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Abstract: Theoretical bounds for estimating the ballistic coefficient of a ballistic object during the
re-entry phase have been addressed. One essential characteristic of the vehicle trajectory is its
deceleration when it reaches dense atmospheric layers. The intensity of the phenomenon is pro-
portional to a scalar, called the ballistic coefficient. This leads to an highly nonlinear time-varying
dynamic. To understand the dimensioning parameters for estimating the ballistic coefficient,
accurate approximations of the Fisher information matrix are developed. The main result is a
closed-form expression of a lower bound for the variance of the ballistic coefficient estimate.
Notations

† Let S be the object cross-section, CX its drag coefficient
and M its mass,
† the ballistic coefficient b is the product CxS/m and is
expressed in m2 kg21,
† go ¼ 29.8 ms22 is the gravitational acceleration (at
ground level),
† alt is the altitude; alt W y in the coordinate system of the
Fig. 1,
† the atmospheric density (r(y)) is modelled by an expo-
nential law: r (y) ¼ r0 exp [� y=cr] (in kg m23), with
cr ¼ 7000 m and r0 ¼ 1.2 kg m23,
† q( y) W 1

2
r( y)n2 is the dynamic pressure,

† r denotes the target range and v its velocity,
† FIM: Fisher information matrix; CRB: Cramér-Rao
bound, RV: re-entry vehicle, LOS: line of sight,
† det: determinant; AT: A transposed.

1 Introduction

Anti-ballistic defenses are confronted with the challenge of
detecting, in a few seconds, swift non-cooperative targets
with a view to locate them precisely and to allow intercep-
tion. With anti-ballistic missile or anti-tactical-ballistic
missile goals, those defenses use adapted sensors, such as
the millimetre wave radar located at Kwajalein (Marshall
Islands) [1], to track re-entry vehicles leaving a quiet
exo-atmospheric phase to an endo-atmospheric phase with
large aerodynamics loads and a sudden deceleration. The
intensity of the phenomenon is proportional to a scalar,
called the ballistic coefficient (denoted as b for the
sequel). The motion is obviously nonlinear and, further-
more, the dynamic is time-varying. However, it is especially
important to estimate the ballistic coefficient of the target,
since the radar needs to quantify the target deceleration so
as to be able to extrapolate its position, to point it and
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track it. Furthermore, it contributes to the classification
and identification of the target (lethal target/decoy, type
of debris etc.), by exploiting kinematic features. Note that
the present problem setup largely differs from the tracking
of an exo-atmospheric target [2], since it is precisely
sudden change of atmospheric density which conditions
the target motion.

The aim is to explore the ballistic coefficient estimability
issue, that is to understand what makes it estimable and of
how much. More specifically, our main concern is to
develop accurate closed-form approximations of a lower
bound of the variance of the ballistic coefficient estimate.
Note that this paper does not address the question of how
estimating the ballistic coefficient, meaning which pro-
cedure use. Many works have already been published on
that subject, for example [1, 3, 4]. Besides, it is worth
also stressing that the paper is far from classical calculations
and that the complexity of the dynamic renders quite illu-
sory a direct approach. Actually, the structure of the
Fisher information matrix (FIM) is tremendously intricate.
To overcome these difficulties, the following (simplifying)
assumptions are made:

† the ballistic coefficient (denoted as b) is assumed to be
constant throughout the whole scenario,
† idem for the re-entry angle (denoted as g),
† the problem is restricted to a two-dimensional one.

It is worth also to stress that our approach is rather indirect.
Instead coping with the FIM, we use intensively multilinear
algebra so as to drastically reduce the calculation length [5].
Using this framework, difficulties reduce to obtain con-
venient closed-form approximations of the time derivative
of the observation gradient vector.

Accuracy of this closed-form approximation of the
Cramér-Rao lower bound (CRB) is investigated via a
Monte-Carlo analysis [6]. To that aim, we refer to [7],
where time-varying models of the ballistic coefficient are
also considered for general three-dimensional re-entry scen-
arios. The problem is then considered in a tracking frame-
work and it is shown that sequential Monte-Carlo methods
perform quite satisfactorily. However, the aim, is whatever
their impressive advantages, to determine the dimensioning
factors for this tracking problem.
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This problem has a long and rich history [8], even if
efforts have been mainly focused to date on the develop-
ment of tracking methods [3, 9, 10]. For a long time,
the workhorse has been the extended Kalman filter [3]
and various versions [1] have been especially developed
for this problem. Due to the highly nonlinear nature of
the problem, sequential Monte-Carlo method is a strong
challenger [4, 10] and allows to avoid uncertain linearisa-
tions, which is a definite advantage. Including a
Markovian modelling (e.g. of the ballistic coefficient)
leads to consider a Bayesian framework [8] and to
replace the ‘classical’, CRB by the posterior Cramér-Rao
bound (PCRB [11]). It is worth mentioning the works of
Farina et al. for carrying out a systematic comparison
between PCRB and the filter performance in this context
[6, 12]. However, as far as we know, there is no analytical
explanation for investigating the estimability (improperly
called observability) of the ballistic coefficient during the
re-entry phase. More precisely, the main result is to
show how and why it is the violent speed decrease due
to the dynamic pressure which renders possible estimation
(and tracking) of the ballistic coefficient during the
re-entry phase.

To a large extent, this article is based on ballistic models
developed byAllen et al. [13, 14]. Note that Allen pushed the
analysis far further than the elementary model used here and
that, for time forward, this theory has been widely extended
and refined [15]. Furthermore, the great ideas he developed
are still the grounds of more recent developments.

The paper is organised as follows. The 2-D re-entry
model is presented in Section 2, while Section 3 deals
with methods for approximating the determinant (and
sub-determinant) of the FIM. Using the results of Section
3, it is then possible to obtain a closed form approximation
of the CRB for the ballistic coefficient in case of range only
measurements, which is the aim of Section 4. Following the
guidelines of Section 3, this analysis is easily extended to
range and bearing measurements (Section 5). In Section 6,
simulation results are given. Detailed calculations are
skipped in Appendices.

2 2-D re-entry model

In re-entry vehicle (RV) tracking, various dynamic models
have been proposed for the endo-atmospheric phase [1, 3, 4,
10]. Here, the article strictly focuses on the ballistic coeffi-
cient estimability and not on RV tracking. Since the full 3D
problem is rather intricate, we shall restrict to a simpler but
insightful 2D modelling. We choose the so-called Allen
re-entry model described in [13, 16], commonly used in
the field of re-entry aerodynamics. Close to [4], this 2D

Fig. 1 2D ballistic scenario: the problem parametrisation
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model is a zero-incidence endo-atmospheric model, with
only aerodynamic drag and no lift. This strong hypothesis
requires in particular that the RV is statically and dynami-
cally stable, the possible incidence fluctuations have
damped down, the ablation is limited and does not generate
inertial and aerodynamic asymmetries, and so on. Dealing
with high-speed objects with low SCX/M, it is then correctly
assumed in Allen model that the ballistic coefficient b is
constant. Furthermore, as we focus on the decelerating
phase (typically under around 50–65 km altitude), it is
possible to consider that the gravity becomes negligible
compared to the drag force. With no gravity, there is no tra-
jectory slope variation and the re-entry angle is constant.
Subsequently, the re-entry angle g can be considered to
be known. A reasonable assumption, taking into account
prior observation before the re-entry phase and the fact
that the lift force is non-significant.
Moreover, let us briefly mention other important assump-

tions: there is no centrifugal and Coriolis acceleration, the
Earth is flat and does not rotate. Finally, note that the
radar is assumed to be fixed. The parameters involved in
the 2D modelling are described in Fig. 1.
Let g be the re-entry angle, and vx, vy the two components

of the target velocity vector, the state vector for this 2D
re-entry problem is the four-dimensional vector

x W (r(t0), v[ y(t0)], u(t0), b)
T (1)

The differential equation governing the system dynamic
stands as follows

_vy ¼ g0 þ sin(g)bq(y) _vx ¼ cos(g)bq(y)

with

q( y) ¼
1

2
r( y)v2(y) dynamic pressure

(2)

where y is the norm of the velocity vector and g0 is the
gravity. As said previously, it is possible in the decelerating
phase to consider that g0 is negligible compared to dynamic
pressure [13], then (2) is a bit simplified that is

_v ¼
1

2
br ( y)v2 (3)

Note however that the simplicity of the above formulation is
only apparent since the parameter r is a function of the
altitude y.

2.1 Expression of the speed against altitude

From (3) and considering the exponential atmospheric
density model, Allen [13] was able to obtain an explicit
solution of (3), yielding

v( y) ¼ v[ y(t0)] exp �
1

2 sin (g)
bcrr( y)

� �
(4)

Note that in (4), the velocity v(y) is expressed as a
function of the altitude y. It is possible to obtain an exact
formula of the speed against time for example v[y(t)] by
substituting

y(t) ¼ sin(u(t0))r(t0)�

ðt

t0

v[ y(t)] sin (g) dt (5)

in (4). Then
Ð t

t0
v[ y(t)] dt is a solution of a differential

equation.
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2.2 Range approximation

Our system is parameterised by two angles, namely g (the
re-entry angle) and j (the angle between the re-entry path
and the initial line of sight ut0

). The following range
approximation is then instrumental in deriving closed-form
FIM approximations.
Let us denote v[y(t)] the speed along the re-entry path,

and the angle z is used to have a negative cosine for the
part of the speed vector which is along the initial line of
sight, z W p2 j. The vector v[y(t)] is then decomposed
into two components: projection along the initial line of
sight (associated with ut0

), that is the radial component
vr(t), and the orthogonal (or angular) component va(t),
that is

vr(t) ¼ v[ y(t)] cos (z ) va(t) ¼ v[ y(t)] sin (z )

and, similarly

rr(t) ¼ r[ y(t)] cos (z ) ra(t) ¼ r[ y(t)] sin (z )

_vr(t) ¼ _v[ y(t)] cos (z ) _va(t) ¼ _v[ y(t)] sin (z )

(6)

A common assumption is that: ra(t) � rr(t). Now, using the

classic approximation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 þ B2Þ

p
’ A þ ð1=2ÞB2=A, valid

for real positive numbers such as A � B, the following
range approximation is derived

r(t) ¼ r(t0)þ

ðt

t0

vr dt

 !2

þ

ðt

t0

va dt

 !2
0
@

1
A

1=2

’ r(t0)þ

ðt

t0

vr dtþ (1=2)
(
Ð t

t0
va dt)

2

(r(t0)þ
Ð t

t0
vr dt)

(7)

This simple approximation will be of constant use
subsequently.

3 2D FIM and determinant approximations, for
range-only measurements

The object of this section is to investigate closed-form
approximation of the FIM, so as to provide a closed-form
expression of an accurate lower bound for the variance of
any estimator of the ballistic coefficient b (see Section 4).
In this section, we restrict to range only measurements [17].

3.1 FIM matrix

Let M be the gradient vector of the observation along the
target trajectory, that is

M t ;
@r(t)

@r(t0)
,

@r(t)

@v[ y(t0)]
,
@r(t)

@u(t0)
,
@r(t)

@b

� �T

(8)

and let N t ¼ ð1=srÞM t, with sr the range measurement
standard deviation. In this deterministic context, the FIM
calculation is quite standard and we have

FIMr
(t0,tk )

¼
Xtk

s¼t0
N sN

T
s ¼ Z ZT (9)

with Z ¼ [N t0
jN t1

j � � � jN tk
] the matrix whose each column

is the vector N t from t ¼ t0 to t ¼ tk . It is well known
that the determinant of the FIM is a convenient ‘measure’
of the system estimability. However, it is obvious that
brute force calculations (even via symbolic computations)
will lead to inextricable formulas due to the highly non-
linear nature of the system [see (6)], and will be of no
help for understanding the key parameters governing the
IET Radar Sonar Navig., Vol. 1, No. 3, June 2007
system estimability. Surprisingly, using basic multilinear
algebra properties and some justified approximations, we
shall show that it is possible to obtain relatively simple
closed-form approximations of the FIM determinant and
relevant sub-determinant.

3.1.1 Cauchy-Binet formula and its consequences:
The Cauchy-Binet formula is instrumental for calculating
the determinant det (FIMr

(t0,tk )
) ¼ det (ZZT). More pre-

cisely, basic determinant properties (multilinear and alter-
nate form) yield (see [5])

det FIMr
(t0,tk )

� �
¼
X

0�p�q�r�s�k
[ det (N tp

, N tq
, N tr

, N ts
)]2

(10)

Calculations are then reduced to calculations of elementary
4 � 4 matrices. Consider now a fourth-order expansion of
the gradient vector (~ti W ti � t0), that is,

M ti
¼ M t0

þ ~ti M
(1)
t0

þ
~t
2
i

2
M

(2)
t0

þ
~t
3
i

6
M

(3)
t0

(11)

and let us define the 4 � 4 square matrix

V(t) W M ,
dM

dt
,
d2M

dt2
,
d3M

dt3

� �
(t)

W M t, M
(1)
t , M (2)

t , M (3)
t

� 	 (12)

Then, a very accurate approximation of the FIM determi-
nant stands as follows

det (FIMr
(t0,tk )

)

¼
1

s8
r

X
0�p,q,r,s�k

[ det (M tp
, M tq

, M tr
, M ts

)]2

’ R(k) [ det (V(t0))]
2

with

R(k) ¼
X

0�p,q,r,s�k

Q2(~tp, ~tq, ~tr, ~ts) and

det (V(t0)) ¼ det N , N (1), N (2Þ, N (3)
� �

(t0)

In (13), Q is the homogeneous (p, q, r, s) polynomial

Fig. 2 Angular variation against range variation
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defined by (tp ¼ t0þ pd, d: inter-dwell time)

Q(p, q, r, s) ¼
1

12
(qs2r3 � qr2s3 þ q2rs3 � q2sr3

þ q3sr2 � q3s2r þ pr2s3 � ps2r3

þ pq
2
r
3
� pq

2
s
3
þ pq

3
s
2
� pq

3
r
2

þ p
2
sr

3
� p

2
s
3
r þ p

2
qs

3
� p

2
qr

3

þ p2q3r � p2q3s þ p3sr2 � p3s2r

þ p3qs2 � p3qr2 þ q2p3s � q2p3r)

(13)

Although this formula is already of great interest for
our study, it still remains a problem. Indeed, the highly
nonlinear dynamic is inducing a growing error in the
Taylor approximation of formula (11), if all terms are
computed based on the matrix det (M , dM=dt, d2M=dt2,
d3M=dt3)(t0), at the initial instant t0. Thus, we can refine
previous approximations; this time evaluated in the vicinity
of successive instants t0, . . . , tk, yielding

det (FIMr
(t0,tk )

) ’ 1

s8
r

X
0�q�k

S(q, k)[det (V(tq))]
2

with

S(q, k) ¼
X

p�q�r�s�k
Q2(tp � tq, 0, tr � tq, ts � tq)

(14)

The time period tq is chosen as the reference time for expan-
sion, because of its intermediate position. Of course, tr
could have been chosen instead. In Fig. 3, we show the
expansion polynomials S(i, 50) [see (14)] against i,
whether tq or tr is chosen to develop the formula. Remark
that they are not symmetric. A symmetric expansion can
be obtained by computing the mean of the two former
expansions. Not surprisingly, we shall see that best approxi-
mations are obtained via this symmetrised approximation.

It remains now to derive convenient closed-form approxi-
mations of the V matrix.

3.2 Closed-form approximations of the V matrix

The calculation of a convenient closed-form approximation
of the V matrix will be obtained via some approximations.
First, a crucial point is to obtain convenient approximations
of the dM=dt vector.

Proposition 1: Using the system of exact equations (4) and
(5), we have the following approximations of the speed
partial derivatives as well as of its time derivatives (see

Fig. 3 Symmetric and unsymmetric expansions
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Appendix A, for a proof)

@v[ y(t)]

@r(t0)
’ e(t)

sin (u (t0))

sin (g)
’ 0 (15)

@v[ y(t)]

@v[ y(t0)]
’ v[ y(t)]

v[ y(t0)]
(16)

d

dt

@v[ y](t)

@r(t0)
’ _e(t)

sin (u(t0))

sin (g)
’ 0 (17)

d

dt

@v[ y](t)

@v[ y(t0)]
’ e(t) ’ 0 (18)

d

dt

@v[ y](t)

@b
’ 1

2
r( y(t))v2 (19)

with e(t) ;
1

2
br( y(t))v[ y(t)] (20)

These approximations are valid if e(t) is small enough in
regard to 1, a reasonable hypothesis in the re-entry
context. Indeed for our application, we typically have (cst:
here denotes an integer, comprised between 1 and 5,)
v ’ cst 103m s�1, b ’ 10�4 m2 kg�1, and thus e(t) ’
ðcst r(t)Þ=20:
To give the magnitude of r(y) values, r ’ 1 �

1024 kg m23 for y ¼ 65 km, r ’ 2 � 1023 kg m23 for
y ¼ 45 km and r ’ 1.2 kg m23 at ground level. We also
suppose that g is sufficiently large enough for avoiding
singularities.
Then, the following proposition summarises our

approximations.

Proposition 2: Let us suppose valid the approximations of
Proposition 1 and furthermore, assume that rr(t) � ra(t).
Additionally, let us denote ũ (t) ¼ u(t)� u(t0), the angular
change (sufficiently small, see Fig. 2). Then, the V(t)
matrix is a quasi-lower-triangular matrix, with only one
non-zero coefficient above the diagonal (V[3,4] namely)
only one term, so that

1.

det (V(t)) ’ V[1,1](t)V[2,2](t) [V[3,3](t)V[4,4](t)

�V[4,3](t)V[3,4](t)�
(21)

2. Using the above formula and convenient approximations
of theV[i,j] coefficients, the following closed-form approxi-
mation of det(V(t)) is finally obtained

det (V(t)) ’ 2vr

v[ y(t0)]

_v2

b

r(t0)

r(t)
cos2 (j )

� �u̇ þ {ũ (t)þ cot (j )}
ṙ(t)

r(t)

� � (22)

The proof is developed in Appendix B, (see Fig. 2 for the
definition of the angle j)

4 Closed-form CRB approximation for the
ballistic coefficient b (range-only measurements)

We shall now use the preceding results for deriving closed-
form approximations for the CRB related to the estimation
of the ballistic coefficient b in the range-only case. The
main result of this section will be to emphasise that this
IET Radar Sonar Navig., Vol. 1, No. 3, June 2007



lower bound is tightly related to the dynamic pressure.
Thus, it is the abrupt deceleration induced by the increase
of atmospheric density which renders it ‘estimable’. A
priori uncertainty is represented by a matrix F0

21 ¼ diag
(s 2

r , s
2
v , s

2
u , s

2
b), so that

FIMr
(tk )

¼ F0 þ FIMr
(t1,tk )

The lower bound, CRBr
b, for the coefficient b is the (4, 4)

term of [FIMr
(tk )

]�1. Let A be the (3 � 3) matrix extracted

from FIMr
(tk )

, excluding the last column and last line (the

cofactor of FIM r
(tk)
(4, 4)), then

A(tk )
¼ A0 þ A(t0,tk )

Now, using the classical formula yielding the inverse of a
square matrix, we have

CRBr
b ¼

1

det (FIMr
(tk )

)
det (A(tk)) (23)

Note that det (A(tk)) can be evaluated in the same way that
the FIM determinant was evaluated. More precisely, let us
define the 3� 3 square matrix

Q(t) ; M ,
dM

dt
,
d2M

dt2

� �
(t) ¼ M t, M

(1)
t , M (2)

t

� 	
then

det (Q(t)) ’
Y3
i¼1

Vi,i ’ 2
vr

v[ y(t0)]

r(t0)_v cos
2 (j )

r(t) sin (j )

(24)

More generally, using Lemma 2, we have

det (A(t0,tk )
) ¼

1

s 6
r

X
0�p�q�r�k

det (M tp
, M tq

, M tr
)2

¼
1

s 6
r

X
0�q�k

X
p�q�r�k

det (M tqþ(tp�tq)
,

M tq
, M tqþ(tr�tq)

)2

¼
1

s 6
r

X
0�q�k

U (q, k) : det (Q(tq))
2

with U (q, k) ¼
X

p�q�r�k

P(tp � tq, 0, tr � tq)
2 (25)

Here P is the homogeneous polynomial

P(p, q, r) ¼
qr

2

2
þ

pq
2

2
þ

p
2
r

2
�

q
2
r

2
�

pr
2

2
�

p
2
q

2
(26)

(An evaluation of the polynomial function U(q) can be
found in Appendix C, Lemma 3.)
Collecting all the previous results and neglecting initial

information about the r, v, u parameters, we have the fol-
lowing result, which summarises the main contribution of
this article.

Proposition 3: Let CRBr
b(tk), the lower bound relative to

the estimation of the ballistic coefficient b at time tk.
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Then, the following closed-form approximation holds true

CRBr
b(tk) ’

ð1=(s�
vs

�
rsu)

2
Þ þ f (k)

1=(s�
vs

�
rsusb)

2 þ ð1=s2
bÞ f (k)þ g(k)

¼
1

s 2
b

þ
g(k)

ð1=(s�
vs

�
rsu)

2Þ þ f (k)

 !�1

’ 1

s 2
b

þ
g(k)

f (k)

 !�1

with

f (k) ¼
1

s 6
r

X
0�q�k

U (q, k)
vr

v[ y(t0)]

2r(t0)_v cos
2(j )

r(t) sin(j )

� �2

g(k) ¼
1

s8
r

X
0�q�k

S(q, k)
vr

v[ y(t0)]

2_v2r(t0)

br(t)
cos2(j )

�

� �u̇ þ ðũ (t)þ cot(j ))
r(ṫ )

r(t)

� ��2
(27)

This approximation is initially equal to s 2
b and brutally

decreases as soon as the quotient _v=b ¼ ð1=2Þp( y) : v2

becomes sufficiently high that it is impossible to neglect
its effect. Moreover, considering the functions f and g, we
see that the effect of the term _v=b is amplified by a poly-
nomial function (in k), whose greater exponent is 8 (i.e. it
is / k

8). Numerical experiments show that the effect of
dynamic pressure for estimating b becomes perceptible at
an altitude of 65 km, where r(y) . v2 ¼ cst � 100 if
v ¼ cst � 103 m s21. We also remark that when the angle
j tends to p/2, the functions f(k) and g(k) tend to zero,
then become constant functions.

We can extract from our approximation additional infor-
mation. Indeed, if we locate at the points where the time
derivative of the CRB is zero; then at this point we have
actually

CRB0
¼ �

(g=f )0

(s2
b + g(k)=f (k))2

and if CRB0
¼ 0

we have (g=f )0 ¼ 0 ¼ or g0=f 0 ¼ g=f

CRB ¼
1

s 2
b

þ
g0(k)

f 0(k)

 !�1

(28)

To obtain the derivatives f 0(k) and g0(k) we just have to
remark that these functions are discrete sums indexed on k
(exactly like integrals approximations), hence the derivative
is nothing else than the last term of the sum. In our case,
elementary calculations yield

CRBr
tk=CRB

0¼0 ¼
1

s 2
b

þ
1

s2
r

S(k, k)

U (k, k)

q(y)

b

�"

�ðsin2 (j ) �u̇ þ ũ (tk)
ṙ(tk)

r(tk)

� �
þ cos2 (j )

_r(tk)

r(tk)

��2#�1

(29)

Thus, the estimability of the parameter b is proportional to
the product of the dynamic pressure by the relative range
derivative if there is no orthogonal part of the dynamic,
typically no lift, and by the angular derivative if there is
non-radial part.
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5 Computation of the CRB of coefficient b with
range and bearing measurement

Up to now, we restricted to range-only measurements.
Considering range and bearing measurements requires
only a slight extension of preceding derivations. More pre-
cisely, using an approximated chain rule that is (a: generic
parameter):

@u(t)

@a
’ @u(t)

@r(t)

@r(t)

@a
¼

tan(j )

r(t)

@r(t)

@a

the bearings-only FIM (denoted as FIMu
(t0,tk )

is straightfor-
wardly obtained

FIMu
(t0,tk )

¼
Xtk

s¼t0

tan2ðjÞ

rðtÞ2s2
u

MsM
T
s (30)

Assuming that the analysis duration is not too important, we
have

FIMu,r
(t0,tk )

; FIMu
(t0,tk )

þ FIMr
(t0,tk )

’ tan2 (j )

r(t0)
2s 2

u

þ
1

s2
r

 !Xtk

s¼t0

MsM
I
s

(31)

Thus, (27) is just replaced by

CRBu,r
b (tk) ’

1

s 2
b

þ
i(k)

h(k)

 !�1

Fig. 4 RV altitude evolution

Table : Scenario parameters

Name Description Value

[x, y] target initial

coordinates

[24 6897 m, 95 921 m]

[vx, vy] target initial speed

vector

[26278 m s21, 22100 m s21]

b ballistic coefficient 5 � 1024 m2 kg21

j angle between initial

LOS and speed vector

0.02 rad

[sr, su] measurement errors std [5 m, 1 � 1024 rad]

dt time interval between

measurements

1 s

g re-entry angle 0.323 rad
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with

h(k)¼ s(r, u)6
X

0�q�k
U (q, k)

vr
v[y(t0)]

2r(t0)_vcos
2(j )

r(t)sin(j )

� �2

i(k)¼ s(r, u)8
X

0�q�k
S(q, k) :

vr
v[y(t0)]

2_v2r(t0)

br(t)
cos2(j )

�

� �u̇ þ (ũ (t)þcot(j ))
ṙ(t)

r(t)

� ��2

s(r,u)¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan2 (j )

r(t0)
2s2

u

þ
1

s2
r

s

(32)

The contribution of the bearing measurement in the FIM
exists if sin(j ) is strictly positive, which means an
angular relative displacement. Note that it is also pro-
portional to the inverse of the range. Quite similarly to
the range only case, we obtain the very simple formula
for the CRB, at critical instants

CRBr,u
tk=CRB

0¼0
¼

1

s2
b

þ s(r, u)2
S(k, k)

U (k, k)

"

�
_v

b
sin2 (j)(� u̇ þ ũ (tk)

ṙ(tk)

r(tk)
þ cos2 (j)

ṙ(tk)

r(tk)

� �� �2#�1

(33)

6 Simulation results for range and bearing
measurements

We present results for range and bearing measurements in
order to show the approximation validity and to illustrate
its use. The studied scenario is described in Table 1:

Fig. 5 RV deceleration evolution

Fig. 6 b estimation error bounds (sb ¼ 2.5 � 1024 m2 kg21)
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In Figs. 4 and 5, the RV trajectory altitude and decelera-
tion are, respectively, represented during the 50 s radar
observation. We shall note here that the altitude 65 km is
related to the 15-th measurement period.
In Figs. 6 and 7, we show the b estimation error bounds

provided by the exact CRB and by the approximation. sb is

set, respectively, to 2.5 � 1024 m2 kg21 and 1024 m2 kg21.
The continuous line stands for the exact value of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CRBb

p
,

whereas the dashed line represents the approximation with
the symmetric expansion described in Section 3. On
Fig. 6, the approximation obtained with the unsymmetric
expansion is represented in dotted line. In both cases, the
CRB curve is at first flat. This means that the measurements
do not yet give any information that could lead to a decrease
of the initial estimation error sb. Then a strong decrease
begins at time 15 when the dynamic pressure effect
becomes noticeable (roughly at 65 km altitude). At this
moment, the deceleration _v enhances the value of the FIM
determinant and leads the CRB value to zero. Note that
nearly at the same moment the approximated and exact
bounds indicate that the b coefficient starts to be observable.
Concerning the computation requirement, the approxi-

mation is not demanding. Once the target trajectory simu-
lated and the U and S polynomials computed, the result is
computed quasi-instantaneously. Compared to the exact
CRB, its computation is several decades faster.
Fig. 8 illustrates a basic application to radar require-

ments. Assuming an initial sb value of 1024 m2 kg21

and a radar rate of 1 Hz, it represents at 40 km altitude
the approximated bound in function of the range and
angle measurement errors. Then, if one wishes there a

Fig. 7 b estimation error bounds (sb ¼ 1024 m2 kg21)

Fig. 8 Requirements on radar measurement errors
IET Radar Sonar Navig., Vol. 1, No. 3, June 2007
ballistic coefficient precision of 5 � 1025 m2 kg21, it is
straightforward to obtain the R requirement area in radar
measurement errors. Note that the approximation precision
is sufficient enough in this parametric analysis.

In the same way, it is possible to make use of the closed-
form approximation (32) to evaluate dynamically at a given
time what are the radar resources (scan rate, measurement
errors etc.) which must be allocated to the tracked targets
to obtain a given sb estimation precision at a certain
altitude.

7 Conclusion

Analysing the estimability of the ballistic coefficient during
the re-entry phase is a challenging problem. A realistic
highly nonlinear model of the target trajectory, based on
Allen re-entry works, has been considered. The main
results are closed-form approximations of the CRB.
Simulation experiments show us that they are quite accu-
rate. These novel results enhance the potential to understand
the ballistic coefficient estimability. They can be quite
useful for extracting dimensioning factors that determine
ballistic coefficient estimation. For instance, they can
provide a way to determine radar requirements or to
improve the sensor management.

Some future work could consist in evaluating the ballistic
coefficient estimability in more general situations. For
example, it would be useful to extend the current results
to the case where the radar is not in the trajectory plane,
where the re-entry angle gamma is not perfectly known or
where the ballistic coefficient varies.
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9 Appendix A: partial derivative approximations

We begin this rather technical appendix by proving the
validity of the approximations given in Proposition 1
[(15)–(19)], which are instrumental for calculating closed-
form approximations of the CRB.

9.1 Validity of approximations (15) and (16)

First, let us recall the exact dynamic system equations

v[ y(t)] ¼ v( y(t0)) exp �
1

2 sin (g)
bcr r( y(t))

� �

y(t) ¼ sin (u(t0))r(t0)�

ðt

t0

v[ y(t)] sin (g) dt

(35)

Differentiating the first row of (35), we obtain

@v[ y(t)]

@r(t0)
¼

r(t)bv[ y(t)]

2 sin (g)

@y(t)

@r(t0)
¼

e(t)

sin (g)

@y(t)

@r(t0)

@v[ y(t)]

@v[ y(t0)]
¼

r(t)bv[ y(t)]

2 sin (g)

@y(t)

@v[ y(t0)]
þ

v[ y(t)]

v[ y(t0)]

¼
e(t)

sin (g)

@y(t)

@v[ y(t0)]
þ

v[ y(t)]

v[ y(t0)]

(36)

Differentiating the second row of (35), we obtain

@y(t)

@r(t0)
¼ sin (u(t0))�

ðt

t0

@v[ y(t)]

@r(t0)
sin (g) dt

@y(t)

@v[ y(t0)]
¼ �

ðt

t0

@v[ y(t)]

@v[ y(t0)]
sin (g) dt

(37)

If we substitute (37) (first row) in (36) (first row) and (37)
(second row) in (36) (second row), we obtain

@v[ y(t)]

@r(t0)
¼

e(t)

sin (g)
sin (u(t0))�

e(t)

sin (g)

ðt

t0

@v[ y(t)]

@r(t0)
sin (g) dt

@v[ y(t)]

@v[ y(t0)]
¼ �

e(t)

sin (g)

ðt

t0

@v[ y(t)]

@v[ y(t0)]
sin (g) dtþ

v[ y(t)]

v[ y(t0)]

(38)

To derive convenient approximations of the partial deriva-
tives @v[ y(t)]=@r[ y(t0)] and @v[ y(t)]=@v[ y(t0)] we define
first the S and T integrals

S ¼

ðt

t0

@v y(t)½ �

@r(t0)
dt, T ¼

ðt

t0

@v y(t)½ �

@v[ y(t0)]
dt (39)

Defining _S ¼
D
dS=dt and T ¼

D
dT=dt; _S and _T are solutions
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of the following differential system

@v[ y(t)]

@r[ y(t0)]
¼ _S ¼

e(t)

sin (g)
sin (u(t0))� e(t)S

@v[ y(t)]

@v[ y(t0)]
¼ _T ¼ �e(t)T þ

v[ y(t)]

v[ y(t0)]

S(t0) ¼ 0 T (t0) ¼ 0

(40)

This can be solved to give (just differentiate to verify)

S ¼ exp �

ðt

t0

e(s) d s

" # ðt

t0

exp

ðs

t0

e(w) dw

" #

�
e(s)

sin (g)
sin (u (t0)) d s

T ¼ exp �

ðt

t0

e(s) d s

" # ðt

t0

exp

ðs

t0

e(w) dw

" #
v[ y(s)]

v[ y(t0)]
d s

(41)

Substituting (41) in (40), the following majorations are
straightforwardly deduced

@v[ y(t)]

@r(t0)










 ¼ j _Sj �

e(t) sin (u(t0))

sin (g)
þ e(t)

ðt

t0

e(s) sin (u(t0))

sin (g)
d s

@v[ y(t)]

@v[ y(t0)]










 ¼ j _T j �

v[ y(t)]

v[ y(t0)]
þ e(t)

ðt

t0

v[ y(s)]

v[ y(t0)]
d s

(42)

This proves formulas (15) and (16).
b) Equations (17) and (18)
To prove formula (17), and (18), we note that

_v ¼ 1
2
r(t)bv2 so that straightforward calculations yield

d

dt

@v[ y(t)]

@r(t0)
¼

@_v[ y(t)]

@r(t0)
¼ 2e(t)

@v[ y(t)]

@r(t0)

d

dt

@v[ y(t)]

@v[ y(t0)]
¼

@_v[ y(t)]

@v[ y(t0)]
¼ 2e(t)

@v[ y(t)]

@v[ y(t0)]

(43)

Then, using the approximations of (15) and (16), approxi-
mations 17 and 18 are straightforwardly deduced.
c) Equations (19)
Thanks to (35), we obtain

@v

@b
¼ �

1

2 sin g
r cr

� �
v

whence

d

dt

@v

@b
¼

@

@b

1

2
brv

2

� �
¼

1

2
rv

2 1� 2e
r cr

v sin (g)

� �
(44)

But cr and v are of the same order. For instance, we have
cr ¼ 7000 and v ¼ cst � 1000 m s21. This proves formula
(19).
Now, we have to calculate the components of the gradient

vectors Mt, M
(1)
t , M (2)

t , M (3)
t . To that aim, the following

elementary lemma is also instrumental:

Lemma 1: Let p be a real parameter, like r(t0), v[y(t0)] or b,
and consider the following range approximation

r ¼ X þ
1

2

Y 2

X
with X ¼ r(t0)

ðt

t0

vr dt, Y ¼

ðt

t0

va dt
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then we have

@r

@p
¼

@X

@p
þ
@Y

@p

Y

X
�
1

2

Y

X

� �2@X

@p

and

d

dt

@r

@p
¼

@vr

@p
þ
@Y

@p

d Y
X

� �
dt

þ
Y

X

@va
@p

�
1

2

@vr
@p

Y

X

� �2

�
Y

X

d Y
X

� �
dt

@X

@p

(45)

Furthermore, assuming X � Y, we obtain

d

dt

@r

@p

� �
’ @vr

@p
þ
@Y

@p

va
X
þ

Y

X

@va
@p

�
1

2

@vr
@p

Y

X

� �2

(46)

and

d2

dt2
@r

@p
’ @_vr

@p
þ
@va
@p

va
X
þ
@Y

@p

_va
X
þ

va
X

@va
@p

þ
Y

X

@_va
@p

(47)

Proof: For the first part, it is a simple application of differ-
ential calculus. For the second part, we just have to remark
that

d(Y=X 2)

dt
¼

va
X 2

� 2vr
Y

X 3
’ 0

d(Y=X )

dt
¼

va
X
� Y

vr
X 2

’ va
X

1

X

d(Y=X )

dt
¼

va
X 2

� Y
vr
X 3

’ 0
d(1=X )

dt
¼ �

vr
X 2

’ 0

(48)

A

10 Appendix B: obtaining closed-form
approximations of the V matrix

Here is the proof of the Proposition 2 presented in Section
3. Considering the approximation given by (7), it is con-
venient to define the following quantities

X ¼ r(t0)þ

ðt

t0

vr(t) dt Y ¼

ðt

t0

va(t) dt (49)

We want to evaluate the FIM for range observations and
estimation of the parameter vector (r, v, ut0

, b).
Let us now derive convenient approximations of theV[i,j]

coefficients:

1) † V[1,2]:
Invoking (46) (Lemma 1) and (15), we obtain

V[1,2] ;
d

dt

@r

@r(t0)
’ @Y

@r(t0)

va
X

(50)

Now, we have

@Y

@r(t0)
(t) ¼

ðt

t0

@va(t)

@r(t0)
dt ¼

ðt

t0

e(t) dt (51)

Hence, @Y=ð@r(t0)Þ½va=X � ’ 0 and, finally, V[1,2] ’ 0.

2) † V[1,3]:
Using (47) (Lemma 1) and approximation (17), we have

V[1,3] ;
d2

dt2
@r

@r(t0)
’ @Y

@r(t0)

_va
X

and V[1,3] ’ 0.

3) † V[2,3]:
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By (47) (Lemma 1) and approximation (18), we deduce

V[2,3] ;
d2

dt2
@r

@v[ y(t0)]
’ @Y

@v[ y(t0)]

_va
X

(52)

But, we have also

@Y

@v[ y(t0)]
(t) ¼

ðt

t0

@va(t)

@v[ y(t0)]
dt

’ sin (z )

ðt

t0

vðtÞ

v(t0)
dt � sin (z) � (t � t0)

(53)

because v(t0) 	 v(t). Thus, @Y=ð@v[ y(t0)]Þð_va=X Þ ’ 0, and
V[2,3] ’ 0

4) † Let us now compute the diagonal terms of the first
block. By (45) and approximation (15), we obtain

V[1,1] ¼
@r

@r(t0)

’ 1þ

ðt

t0

e(t) cos (z ) dtþ

ðt

t0

e(t) sin (z )
Y

X
dt (54)

Similarly, (16) and (46) yield

V[2,2] ¼
d

dt

@r

@v[ y(t0)]
’ vr

v[ y(t0)]
þ

Y

X

va
v[ y(t0)]

(55)

5) † V[4,3]:
Equations (47) and (19) yield

V[4,3] ¼
d2

dt2
@r

@b
’ @_vr

@b
þ

Y

X

@_va
@b

þ 2
@va
@b

va
X
þ
@Y

@b

_va
X

’ _vr
b
þ (u� u(t0))

_va
b
þ 2

[va(t)� va(t0)]

b
u̇

þ
[Y (t)� Y (t0)]� (t � t0)va(t0)

b
ü (56)

The first part of the above approximation of V[4,3] is the
ratio of the radial acceleration by b, and the second part
can be Y=X ’ u, va=X ’ u̇ , v̇a=X ’ ü (because X is sup-
posed much bigger than Y ). Hence, the information about
non-radial component is proportional to the variation of u.
6) † The u terms:
To investigate the V coefficients related to the angle (i.e.
partial derivatives w.r.t. u) u, we just have to compute two
terms (because of the zeros in the matrix): V[3,3] and V[3,4].
To do this, it is worth considering the relation between the
range variation and the angular variation, as illustrated in
Fig. 2, which is given by the following equations

sin (ũ (t)) ¼ sin (j )
kr(t)� r(t0)k

kr(t)k
(57)

or

sin (ũ (t))2 ¼ sin (j )2

�
kr(t)k2 þkr(t0)k

2
� 2kr(t)kkr(t0)k cos (ũ (t))

kr(t)k2

(58)

Hence, since ũ (t) is supposed to be small, using the
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second-order approximation of sine and cosine we deduce

r(t)’ r(t0)

1� ðũ (t)= tan (j )Þ

’2 r(t0) 1þ
ũ (t)

tan (j )
þ

ũ (t)2

ðtan j )2

� � (59)

This allows us to obtain a simple expression of the derivative
of the range against the initial angle

V[3,1] ¼
@r

@u(t0)
¼

r(t0)

tan (j )
� 2r(t0)

ũ (t)

tan (j )2

and its successive derivatives, using Y=X ’ u, va=X ’ u̇ ,
u̇ a=X ’ ü (because X is supposed much bigger than Y )

(V[3,2])¼
@_r

@u(t0)
’ �2r(t0)va

X tan2 (j )

¼
�2r(t0)v cos

2 (j )

X sin (j )
’�2r(t0)v cos

2 (j )

r(t) sin (j )
(60)

(V[3,3])¼
@€r

@u(t0)
’ �2r(t0)_va

X tan2 (j )

¼
�2r(t0)_v cos

2 (j )

X sin (j )
’�2r(t0)_v cos

2 (j )

r(t) sin (j )
(61)

(V[3,4])¼
d

dt

@€r

@u(t0)
’�2r(t0)€v cos

2 (j )

r(t) sin (j )
þ
2r(t0)_r_v cos

2 (j )

r(t)2 sin (j )

(62)

7) † det(V):
Using these results, we can see that the matrix has the
following structure

V ¼

V[1,1] 0 0 0

V[2,1] V[2,2] 0 0

V[3,1] V[3,2] V[3,3] V[3,4]

V[4,1] V[4,2] V[4,3] V[4,4]

0
BB@

1
CCA (63)

This leads to the general formula of the determinant. The
evaluation itself is obtained by neglecting the term
ð2[va(t)� va(t0)]=bÞu̇þð[Y (t)�Y (t0)]� (t � t0)vaðt0Þ�=bÞü
In V[4,3]. Indeed in that case

V[4,4] ¼
d

dt
V[4,3] ’

€vr
b
þ ũ

v̈a
b
þ u̇

v̇a
b

(64)

Finally, collecting all the previous results, and the following
(kinematic identities)

vr ¼ v cos (z) ¼ �v cos (j ) va ¼ v sin (z) ¼ v sin (j )

_vr €v ¼ _v€vr _va €v ¼ _v€va

(65)

we have

V[3,3]V[4,4] �V[4,3]V[3,4] ¼
2r(t0) cos

2 (j )

r sin (j )

� �_v
€vr
b
� u̇

v̇av̇

b
� ũ

v̈av̇

b
�

v̇r
b
þ ũ

v̇a
b

� �
�v̈ þ

ṙv̇

r

� �
 �

¼
2r(t0) cos

2 (j )

r

_v2

b

_r

r
ũ � u̇ �

ṙ

r
cot (j )


 �
ð66Þ

This ends the proof. As a short endnote, we see that the
terms are homogeneous; (66) is zero iff u and r are that is
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linearly dependent over time, that is d=dt ½uþ cot (z)�
u(t0)=r� ¼ 0. A

11 Appendix C: FIM determinant expansion

We shall now turn towards expansions of the FIM determi-
nant. Results are summarised in the following lemma.

Lemma 2: (expansion of the FIM around t0)
Let P(p, q, r) be the following homogeneous polynomial

P(p, q, r) ¼
qr

2

2
þ

pq
2

2
þ

p
2
r

2
�

q
2
r

2
�

pr
2

2
�

p
2
q

2

and Q(p, q, r, s) be

Q(p, q, r, s) ¼
1

12
(qs2r3 � qr2s3 þ q2rs3 � q2sr3

þ q3sr2 � q3s2r þ pr2s3 � ps2r3

þ pq2r3 � pq2s3 þ pq3s2 � pq3r2

þ p2sr3 � p2s3r þ p2qs3 � p2qr3

þ p
2
q
3
r � p

2
q
3
s þ p

3
sr

2
� p

3
s
2
r

þ p
3
qs

2
� p

3
qr

2
þ q

2
p
3
s � q

2
p
3
r)

Then, denoting t̃i ¼ ti 2 t0 the relative time differences, the
following results hold:

† Consider the following second-order expansion of the
gradient vector Mt (see [5]):

M ti
¼
2
M t0

þ ~tiM
(1)
t0

þ
~t
2

i

2
�M

2
t0
,

then det M tp
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, M tr
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¼ P(~tp, ~tq, ~tr) det

� M t0
, M (1)

t0
, M (2)
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� �

† Consider the following third-order expansion of the
gradient vector Mti

(see [5]), then
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) ¼ Q(~tp, ~tq, ~tr, ~ts) det
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, M (1)

t0
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� �
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Proof: Let us denote ~ti ¼ ti � t0. Using the second-order
expansion of the three-dimensional gradient vector Mt and
the fact that the determinant is multilinear and alternate,
we obtain

( det (M tp
, M tq

, M tr
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� �
(69)
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Quite similarly, for four-dimensional vectors and a
third-order expansion of the three-dimensional gradient
vector Mt, we obtain
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�det M t0
,M (1)

t0
,M (2)

t0
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Lemma 3: (some useful identities)

X
1�p�q�k

(q � p2) ¼
1

12
k2(k � 1)(k þ 1)

X
1�p�q�k

(p2q � q2p)2 ¼
1

720
k2(k � 1)(k þ 2)

� (3k
2
þ 3k þ 2)(k þ 1)2
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