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Abstract. In this paper, we address the problem of estimating mesoscale
dynamics of atmospheric layers from satellite image sequences. Relying
on a physically sound vertical decomposition of the atmosphere into lay-
ers, we propose a dense motion estimator dedicated to the extraction
of multi-layer horizontal wind fields. This estimator is expressed as the
minimization of a global function including a data term and a spatio-
temporal smoothness term. A robust data term relying on shallow-water
mass conservation model is proposed to fit sparse observations related
to each layer. A novel spatio-temporal regularizer derived from shallow-
water momentum conservation model is proposed to enforce a temporal
consistency of the solution along the sequence time range. These con-
straints are combined with a robust second-order regularizer preserving
divergent and vorticity structures of the flow. In addition, a two-level
motion estimation scheme is proposed to overcome the limitations of the
multiresolution incremental scheme when capturing the dynamics of fine
mesoscale structures. This alternative approach relies on the combination
of correlation and optical-flow observations. An exhaustive evaluation of
the novel method is first performed on a scalar image sequence generated
by Direct Numerical Simulation of a turbulent bi-dimensional flow and
then on a Meteosat infrared image sequence.

1 Introduction

The analysis of complex fluid flows behaviors is a major scientific issue. In par-
ticular, understanding atmospheric dynamics is of great importance for mete-
orologists interested in weather forecasting, climate prediction, singular system
analysis, etc. The use of surface meteorology stations, balloons, and more re-
cently aircraft measurements or first-generation satellite images has improved
the estimation of wind fields and has been a subsequent step for a better un-
derstanding of meteorological phenomena. However, the measurements provided
by the network’s temporal and spatial resolutions may be insufficient for the
analysis of mesoscale dynamics characterized by horizontal scales in the range of
about 10-1000 km. Recently, in an effort to avoid these limitations, an increasing
interest has been devoted to motion extraction from images of a new generation
of geostationary satellites, with higher acquisition rates and finer spatial resolu-
tions.

The analysis of motion in such sequences is particularly challenging due to the
great deal of spatial and temporal distortions that luminance patterns exhibit
in imaged atmospheric phenomena. Standard techniques from Computer Vision,
originally designed for quasi rigid motions and stable salient features along time,
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are not well adapted in this context. Recently, methods for fluid-dedicated dense
estimation have been proposed to characterize atmospheric motion [2, 8]. Nev-
ertheless, we will show that due to the underlying three-dimensional nature of
the scene, the employed dynamical models remain unadapted to satellite obser-
vations. Furthermore, such methods may fail to accurately characterize motion
associated to mesoscale structures. Thus, the design of an appropriate approach
taking into account the physics of three-dimensional atmosphere dynamics con-
stitutes a widely open domain of research. Our work is a contribution in this
direction. Rather than coupling the motion vector estimation process to a com-
plex and complete numerical meteorological circulation model, we propose to
incorporate in the motion estimation scheme “image based adequate” dynamics
defined as an adaptation of Navier-Stokes equations to infra-red images. The
objective being in fine a three-dimensional reconstruction of atmospheric hor-
izontal winds. Alternatively, the challenge also consists in providing accurate
estimators able to tackle the motion complexity of sparse and noisy structures.

2 Related work on optical-flow estimation

The problem of wind field recovery in an image sequence I(x, y, t) consists in
estimating the real three-dimensional atmospheric motion from observations in
the projected image plane. This problem is a complex one, for which we have
only access to projected information on clouds position and spectral signatures
provided by satellite observation channels. Spatial horizontal coordinates (x, y)
are denoted by s. To avoid tackling the three-dimensional wind field V(s, z, t)
reconstruction problem, up to now all the developed wind field estimation meth-
ods rely on the assumption of inexistent vertical winds and consists to estimate
an average horizontal wind.

2.1 Real projected wind fields and optical-flow
The apparent motion v = (u, v), perceived through image intensity variations,
can be computed with the standard Optical Flow Constraint (OFC):

It(s, t) + v · ∇I(s, t) = 0. (1)

For image sequences showing evolving atmospheric phenomena, the brightness
consistency assumption does not allow to model temporal distortions of lumi-
nance patterns caused by 3D flow transportation. For transmittance imagery of
fluid flows, the so called continuity equation :

1

ρ

Dρ

Dt
+ ∇.V = 0, (2)

may be derived from the 3D mass conservation law, where ρ denotes a three-
dimensional density function. In this case, an apparent motion v is redefined as
a density-weighted average of the original three-dimensional horizontal velocity
field. For the case of a null motion on the boundary planes, in [3], the author
showed that the integration of Eq.2 leads to a 2D Integrated Continuity Equation
(ICE):

“

Z

ρdz
”

t
+ v.∇

“

Z

ρdz
”

+
“

Z

ρdz
”

div(v) = 0, (3)



A consistent spatio-temporal motion estimator for atmospheric layers 3

Unlike the OFC, such models can compensates mass departures observed in the
image plan by associating two-dimensional divergence to brightness variations.
By time integration, an equivalent non-linear formulation can be recovered [2] :

“

Z

ρdz
”

(s + v, t + 1) expdiv(v) −
“

Z

ρdz
”

(s, t) = 0. (4)

The image formation model for satellite infrared imagery is slightly different.
In [2], the authors have directly assumed the unrealistic hypothesis that infrared
pixel values I were proportional to density integrals : I ∝

∫
ρdz. In [16], the

authors proposed an inversely proportional approximation for infrared measure-
ments : I ∝ (

∫
ρdz)−1.

2.2 Regularization schemes and minimization issues

The previous formulations of Eq. 1, 3 and 4 can not be used alone, as they provide
only one equation for two unknowns at each spatio-temporal locations (s, t).
To deal with this problem, the most common assumption consists in enforcing
spatial and temporal local coherence.

Disjoint local smoothing methods considers neighborhoods centered at pixel
locations. An independent parametric field is locally estimated on each of these
supports. In the the work of Lucas and Kanade [7], relying on the OFC equation,
motion which is assumed to be locally constant is estimated using a standard
linear least square approach. In meteorology, classical approaches are Euclidean
correlation-based matchings, which corresponds to the OFC constraint associ-
ated to a locally constant field and a L

2 norm [6, 10, 12]. On the one hand, these
methods are fast and are able to estimate large displacement of fine structures.
On the other hand, they present the drawback to be sensitive to noise and inef-
ficient in the case of weak intensity gradients. Moreover, estimation with these
approaches is prone to erroneous spatial variability and results in the estimation
of sparse and possibly incoherent vector fields.

Globalized smoothing schemes can be used to overcome the previous lim-
itations. These methods model spatio-temporal dependencies on the complete
image domain. Thus, dense velocity fields are estimated even in the case of noisy
and low contrasted observations. More precisely, the motion estimation prob-
lem is defined as the global minimization of a energy function composed of two
components :

J(v, I) = Jd(v, I) + αJr(v). (5)

The first component Jd(v, I) called the data term, expresses the constraint
linking unknowns to observations while the second component Jr(v), called the
regularization term, enforces the solution to follow some smoothness properties.
In the previous expression, α > 0 denotes a parameter controlling the balance
between the smoothness and the global adequacy to the observation model. In
this framework, Horn and Schunck [5] first introduced a data term related to
the OFC equation and a first-order regularization of the two spatial components
u and v of velocity field v. In the case of transmittance imagery of fluid flows,
I =

∫
ρdz, and using the previously defined ICE model (Eq.3) leads to the
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functional :

Jd(v, I) =

Z

Ω

(It(s) + v(s) · ∇I(s) + I(s)div(v(s)))2 ds. (6)

Moreover, it can be demonstrated that a first order regularization is not adapted
as it favors the estimation of velocity fields with low divergence and low vorticity.
A second order regularization on the vorticity and the divergence of the defined
motion field can advantageously be consider as proposed in [11][2][15] :

Jr(v) =

Z

Ω

‖ ∇curlv(s) ‖2 + ‖ ∇divv(s) ‖2
ds. (7)

Instead of relying on a L
2 norm, robust penalty function φd may be in-

troduced in the data term for attenuating the effect of observations deviating
significantly from the ICE constraint [1]. Similarly, a robust penalty function
φr can be used if one wants to handle implicitly the spatial discontinuities of
the vorticity and divergence maps. In the image plan, these discontinuities are
nevertheless difficult to relate to abrupt variations of clouds height . Moreover,
layers clouds form unconnected regions which should interact during the motion
estimation process.

OFC or ICE model rely on the assumption that the intensity function can
be locally efficiently approximated by a linear function. Since the larger the
displacement the more narrow the linearity domain, large displacements are dif-
ficult to recover directly. The multiresolution approach is a common way to
overcome this limitation. However, since the multiresolution schemes estimates
principal component displacements only at coarse resolutions where small pho-
tometric structures are rubbed out, this approach enables the characterization
of large displacements of small structures only in the case when their motion are
close enough to the principal component’s one. This is often not the case for a
multi-layered atmosphere.

3 Dense motion estimator dedicated to atmospheric

layers

3.1 Dynamical model for layers
The ICE model relies on strong assumptions in the case of satellite infrared
imagery. However, it has been demonstrated that this approach is well suited for
an image sequence of transmittance measurements.

Since there is a lack of information induced by projection in an image plane,
several hypothesis are necessary to tackle the reconstruction problem. We as-
sume that the lower part of the atmosphere is in hydrostatic equilibrium. This
assumption provides an excellent approximation for the vertical dependence of
the pressure field and enables a layer decomposition of the three-dimensional
space [4]. Let us denote pressure and gravity respectively by p and g. By the

vertical integration of the hydrostatic equation −ρg = dp
dz

, density integrals are
linked to pressure differences :

g

Z zt

zb

ρ dz = p(zb) − p(zt). (8)
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where the lower and higher boundary functions are denoted by zb and zt. The
problem is thus moved on to the derivation of pressure difference maps from
infrared images for each layer.
Let us first explain how the layer are dissociated. The membership of clouds to
a layer is determined by a height classification map routinely provided by the
EUMETSAT consortium, the European agency which manages the Meteosat
satellite data. We denote by Ck a class corresponding to the k-th layer in between
the altimetric interval function [zk

b , zk
t ]. Note that the top of cloud pressure image

denoted by pS

k
is composed of segments of top of clouds pressure functions p(zk

t )
related to the different layers. That is to say :

pS

k
=
[

k

p(zk
t , s); s ∈ C

k
. (9)

Sparse pressure maps of the layers upper boundaries are computed from infrared
images as described in [13]. As in satellite images, clouds lower boundaries are
always occluded, we approximate the missing pressure observations p(zk

b ) by an
average pressure value observed on top of the underneath layer. Finally, for the
k-th layer, we define image observations as the pressure difference :

p(zk
b ) − pS

k
, = h

k

8

<

:

= g
R zk

t

zk

b

ρ dz if s ∈ Ck

6= g
R zk

t

zk

b

ρ dz if s ∈ C̄k.
(10)

Thus, if we neglect vertical wind on layer boundaries, the ICE model of Eq.3
holds for observations hk on regions of Ck, and constitute a physically sound
model for motion estimation of atmospheric layers evolving independently. ∀k ∈

[0, K] :

∂hk

∂t
+ v · ∇h

k + h
kdiv(v) = 0, (11)

where K is the highest layer index and v corresponds to the density-weighted
average horizontal wind related to the k-th layer. Note that as vertical wind on
the layer boundaries has been neglected, this model assumes independent layer
motion. Due to the hydrostatic relation, hk may be viewed as an atmospheric
layer thickness function if we assume shallow layers and thus neglect density
variations : hk = gρ(zk

b − zk
t ). The ICE equation then corresponds to shallow-

water mass conservation model [4].

3.2 Robust estimator for sparse observations

Relatively to the different layers, true pressure differences are sparsely observed
only in the presence of clouds. A dense estimator dedicated to layer motion
should consider simultaneously all cloudy regions belonging to a given layer
while discarding the influence of other clouds. For the k-th layer, we previously
remarked that outside the class ‘Ck’, the so defined pressure difference hk is not
relevant of the k-th layer thickness. Thus, we propose to introduce in Eq.4 a
masking operator on unreliable observations. We denote by M

s∈Ck the operator
which is identity if pixel belongs to the class, and which returns otherwise a fixed
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value out of the range taken by hk. Thus, applying this new masking operator
in Eq.4, we obtain the robust data term Jd(v, hk) :
Z

Ω

φd{expdiv(ṽ(s))([h̃k(s)∇div(ṽ(s))+∇h̃
k(s)]T v

′(s)+h̃
k(s))−M

s∈Ck (hk(s))}ds,(12)

where v corresponds to the density-weighted average horizontal wind related to
the k-th layer. The div-curl regularization term (Eq.7) is conserved. The masking
procedure together with the use of robust penalty function on the data term al-
lows to discard implicitly the erroneous observation from the estimation process.
It is important to outline that, for the k-th layer, the method provides dense
motion fields and areas outside class ‘Ck ’ correspond to an interpolated wind
field. Nevertheless, let us point out that in the case of very sparse observations
and large displacements, robust estimation becomes unstable and may lead to
erroneous minima. Such limitations will be overcome in the following.

4 A two level decomposition for mesoscale motion

estimation

In order to enhance the estimation accuracy, a collection of correlation-based
vectors vc is introduced as sparse constraints in a differential estimation scheme
for the recovery of a dense displacement field. Contrary to the classical multireso-
lution approach, this new technique enables to deal with the large displacements
of small structures as it relies on a unique representation of the full resolution
image. Moreover, in order to preserve spatio-temporal consistency of displace-
ment estimates, we propose to incorporate in the estimation scheme an a priori
physical knowledge on fluid dynamical evolution. A dense displacement field vp

is predicted by time integration of a simplified Navier-Stokes dynamical model.
The propagated field is then introduced in the estimation process as a spatio-
temporal regularizer. Keeping notations of section 2.2, a new functional is defined
for the estimation of variable v

J(v) = Jd(v, h
k) + γJc(v,vc) + αJr(v) + βJp(v,vp), (13)

where Jc(.), Jp(.) are energy functions respectively constraining displacements
v to be close to a sparse correlation-based vector field vc and to be consistent
with a physically sound prediction vp relying on Navier-Stokes equations. In the
previous expression, γ and β denote weighting factors. Functionals Jc(.) and Jp(.)

will be further detailed in the following.
The displacement field v is decomposed into a large displacement field v̄ and

an additive small displacement field ṽ. The optimization problem is conducted
sequentially. Here, an analogous version of the alternate multigrid minimization
scheme proposed in [2] has been implemented.

Note that in the case α, β, γ � 1, the energy minimization leads to a large
displacement field which can be seen as a physically sound spatio-temporal in-
terpolation of the correlation-based vectors.

4.1 Variational approach for a correlation/optical-flow collaboration
In order to obtain a dense estimation of displacements fitting a sparse correlation-
based displacement field, we define a functional where the ith correlation-based
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vector vi
c = (ui, vi) located at the point si = (xi, yi) influences his neighborhood

according to a shifted bi-dimensional Gaussian law N i(si − s) of variance σ
related to the correlation window influence

Jc(v,vc) =

Z

Ω

M
s∈Ck

 

K
X

i=1

g
iN i(si − s)φc{v

i
c − v(s)}

!

ds, (14)

where φc is a robust penalty function similar to the one attached to the data
term. In the previous expression, gi denote confidence factors. We choose, to de-
fine them according to the dissimilarity function. The masking operator M

s∈Ck()
was introduced as the correlation/optical-flow collaboration is not possible in re-
gions with no image observations.

4.2 Spatio-temporal regularization
The functional Jp(.) aims at constraining a motion field to be consistent with a
physically predicted wind field. We simply define this functional as a quadratic
distance between the estimate field v and the dense propagated field vp:

Jp(v̄,vp) =

Z

Ω

‖ vp(s) − v(s) ‖2
ds. (15)

This approach constitutes an alternative to the spatio-temporal regularizer de-
fined in [14] and is to some extend similar to the temporal constrain introduced
in [9]. Our propagation model includes a bi-dimensional divergence component
which is equal to zero only for incompressible bi-dimensional flows. As it is de-
tailed below, our approach extends [9] to the spatio-temporal smoothing of the
full velocity field in the case of three-dimensional geophysical flows driven by a
shallow-water evolution law.

Dynamical models describing wind field evolution are needed here for the
prediction at time t+1 of a sound field vp using the previous motion estimation
v performed for the k-th layer between time t−1 and t. As atmosphere evolution
is governed by fluid flows laws, we rely on Navier-Stokes equations in order
to derive simplified dynamical models adapted to short time propagation of
layer mesoscale motions. A scale analysis of the horizontal momentum equations
showed that the Coriolis, the curvature terms and the friction forces are in
this case negligible. Denoting by ν a turbulent viscosity coefficient, imposing
incompressibility in the hydrostatic relation, and adding the mass conservation
model of Eq.11, we form the complete shallow-water equation system :



vt + v · ∇(v) + 1

ρ0

∇hk = ν∆(v),

hk
t + v · ∇hk + hkζ = 0,

(16)

with the notations ∇(v) = (∇u, ∇v)T and ∆(v) = ∇ · ∇(v). Denoting the
vorticity by ξ = curl(v) and the divergence by ζ = div(v), the previous system
may be expressed in a vorticity-divergence form :

8

>

<

>

:

ξt + v · ∇ξ + ξζ = ν∆ξ,

ζt + v · ∇ζ + ζ2 = 2det(J(u, v)) − ∆hk

ρ0

+ ν∆ζ,

hk
t + v · ∇hk + hkζ = 0,

(17)

where J(.) is the Jacobian operator. The dynamical model predict the evolution
of 3 variables which may depend on each others. One of the major difficulties is
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induced by the fact that variable hk is derived only for cloudy regions correspond-
ing to the k-th layer. Therefore, variable hk, and thus all unknowns, can only be
propagated on a sparse spatial support. However, in opposition to the classical
formulation, the vorticity-divergence equations provide a dynamical model for
which the vorticity evolution is independent of variable hk and for which the
divergence evolution depends only weakly on variable hk (up to a constant).
Based on the assumption that divergence is weak almost everywhere and assim-
ilable to noise, we propose to simplify the divergence dynamical model in order
to make it independent of variable hk. Divergence ζ is assumed to be driven by
a Gaussian random function with stationary increments (i.e. a standard Brow-
nian motion). As a consequence, divergence expectation asymptotically obeys
to a heat equation of diffusion coefficient ν. The simplified vorticity-divergence
model reads:



ξt + v · ∇ξ + ξζ = ν∆ξ,

ζt = ν∆ζ.
(18)

The curl and divergence completely determine the underlying 2D velocity field
and the current velocity estimate can be recovered from these quantities up to
a laminar flow. Indeed, the Helmholtz decomposition of the field into a sum of
gradients of two potential functions is expressed as v = ∇×Ψ +∇Φ+vhar, where
vhar is an harmonic transportation part (divvhar = curlvhar = 0) of the field v
and where the stream function Ψ and the velocity potential Φ correspond to the
solenoidal and the irrotationnal part of the field. The latter are linked to diver-
gence and vorticity through two Poisson equations. Expressing the solution of
both equations as a convolution product with the 2D Green kernel G associated
to the Laplacian operator: Ψ = G ∗ ξ, Φ = G ∗ ζ, the whole velocity field can be
recovered with the equation :

v = ∇ × (G ∗ ξ) + ∇(G ∗ ζ) + vhar, (19)

which can be efficiently solved in the Fourier domain.
Let us sum up this prediction process. The vorticity and the divergence fields

are developed from t to t + 1 using a discretized form of Eq.18 and time incre-
ments ∆t. After each time increment, assuming vhar constant between the same
time interval, Eq.19 is used to update the velocity v needed by Eq.18, with the
current vorticity and divergence estimates. Classical centered finite difference
schemes are used for the curl and divergence discretization. To avoid instability,
a semi-implicit time discretization scheme is used to integrate forward Eq.18. To
solve the linear system associated to the semi-implicit discretization scheme, the
matrix has been constrained to to be diagonally dominant. Finally, the dynami-
cal model time integration is done independently for each layer. This procedure
results in a predicted average horizontal wind field vp related to each layer.

5 Experimental evaluation

For an exhaustive evaluation, we first propose to rely on a simulated flow. A
Direct Numerical Simulation (DNS) of a 2D, incompressible, and highly turbu-
lent flow has been used to generated an image sequence depicting the motion
of a continuous scalar field. The sequence of scalar images of 256 by 256 pixels
together with the true vector fields generated by the DNS were provided by the
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laboratory of fluid mechanics of Cemagref (center of Rennes, France). The thick-
ness conservation model reduces in this 2D case to the classical OFC data model.
Note that as divergence vanishes, the spatio-temporal regularization constrains
only vorticity to be coherent in time.

In order to experiment our method with correlation-based vectors with dif-
ferent noise level, the correlation-based vectors have been substituted by DNS
vectors contaminated by an additive Gaussian noise. As correlation techniques
only operate on contrasted regions, vector constraints were attached to regions
with sufficient gradient. To be realistic with correlation measurements, DNS vec-
tors have been sub-sampled in those regions. DNS velocity vectors which have
been selected as non-noisy correlation measurements are presented in fig.1. They
are superimposed to the scalar image. Based on the non-noisy correlation con-

Fig. 1. Velocity constraints and fluid imagery for a bi-dimensional flow. Left:
velocity vectors provided by the DNS which have been selected as constraints are super-
imposed on the image. Right: Gaussian noise N (0, 1) has been added to these vectors.

Fig. 2. Comparison on the image domain of multiresolution and collabora-

tive schemes in the case of a bi-dimensional flow. Left: vorticity provided by the
DNS. Center: vorticity estimation by the fluid flow dedicated multiresolution approach
of [2].Right: vorticity estimation after the second level of the collaborative scheme.

straints defined previously, we first compare our two-level collaborative scheme
to the fluid flow dedicated multiresolution approach described in [2]. In Fig.2, it
clearly appears that the multiresolution approach hardly estimates fine turbulent
structure while the collaborative method manages to recover most of the vortic-
ity field structures. Indeed, in scalar imagery, low contrast regions correspond to
high vorticity areas. Thus, the multiresolution technique suffers from a lack of
information in those crucial regions. And, incorporating motion constraints in
contrast areas around vortices reduces the degree of freedom of the solution and
thus, considerably enhances the estimated motion field. In order to evaluate the
robustness of the collaborative method to inaccurate constraints, Gaussian noise
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Fig. 3. Influence of noise and spatio-temporal regularization. Left: for increas-
ing noise, vorticity estimates on a slice of the image and global RMS vorticity error in
comparison to the multiresolution approach. Right: RMS vorticity errors on five consec-
utive estimations for the multiresolution approach, the collaborative scheme constrained
by noisy correlation vectors combined or not with spatio-temporal regularization.

of zero mean and increasing variance has been added to the true velocity vectors
provided by the DNS. Constraint examples are displayed in Fig.1. In Fig.3, we
can visually inspect the influence of noise on the estimated solution for a partic-
ular horizontal slice of the image and for the global image domain by referring to
RMS errors on vorticity values. It clearly appears that, even in presence of noise,
motion estimation is better achieved by our collaborative scheme than by a clas-
sical multiresolution approach. Spatio-temporal regularization benefits which are
assessed for both, multiresolution and collaborative methods, are shown in Fig.3.

We then turned to qualitative comparisons on a real meteorological image se-
quence. The benchmark data was composed by a sequence of 18 Meteosat Second
Generation (MSG) images, showing thermal infrared radiation at a wavelength
of 10.8 mm. The 512 x 512 pixel images cover an area over the North-Atlantic
Ocean, off the Iberian peninsula, during part of one day (5-June-2004), at a
rate of one image every 15 minutes. The spatial resolution is 3 kilometers at the
center of the whole Earth image disk. Clouds from a cloud-classification product
derived from MSG images by the operational centre EUMETSAT, are used to
segment images into 3 broad layers, at low, intermediate and high altitude. This
3 layers decomposition is imposed by the EUMETSAT classification. Applying
the methodology previously described, pressure difference images were derived
for these 3 layers.

Trajectories reconstructed by a Runge-Kutta integration method [2] from the
estimated wind fields provide a practical visualization tool to assess the quality
of the estimation in time and space.

The enhancements brought by the collaborative estimation scheme for the
recovery of a wind field related to the highest layer is shown in Fig.4. It can be
noticed in this comparative figure that the introduction of spatio-temporal con-
straints smooths trajectory discontinuities and, together with the introduction
of correlation constraints, propagate motion in regions where observations are
missing. Using the collaborative framework and the spatio-temporal regularizer,
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Fig. 4. Collaborative approach and spatio-temporal regularization influence on
the estimation of wind field for the highest layer. Trajectories reconstruction for an
estimation scheme without (left) and with (center) spatio-temporal regularization. Tra-
jectories reconstruction for the two-level collaborative estimation scheme with spatio-
temporal regularization (right).

Fig. 5. Middle layer and lower layer trajectories for a two-level collaborative

estimation scheme using spatio-temporal regularization. The trajectories corre-
spond to the low (right), and to the medium (left) layer motions.

trajectories related to the other layers are presented in Fig.5. In the middle of the
image, one can notice the estimation of two perpendicular motions : the upward
motion related to sparse clouds of the intermediate layer has been accurately
recovered above an underneath stratus moving downward.

6 Conclusion

In this paper, we have presented a new method for estimating winds in a strati-
fied atmosphere from satellite image sequences. The proposed motion estimation
method is based on the minimization of a functional including a two part global-
ized regularizer. The data term relies on shallow-water mass conservation model.
Indeed, the hydrostatic assumption allows a layer decomposition of the atmo-
sphere. This decomposition is used to derive, relatively to each layer, thickness-
based observations from infrared satellite images. Resulting observations verify
independent shallow-water mass conservation models. To overcome the problem
of sparse observations, a robust estimator is introduced in the data term.

A novel spatio-temporal regularizer is proposed. An approximation of shallow-
water momentum equations expressed in a divergence-vorticity form is used
to derive temporal coherence constraints. These temporal constraints are com-
bined with a robust second-order regularizer preserving divergent and vortic-
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ity structures of the flow. In order to capture mesoscale dynamics, an optic-
flow/correlation collaborative estimation scheme is proposed. Relying on two-
level of estimation, this approach constitutes an advantageous alternative to the
standard multiresolution framework. On both synthetic images and real satellite
infrared images, the merit of the novel data-model and of the introduction of
correlation-based and temporal constraints have been demonstrated.
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