕ.

l(ϕ)
∆
= 1 + (n − 1) cos(ϕ) = 0, ϕ ∈

[π

2
, π
[

. (17)

As the field of view is limited, we have to sat-
isfy ϕ ≤ Dm. Therefore, if such an angle exists,

the cost value is again L1 = n2

4 . In particular, if

Dm > 2π
3 , we can always find an optimal place-

ment. Indeed, it is sufficient to choose n− 3 vec-
tors as in the even case (orthogonal assignment)
and to use the last three with ϕ = 2π

3 . When

exists ϕ solution of (17) with Dm < ϕ < 2π
3 , it

seems difficult to find a configuration which al-
lows to attain the maximum cost. But, we pro-
pose a suboptimal solution which minimizes l(ϕ).
l is decreasing on

[
π
2 , Dm

]
( ∂l

∂ϕ
∝ − sin(ϕ) < 0)

so its maximum is given for ϕ = Dm. This leads
to the cost value

L1 =
1

4

(

n2 − (1 + (n − 1) cos(Dm))
2
)

.

In this section, we made a geometric analysis to
determine the optimal placement of the features
to maximize the cost L1. Making the same kind
of reasoning for the complete cost L(t) is much
more challenging. After this static analysis, we
deals with the path planning problem in the next
section. For the sake of brevity, we only detail
the approach for L1(t) but it can be generalized
to L2(t) and L3(t).

5 PATH PLANNING

We consider the evolution of the sensor be-
tween [t0, tf ] with 0 < tf ≤ T ∗ from position
qs ∈ D to position qt ∈ D. We look for paths
(Xt)t∈[t0,tf ] which maximizes the cost

Ψ([t0, tf ]) =

∫ tf

t0

L1(t)dt. (18)

The problem can be formalize in the optimal con-
trol framework with two boundaries constraints.
Unfortunately, due to the cost expression and the
sensor field of view (FOV) limitations, no ana-
lytic formulation of the optimal path can be de-
rived. An approximated approach based on the
discretization of the state and control space seems
more tractable.

5.1 Path description

As in (Celeste et al., 2007), We formalize here
the problem as a discrete path planning. A reg-
ular grid is considered and one path is a se-
quence of elementary displacements with con-
stant heading

(
ϕ ∈ {ϕi = i∗π

4 , i ∈ {−3, ..., 4}}
)

and constant velocity v (a leg). For a path τ
with nτ legs, the cost is as follows:

Ψ([t0, tf ]) =

nτ−1∑

i=0

∫ ti+1

ti

L1(t)dt. (19)



Xt0 = qs and Xtnτ −1
= qt are supposed to be

on the grid. Some constraints on the maneuvers
can be imposed to avoid chaotic behavior (e.g.
bang-bang effect)(Paris and LeCadre, 2002). To
solve the planning task we need to compute the
cost associated with each leg. First of all, it is
necessary to determine the part of the leg where
each feature is visible due to the sensor FOV.

5.2 Cost for one leg

For a FOV model with an aperture 2∆ and a
maximum range detection Rd, the area Z visi-
ble from the leg e is composed of three regions
Z1, Z2 and Z3 (see Figure 3). A pair of features

(fi, fj) ∈ Z2 are visible from P ij
− (xij

− , yij
−) and

P ij
+ (xij

+ , yij
+ ). These limits can be derived using

a simple geometric reasoning. Moreover, we have

S2

S1

S3

S4

Z1

Z2

Z3

S

T

Figure 2: The visible region for one leg.

a relation between an elementary displacement
and the associated duration (dt ∝ dx if ϕ 6= π

2 [π],
dt ∝ dy else). and the leg can be reparametrized
as follows:

• y(x) = β + γx, ∀x ∈ [xS , xT ] if ϕ 6= π
2 [π] (non

vertical motion),

• x = xS , yS ≤ y ≤ yT else (vertical motion),

The total cost for a leg e can then be computed
using relevant change of variable.

For non vertical displacement, the cost
due to a pair of features (fi, fj) is the integral of
a rational function:

Kij(x) =

ˆ

(x − xi)(y(x)− yj) − (x − xj)(y(x) − yi)
˜2

pi(x)pj(x)
.

where pl(x) = (x − xl)2 + (y(x) − yl)2
∆
= alx

2 +
blx+cl, l ∈ {j, i} is the respective square range of
fi, fj to the sensor. Therefore, these polynomials
are irreducible whatever the sensor position in D\

{fi, fj}. We can rewrite

Kij(x) =
(Aijx + Bij)

2

pi(x)pj(x)
. (20)

So, we have to compute:

cnv
ij (e) ∝

∫ x
ij
+

x
ij
−

Kij(x)dx. (21)

which can be done with a relevant partial expan-
sion of the rational function. Nevertheless, we
have to pay attention to the position of the leg
relatively to the features.

case (1) e is on the perpendicular bisector of
[fi fj], then pj(x) = pi(x), ∀x and

(Aijx + Bij)
2

pi(x)pj(x)
=

r1x + s1

pi(x)
+

r2x + s2

p2
i (x)

. (22)

case (2) e is not on the perpendicular bisector of
[fi fj], then

(Aijx + Bij)
2

pi(x)pj(x)
=

r1x + s1

pi(x)
+

r2x + s2

pj(x)
. (23)

Identification of the numerators yields in both
cases to a linear system to deduce χ =
[r1 r2 s1 s2]

∗,

M
(c)
ij χ = Bij , for cases c = 1, 2 (24)

M
(1)
ij =






ai 0 0 0
bi 0 ai 0
ci 1 bi 0
0 0 ci 1




 , Bij =







0
A2

ij

2AijBij

B2
ij







(25)
and

M
(2)
ij =






ai aj 0 0
bi bj ai aj

ci cj bi bj

0 0 ci cj




 (26)

For vertical displacements, it is more appro-
priate to consider integration with the variable y.
The same reasoning leads to the integration of a
rational function to get the cost expression

cv
ij(e) ∝

∫ y
ij
+

y
ij
−

Kij(y)dy. (27)

5.2.1 Closed form expression for the cost

Whatever the leg orientation, we have to deals
with the computation of integrals of the form (n ∈
{1, 2}, l ∈ {i, j}):

H(n)(l, u, v, x−, x+) =

∫ x+

x
−

ux + v

(ax2 + bx + c)n
dx

(28)



Using specific changes of variable and classic
primitives, the closed form expression for the cost
(21), (27) can be derived. For instance,

H(1)(l, u, v, x−, x+) = ν
(1)
l ln

(
|pl(x+)|

|pl(x−)|

)

+

λ
(1)
l

(

tan−1(ql(x+ +
bl

2al

)) − tan−1(ql(x− +
bl

2al

))

)

where ql =

√

4a2
l

4alcl−b2
l

, ν
(1)
l = u

2al
and

λ
(1)
l = 2val−ubl

2a2
l

ql.

The expressions of the costs are finally

cij(e) = H
(1)(i, r1, s1, x

ij
−

, x
ij
+)+H

(n)(j, r2, s2, x
ij
−

, x
ij
+)

where n ∈ {1, 2} depends on the leg orientation
according to [fi, fj ]. Given the contribution of
each visible pair of features, the complete cost of
the leg is given by c(e) =

∑

i,j cij(e) Therefore,

the cost associated to a path τ = {e1, · · · , en}
of length n = nτ − 1 is c(τ) =

∑n
i=1 c(ei). The

optimization can then be solved via dynamic pro-
gramming.

6 EXPERIMENT

In this experiment, we consider an embed-
ded map composed of ten features organised on
the border of D = [0; 200; 0; 200]. The sensor
FOV is characterized by a maximum range de-
tection Rmax = 70m and a half aperture angle
Dm = 120 deg.. Moreover, the authorized differ-
ence angle between two following time steps must
be bounded by π/4 and the path length smaller
than lmax = 98 legs from qs = (20; 20) to qt =
(170; 20). The grid resolutions are δx = δy = 10.
The algorithm seems to behave well. The sensor

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

path planning 

qs qf

Figure 3: Optimal path, features(green), qs and qf

(blue).

moves in order to be as soon as possible on the
perpendicular bisector of pairs of features and to
increase the number of visible pairs. The pro-
posed path allows to provide better triangulation
conditions which improves the estimation process.
Moreover some interesting behaviour like cycles
can also be observed.

7 CONCLUSIONS AND

PERSPECTIVES

In this paper, we introduced a path planning
algorithm for map based localization. First of
all, we derived an information gain as the deter-
minant of the Fisher Information Matrix adapted
to multiple features. A geometric interpretation
of this measure was made. Then, to determine
the optimal path, we considered the integral cost
of this function. It is important to notice that
the cost computation take into account the sensor
field of view model. Finally, we applied the ap-
proach on a scenario and illustrate the behaviour
of the algorithm. We detailed the approach for
only the first part of the total cost, but it can
be generalized to the others. Now, we plan to
take into account noisy feature positions which
will yields to a path planning problem with un-
certain cost. Then, the next challenge is to find
optimal paths which tackle also those uncertain-
ties on the given map.
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