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Variational assimilation of POD low-order dynamical systems

JUAN D’ADAMO∗†, NICOLAS PAPADAKIS‡, ETIENNE MÉMIN‡
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With this work, we propose improvements to the construction of low-order dynamical systems (LODS)
for incompressible turbulent external flows. The model is constructed by means of a proper orthogonal
decomposition (POD) basis extracted from experimental data. The POD modes are used to formu-
late an ordinary differential equation (ODE) system or a dynamical system which contains the main
features of the flow. This is achieved by applying a Galerkin projection to the Navier–Stokes equa-
tions. Usually, the obtained LODS presents stability problems due to modes truncation and numerical
uncertainties, specially when working on experimental data. We perform the model closure with a
variational method, data assimilation, which refines the state variables within an iterative scheme. The
technique allows as to correct the dynamic system coefficients and to identify and ameliorate the issued
experimental data.

Keywords: Low-order dynamical systems; Proper orthogonal decomposition; Variational assimilation; Dynamic
system coefficients; Incompressible cylinder flow; PIV filtering

1. Introduction

The reduction of the Navier–Stokes equation to a system of ordinary differential equation
(ODE) has been largely studied by the computational fluid dynamics (CFD) community. With
different tools developed in this domain, it has been possible to reproduce or predict diverse
flow characteristics with a large detail. However, the computational cost of these calculations
becomes higher as the Reynolds number increases and when turbulent models are considered.

For these reasons, for a couple of years, different research efforts have been tried to deal
with the same problem through the so-called low-dimensional dynamic models (LODS) or
reduced order models. The goal, which is here less ambitious than a complete flow numerical
simulation, consists in capturing and representing the essential characteristics of the flow.
These methods aim at describing only coherent structures dynamics, sacrificing all the flows
detailed structures.

Some scenarios where these models are of major interest are in flow control applications
where simple systems are required. Actuation on coherent structures may be largely amplified
producing important modifications of the flow characteristics as it can take place in processes
such as boundary layer separation, vortex shedding, transition to turbulence, etc. Another field
of application of LODS concerns computational optimization problems where one seeks to
avoid the repetition of complete CFD calculations for different initial conditions or for slightly
different Reynolds numbers. Working with adequate LODS would accelerate the tasks in these
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2 J. D’Adamo et al.

cases. Furthermore, LODS can be helpful in experimental fluid mechanics as they allow as to
organize and interpret large data realizations, and to extract a model from them.

A way to obtain LODS is by means of the proper orthogonal decomposition (POD) tech-
nique. Also known as Karhunen–Loève decomposition, singular value decomposition, prin-
cipal components analysis, POD was first introduced in the context of turbulence by Lumley
[14]. It has been used by different authors (see for instance a review [11]) as a method to ob-
tain approximate descriptions of the large scale or coherent structures in laminar and turbulent
flows. Without any a priori hypotheses on the flow, the POD method provides a flow repre-
sentation in terms of a mean and a linear combination of basis functions, or modes, ordered
decreasingly by their kinetic energy content.

The estimation of the POD basis vectors relies on a set of flow-field realizations u(X, t)
which can either be obtained from CFD or experiments. Such a technique has been
proposed for many situations arising in a fluid dynamic problem: a non-exhaustive list in-
cludes analyses of shear layers [18], transition in boundary layers [19], turbulent bound-
ary layers [1], flow in a channel [8], flow around a circular cylinder [8], cavity flows [5],
etc.

Experiment-based POD models have to cope with numerical instability. Such a problem
is usually tackled by adding forced artificial closure terms [3, 4]. These instabilities come
mainly from evaluation of inner products and derivatives on the sparse grid of experimental
realization. Efforts to overcome this kind of problems were made by different approaches.
Particularly a polynomial identification technique was proposed firstly in [3], and than in
[16, 17]. The dynamic system coefficients are estimated not directly by Galerkin projec-
tion but from least-squares fitting of experimental data. The idea has also been proposed
in [6] where the authors study the optimal control method. However, this approach consid-
ers that the dynamical model is perfect and the solution is only monitored with the initial
condition.

In this work, we propose to improve such solution, by relying on the variational data assim-
ilation framework. Such a framework enables us to estimate the state of variables of interest
characterizing the flow under observation (such as pressure, density, velocity components,
salinity, etc.) given a dynamical law and sparse and possibly noisy measurements at different
time instants. This approach also allows us to handle very large scale systems and as such are
intensively used in environmental sciences [2, 13, 21–23] for atmospheric or oceanic analysis
and forecasting. We rely on this technique to estimate in batch mode the complete trajectories
along an image sequence of POD modes. As we will show it, such a method allows us to refine
a first crude initial estimate obtained through polynomial identification. The method couples
an imperfect noisy dynamic model with the whole sequence of observations. Given the whole
trajectories of POD modes, the dynamic system coefficients initially provided by noisy PIV
data can then be re-estimated from a mean square fitting of the assimilation results. As demon-
strated in the experimental section, the technique we propose enables the reconstruction of the
most salient characteristics of the flows for a long time range. The stability and the accuracy
of the LODS are significantly improved.

The remainder of the paper is organized as follows. First, the necessary basis to the con-
struction of a flow POD representation from particle image velocimetry (PIV) observations is
recalled in section 2.1. The way PIV observations can be filtered and improved is described in
section 2.2. The obtention of LODS from POD basis is described in section 2.3. In section 2.4,
we describe the experimental setup we used in this work, and discuss first results obtained
through the polynomial identification technique. Variational data assimilation principles are
presented in section 3. The technique we propose for LODS identification is presented in
section 3.2. Finally, results obtained for the POD-assimilation scheme are given and studied
in section 5.
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Variational assimilation of POD low-order dynamical systems 3

2. Proper orthogonal decomposition

2.1 POD basis

The POD method has been widely used by different authors as a technique to obtain approxi-
mate descriptions of the large scale or coherent structures in laminar and turbulent flows. Given
an ensemble u(x, ti ) obtained experimentally, belonging to M different discrete instants, POD
provides M mutually orthogonal basic functions, or modes, φi (x), which are optimal with
respect to average kinetic energy representation of the flux.

Considering such a decomposition enables us to write the velocity field as an average ū
with fluctuations captured by a finite set of modes:

u(x, t) = ū +
M∑

i=1

ai (t)φi (x). (1)

Being fields of finite kinetic energy, u ∈ L2 and denoting by (, ) the inner product of functions
defined in L2(S):

(u, ψ) =
∫

S
uψds, (2)

where S represents the spatial domain occupied by the flux. Seeking a subspace such that the
projection of u(x, ti ) on it is optimal along the sampling time comes to find an ensemble of
functions that maximize

〈|(u, ψ)|2〉
(ψ, ψ)

,

where 〈•〉 denotes a temporal average. It can be demonstrated [11] that the optimal functions
φ also satisfy the following eigenvalue problem:∫

S
K (x, x ′)φk(x)dx = φk(x)λk, (3)

with

K (x, x ′) = 〈u(x, t)u(x ′, t)〉 = 1

M

M∑
i=1

u(x, ti )u(x ′, ti ).

To solve our problem, it is easier numerically to follow Sirovich’s snapshots method [20],
which states that each spatial mode φ can be constructed by a superposition of the velocities
fields:

φk(x) =
M∑

i=1

u(x, ti )ak(ti ).

Projecting (3) into a snapshot u(x, t j ), we obtain another eigenvalue problem, whose eigen-
vectors are the temporal modes ak .

2.2 Gappy POD

A problem arises when the snapshot u(x, ti ) given through a PIV technique contains erroneous
vectors. To correct this deficiency, Everson and Sirovich [9] have proposed an iterative scheme.
We consider the same kind of setup in this work. It first consists in creating an ensemble of
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4 J. D’Adamo et al.

masks m(x, ti ), with values either zero or unity if there is a wrong or a reliable vector u(x, ti )
at position x of time ti . We can respectively write the velocity fields with data missing, ũ(x, ti ),
in terms of the masks m(x, ti ) and the complete velocity fields u(x, ti ):

ũ(x, ti ) = m(x, ti )u(x, ti ).

To compute the temporal average of ũ(x, ti ), we only take into account the reliable values,

ũm(x) = 〈ũ(x, ti )〉 = 1∑
m(x, ti )

∑
i

m(x, ti )u(x, ti ).

A first correction of the erroneous data is achieved by replacing erroneous values by the
temporal average. The reliable data, whose (x, ti ) ∈ S, remain without changes. So for each
(x, ti ) �∈ S

ũ(0)(x, ti ) = ũm(x).

With these corrected values, a POD can be settled to provide an initial set of spatial and
temporal modes: φ(0)(x) = {φ(0)

k (x), k = 1, . . . , M} and a(0)(ti ) = {a(0)
k (ti ), k = 1, . . . , M}.

The restored vector field at the following iteration, ũ(1)(x, ti ), is obtained by fitting each
member of the original ensemble, ũ(x, ti ), to a superposition of M eigenfunctions φ

(0)
k (x) as

follows:

ũ(x, ti ) =
M∑

k=1

a(1)
k (ti )φ

(0)
k (x) ∀(x, ti ) ∈ S,

(
φ

(0)
j , ũ(x, ti )

) =
(

φ
(0)
j ,

M∑
k=1

a(1)
k (ti )φ

(0)
k (x)

)
.

From φk orthonormality, we can write

a(1)
j (ti ) = (

φ
(0)
j , ũ(x, ti )

) ∀ j = 1, . . . , M. (4)

From the set of estimated temporal modes a(1)(ti ) and the basis functions φ(0)(x), the updated
set of velocity values ũ(1) is obtained. This process is iteratively repeated until a convergence
criterion is met. Further details on this method can be found in [24] and in [7] for the particuliar
case of PIV data.

2.3 Formulation of a low-order dynamical system (LODS): Galerkin projection

From the modal decomposition, it is possible to consider a truncated model with s modes to
approximate the velocity field u(x, ti ), with x ∈ S, 1 ≤ i ≤ M and s 
 M . From the properties
of POD, it is easy to measure the kinetic energy percentage contained in this model:∑s

i=1 λi∑M
i=1 λi

.

A Galerkin projection enables us to rewrite a partial differential equation (PDE) system as
a system of ordinary differential equations (ODE). According to this procedure, the func-
tions which define the original equation are projected on a finite-dimensional subspace
of the phase space (in this case, the subspace generated by the first s modes). Following
a scheme proposed by Rajaee et al. [18], we project the Navier–Stokes equations under
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Variational assimilation of POD low-order dynamical systems 5

the Reynolds decomposition, in order to have an explicit expression for the fluctuating
quantities:(

∂u′

∂t
+ u′∇ū + ū∇u′ + u′∇u′ − u′∇u′ + ∇ p′

ρ
− ν∇2(ū + u′), φ j

)
= 0. (5)

These equations are obtained by separating the flow velocity into mean ū and fluctuating u′

parts: u = ū + u′. Rewriting (5) in terms of POD (1), the resulting equation is a quadratic
ODE of order 1. For every j ≤ s mode, the system reads

dak

dt
= F(ak) = ik +

s∑
i=1

likai +
s∑

i=1

s∑
j=i

ai ci jka j k = 1, . . . , s (6)

where

li j =
∫

S
ū∇φiφ j ds +

∫
S
φi∇ūφ j ds −

∫
S

1

Re
�φiφ j ds, (7)

ci jk =
∫

S
φ j∇φiφkds, (8)

ik =
∫

S
∇ p′φkds − 1

Re

∫
S
�ūφkds −

s∑
j=1

λ j

∫
S
φ j∇φ jφkds. (9)

Regarding these expresions, (7) describes the interaction between the mean flow and fluc-
tuating field; it also includes viscous effects associated with the fluctuating velocity field.
Nonlinear effects are reported by (8). The independent term (9) takes into account the pres-
sure field influence, mean flow dissipation, and the convective term of the modes.

Boundary conditions and symmetry make the pressure term vanish in a particular case of
wake flow. As a matter of fact, each of the mode functions satisfies the continuity equation,
to give ∫

S
∇ p′φkds =

∮
C

p′φkdc,

where C is the boundary curve of domain S. Works of Deane [8] and Noack [15] demonstrated
that for wake flow configuration, the latter expression is negligible compared to the other terms.
Nevertheless, the inclusion of the p′ term can be modelled through an additional quadratic
expression of the temporal modes a, which is achieved by polynomial identification. A noisy
version of the momentum equation (6) can also be considered to deal with the p′ term. Such a
situation will be the core of the POD-assimilation technique. Direct calculation of each term
of the system (6) can be avoided by using polynomial identification, described as follows.

2.4 First results and LODS adjustment

A common problem regarding reduced order models is how to model the unresolved modes of
the flow. Although we have a model that enables us to represent the most energetic structures,
associated with the flow greatest scales, the smaller ones should also be included as they play
an important role in the dissipation process. Practical implementations showed that (6) can
only be solved for a short time range when neglecting the effect of small scales.

This problem was first pointed out by Holmes et al. [11], where a polynomial similar to (6)
is modified after an estimation of the incoherent, unresolved modes in terms of the resolved
modes. Long time behaviour of LODS solution can be seen as an attracting set. We can
consider every observation ai as an element of this set. Another way to refine the model, first
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6 J. D’Adamo et al.

proposed by Braud [3, 4], consists in estimating the polynomial coefficients through least-
squares fitting. Provided each observation ai and its derivative ȧi , we can write (6) as the
solution of a linear system. This polynomial identification technique has been tested on the
Lorenz dynamical model and on POD dynamical systems. This method presents the great
advantage to avoid the accurate computation of the basis functions’ spatial derivatives that
are required to construct the projected model (7)–(9). It can be pointed out also that even if
closed pairs of observation ai (tk) and ai (tk+1) are needed to compute the temporal derivative
(6), those pairs are not required to be correlated [11].

The experimental configuration we settled for this work consists of a flow around a circular
cylinder at low Reynolds number, Re = 125. The velocity measurements have been done in
a closed loop wind tunnel with a probe section of 18 × 18 cm2. A 2 cm diameter cylinder
was placed in order to have snapshots of 5 by 4 diameters. We chose it regarding the wake
structures we wanted to identify.

As for the PIV system, we used a Pixelfly PCO VGA camera, with a resolution of 640 ×
240 pixels, 1/100 s of time between images. A green laser Intelite GM32-150IH, 150 mW,
combined with a rotating polyhedric mirror, was used to provide illumination on the probe
section.

The algorithms used in this work belong to GPIV software [10] which is under GNU General
Public License. We have considered for our images a two-step grid refinement, so the final
interrogation size is 16 × 16 pixels with a 50% overlapping.

The time resolution was suitable to recover the flow dynamics, in a way that the vortex
shedding frequencies are lower than the acquisition frequency. Although the technique does
not require time correlated data, this condition allowed us to validate our models. A set of
1000 images was used to construct the reduced order model. Convergence on the mean and
modes calculation was verified. Indeed, the difference between the resulting mean and modes
for a set of 750 snapshots and for a set of 1000 snapshots was estimated by projections as
defined in (2). This allowed us to evaluate 1 − (φ750

i , φ1000
i ). The maximum difference was of

the order of 0.5% for all the modes considered.
The data have been filtered by the gappy technique and then the fluctuating velocity field

was decomposed with POD. As expected in a low turbulence flow, the first modes concentrate
the most of the fluctuating kinetic energy as is shown in figure 1. As illustrated in figure 2, the
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Figure 1. Partial amount of kinetic energy contained in s modes.
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Variational assimilation of POD low-order dynamical systems 7
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Figure 2. Contour maps of spatial modes: (a)φ1(x); (b)φ3(x).

spatial modes extracted from the decomposition represent the recurrent structures of the flow.
We can observe that structures with higher fluctuating kinetic energy concentration results
appear to be more spatially organized.

In a first experiment, we choose to keep only s = 2 modes to be sured to recover the
91% of kinetic energy. The coefficients of equation (6) have been estimated by polynomial
identification based on mean squares fitting. The corresponding solution of the LODS is plotted
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8 J. D’Adamo et al.

a)

b)
a

a a

a

1 2

21

a3

Figure 3. First estimation of the ODE. Comparison between ODE solution (solid line) and original data (symbols).
(a) For s = 2; (b) solution diverges for systems s ≥ 4.

in figure 3(a) where we have plotted also the original data for comparison purpose. Although
the short term behaviour of the model is quite accurate, significant errors in magnitude and
phase appear very quicly. These errors amplify as time goes by. For a system with a larger
number of modes the solution does not converge at all. This is illustrated in figure 3(b) where
we have plotted the solution for a LODS with four modes.

In order to improve the estimation of the temporal modes we will place ourselves within
the framework of variational data assimilation. We briefly describe its principles in the next
section.
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Variational assimilation of POD low-order dynamical systems 9

3. Data assimilation principle

3.1 Assimilation for well-posed dynamical models

Data assimilation is a technique that enables us to perform the estimation over time of state
variables representing a system of interest. The method enables us to perform a smoothing
of noisy measurements of the system’s state according to a given initial state of the system
and a dynamic law. Let us note that X ∈ � in the state variable of interest. This variable
may represent any quantities associated with the observed flow such as temperature, velocity,
vorticity, pressure, etc. Assuming that the evolution in time of these quantities is described
through a (nonlinear) differential model M we get the following dynamical system:




d X

dt
+ M(X, s) = 0

X (t0) = X0.

(10)

This system is monitored by a control variable r = (s, X0) ∈ P , defined in control space. This
control variable may be set to the initial condition or to any free parameter of the evolution
law. Let us also assume that some observations Y ∈ Oobs of the state variable components are
available. These observations may live in a different space (a reduced space for instance) from
the state variable. We will nevertheless assume that there exists a matrix operator H that goes
from the variable space to the observation space. A least-squares estimation of the control
variable regarding the whole sequence of measurements available within a considered time
range comes to minimize with respect to the control variable a cost function of the following
form:

J (r ) = 1

2

∫ t f

t0

||Y − H X (s, X0)||2dt. (11)

3.1.1 Minimization of the functional. A first approach consists in computing the func-
tional gradient through finite differences:

∇r  J (r + εek) − J (r )

ε
,

where ε ∈ R is an infinitesimal perturbation and {ek, k = 1, . . . , p} denotes the unitary basis
vectors of the control space. Such a computation is impractical for space of large dimensions
since it requires p integrations of the evolution model for each required value of the gradient
functional. Adjoint models as introduced first in meteorology by Le Dimet and Talagrand
in [13] will allow us to compute the gradient functional in a single integration. Denoting
δr = X (dr ) a perturbation of the solution correponding to dr ∈ P we have

δ J = 〈∇ Jr , δr〉
= −〈H T (Y − H (X (s, X0))), δr〉 (12)

This perturbation evolves according to

d

dt
δr + ∂r Mδr = d

dt
δr + ∂XoMδX0 + ∂sMδs = 0.
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10 J. D’Adamo et al.

The right part of this linear evolution law involves the so-called tangent linear model of M.
It is defined as the Gâteaux derivative at point X of the operator M:

lim
β→0

dM(X + βθ )

dβ
= ∂X Mθ. (13)

This linear operator describes how arbitrary perturbations of the control evolve in time. Now
considering the inner product of the tangent linear model with an arbitrary vector λ and an
integration by part leads to∫ T

O

〈
d

dt
δr, λ

〉
dt = 〈δr (T ), λ(T )〉 − 〈δr (0), λ(0)〉 −

∫ T

O

〈
δr,

d

dt
λ

〉
dt,

Imposing that λ(T ) = 0, introducing of the tangent linear model and using the definition of
an adjoint operator associated with a given inner product (i.e. 〈x,Ly〉 = 〈L∗x, y〉), we get:

〈δr (0),λ(0)〉 =
∫ T

O
〈δr, ∂r M

∗λ〉dt −
∫ T

O

〈
δu,

dλ

dt

〉

=
∫ T

O

〈
δr, −dλ

dt
+ ∂r M

∗λ
〉

dt.

We define the adjoint model requiring in addition that

−dλ

dt
+ ∂r M

∗λ = H T (Y − H (X (s, X0))).

This adjoint model together with the definition of the gradient functional (12) enables us to
write

∇r J = −λ(0).

As a consequence, the functional gradient can be computed as a single backward integration
of an adjoint model. The value of this adjoint variable at the initial time provides the value of
the gradient. This first approach is widely used in environmental sciences for the analysis of
geophysical flows. However, these methods rely on a perfect dynamical model.

3.2 Assimilation for noisy dynamical models

Considering imperfect models, defined up to a Gaussian noise, we have to consider an opti-
mization problem where the control variable is constituted by the whole trajectory of the state
variable. This is the kind of problem we are facing in this work.

The ingredients of the new data assimilation problem are now composed by an imperfect
dynamic model of the target, an initialization of the state variable and an observation equation
which relates the state variables to some measurements:



d X

dt
+ M(X ) = ν(t)

X (t0) = X0 + η

Y (t) = H X + ε(t).

(14)

In these three equations η, ν and ε are time varying zero mean Gaussian noise vector functions.
They are respectively associated with covariance matrices W (t, t ′), B and R(t, t ′). The noise
functions represent the different errors involved in the different components of the system (i.e.
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Variational assimilation of POD low-order dynamical systems 11

model errors, initialization errors and measurement errors) and are assumed to be uncorrelated
in time. The goal is to minimize the new functional, which considers the noise of the model:

J (X ) = 1

2

∫ t f

t0

∣∣∣∣
∣∣∣∣d X

dt
+ M(X )

∣∣∣∣
∣∣∣∣
2

W

dt + 1

2
||X (t0) − X0||2B + 1

2

∫ t f

t0

||H X (U, V ) − Y ||2Rdt.

(15)

The minimization has now to be done according to the state variable X .

3.2.1 Minimization of the functional of the noisy model. A minimizer X of functional J
is also a minimum of a cost function J (X +βθ (t)), where θ (t) belongs to a space of admissible
function and β is a positive parameter. In other words, X must cancel the directional derivative:

δ JX (θ ) = lim
β→0

d J (X + βθ (t))

dβ
= 0.

The functional with an infinitesimal perturbation read:

J (X + βθ ) = 1

2

∫ t f

t0

(
d X

dt
+ β

dθ

dt
+ M(X + βθ )

)T ∫ t f

t0

W −1(t, t ′)

×
(

d X

dt
+ β

dθ

dt
+ M(X + βθ )

)
dt ′dt + 1

2
(X + βθ − X0)

T
B−1(X + βθ − X0)

+ 1

2

∫ t f

t0

∫ t f

t0

(Y − H (X + βθ ))
T
(t)R−1(t, t ′)(Y − H (X + βθ ))(t ′)dt ′dt. (16)

In order to derive a practical definition of the gradient functional we introduce again an adjoint
variable λ defined as

λ(t) =
∫ t f

t0

W −1(t, t ′)
(

d X

dt
+ M(X )

)
dt ′. (17)

By taking the limit β → 0, the derivative of expression (16) then reads

lim
β→0

d J

dβ
=

∫ t f

t0

(
dθ

dt
+ ∂X Mθ

)T

(t)λ(t)dt + θ
T
(t0)B−1(X (t0) − X0)

−
∫ t f

t0

∫ t f

t0

H T θ
T
(t)R−1(t, t ′)(Y − H X )(t ′)dt ′dt = 0. (18)

Applying integrations by parts, we can get rid of the partial derivatives of the admissible
function θ in expression (18). This equation (18) can then be rewritten as

lim
β→0

d J

dβ
= θ

T
(t f )λ(t f ) + θ

T
(t0)[B−1(X (t0) − X0) − λ(t0)]

+
∫ t f

t0

θ
T
(t)

[(
− dλ

dt
+ ∂X M

∗λ
)

(t) −
∫ t f

t0

H T R−1(t, t ′)(Y − H X )(t ′)dt ′
]

dt = 0. (19)

Since the functional derivative must be null for arbitrary independent admissible functions in
the three integrals of expression (19), all the other members appearing in the three integral
terms must be identically null.

3.2.2 PDE system for the functional minimization. The PDE system associated with the
functional minimization obtained from (19) is a coupled system of forward and backward



D
ow

nl
oa

de
d 

B
y:

 [C
on

so
rc

i d
e 

B
ib

lio
te

qu
es

 U
ni

ve
rs

ita
rie

s 
de

 C
at

al
un

ya
] A

t: 
17

:4
2 

6 
M

ar
ch

 2
00

8 

12 J. D’Adamo et al.

PDEs with two initial and end conditions:

λ(t f ) = 0 (20)

−dλ

dt
+ ∂X M

∗λ =
∫ t f

t0

∂X H
∗ R−1(t, t ′)(Y − H(X ))dt ′ (21)

λ(t0) = B−1(X (t0) − X0) (22)

d X

dt
+ M(X ) =

∫ t f

t0

W (t, t ′)λ(t ′)dt ′. (23)

The forward equation (23) corresponds to the definition of the adjoint variable (17) and has
been obtained introducing W , the pseudo-inverse of W −1, defined as [2]∫ t f

t0

W (t, t ′)W −1(t ′, t ′′)dt ′ = δ(t − t ′′).

We can see that equation (20) constitutes an explicit end condition for the adjoint evolution
model equation (21). As mentioned previously, the adjoint evolution model has to be integrated
backward from the end condition assuming the knowledge of an initial guess for X to compute
the discrepancy Y −H(X ). This model is defined from the expression of the adjoint evolution
operator. A discrete expression of this operator can be easily obtained when the discretization
of the linear tangent operator can be expressed as a matrix. It consists in that case of the
transpose of that matrix. Knowing a first solution of the adjoint variable, an initial condition for
the state variable can be obtained from (22) and a pseudo-inverse expression of the covariance
matrix B. From this initial condition, (23) can be finally integrated forward.

The previous system can be slightly modified to produce an adequate initial guess for the
state variable. Considering a function of state increments linking the state function and an
initial condition function, δX = X − X0, and linearizing the operator M around the initial
condition function X0

†:

M(X ) = M(X0) + ∂X0M(δX ),

we can split equation (23) into two PDEs with an explicit initial condition:

X (t0) = X0 (24)

d X0

dt
+ M(X0) = 0 (25)

dδX

dt
+ ∂X0MδX =

∫ t f

t0

W (t, t ′)λ(t ′)dt ′. (26)

Let us note that if the model is assumed to be perfect as in the introduction case, we would
have W = 0 and recover the inital system of equation. The incremental system with associated
with an imperfect dynamical model highlights a major difference with the classic assimilation
scheme. As W is not null, the solution is updated with all the values of the adjoint variable
trajectory.

Combining equations (20)–(22) and (24)–(26) leads to the final assimilation algorithm. The
method consists first in a forward integration of the initial condition X0 with the state vari-
able’s evolution model (25). The current solution is then corrected by performing a backward
integration (20), (21) of the adjoint variable. The evolution of λ is guided by a discrepancy

†The linearization is equivalent to the Gâteaux derivative defined previously.
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Variational assimilation of POD low-order dynamical systems 13

Figure 4. Assimilation algorithm principle.

measure between the observation and the estimate: Y − H X . The initial condition is then up-
dated through equation (22) and a forward integration of the increment δX is realized through
equation (26). The estimation is updated at each step: X := X + δX . The overall process is
iteratively repeated until convergence (see figure 4).

4. Application to the LODS

We describe now how such a framework has been applied to the problem of LODS coefficient
estimation.

4.1 Description of the problem

We want to use the assimilation system in order to enhance the estimation of the coefficient
of the LODS. The following LODS-assimilation problem is introduced:



da

dt
+ M(a) = ν(t)

a(t0) = a0 + η

Y (t) = H(a) + ε(t).

(27)

The right-hand side of the first equation describes, through a differential operator M, the
evolution of the state function a = [a1(t) · · · as(t)] composed of the POD temporal coefficients
and defined over the whole time range [t0; t f ]. In our case, the model and the associated operator
M are given through equation (6):

dak(t)

dt
= ik +

s∑
i=1

likai +
s∑

i=1

s∑
j=1

ai ci jka j

︸ ︷︷ ︸
−M(ak )

k = 1, . . . , s. (28)

We assume here that considering an evolution model defined up to a Gaussian variable will
allow us to model the effect of unresolved modes of the flow and therefore will enable a better
accuracy of the recovered solution on a longer time range. The second equation of the system
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14 J. D’Adamo et al.

fixes an initial condition for the state vector through a given initialization a0. The last equation
links an observation function Y (t), constituted by noisy measurements of the state function
components, to the state function. In the current application, the measurements are given by
the temporal modes estimated from PIV snapshots and a POD technique. As the measurements
belong to same space as the state variable we have H = I d in this case.

4.2 Linear tangent operator

In this section, we describe the discretization of the linear tangent operator of the considered
reduced dynamical system. Starting from the dynamical equation

dak(t)

dt
= ik +

s∑
i=1

likai +
s∑

i=1

s∑
j=1

ai ci jka j = −M(ak) k = 1, . . . , s, (29)

we simply have to compute the linear tangent operator ∂aM(θ ) for a small perturbation θ (t) =
[θ1(t) · · · θs(t)]T :

∂aM(θk) = −
[ s∑

i=1

likθi +
s∑

i=1

s∑
j=1

(ai ci jkθ j + θi ci jka j )

]
k = 1, . . . , s. (30)

And finally

∂aM(θk) = −
[ s∑

i=1

likθi + 2
s∑

i=1

s∑
j=1

ai ci jkθ j

]
k = 1, . . . , s. (31)

Hence, we obtain

∂aM(θ ) = −(L + 2C)θ. (32)

where L and C are matrices (s × s):

L =




l11 l12 · · · l1s

l21 l22 · · · l2s

...
... · · · ...

ls1 ls2 · · · lss

,


 (33)

C =




s∑
j=1

a j c1 j1

s∑
j=1

a j c2 j1 · · ·
s∑

j=1

a j cs j1

s∑
j=1

a j c1 j2

s∑
j=1

a j c2 j2 · · ·
s∑

j=1

a j cs j2

...
... · · · ...

s∑
j=1

a j c1 js

s∑
j=1

a j c2 js · · ·
s∑

j=1

a j cs js




. (34)
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Variational assimilation of POD low-order dynamical systems 15

4.3 Convergence and numerical stability

Recalling that Euler–Lagrange equations consist of the functional J around a small perturba-
tion θ :

J (a + θ ) = J (a) + ∇J · θ, (35)

and that equation (19) gives us an analytic representation of the second part of (35):

∇J = lim
α→0

d J

dα
,

allows us to define a natural convergence criterion:

∇J · θ < ε. (36)

These two expressions of the gradient provide a practical way to determine if the adjoint
equation is well discretized:

lim
α→0

J (a + αθ ) − J (a)

α∇J · θ
→ 1. (37)

The adjoint computation of the functional gradient is here compared to implemention of finite
differences. We have checked the validity of our implementation considering this test on a
set of real data. The curve showing the ratio for different values of α is presented in figure 5.
It can be observed that our discretization is valid up to a 10−8 variation. This bound is due
to the numerical round-off errors. This study gives us an ad hoc way to set the convergence
threshold in equation (36). For the present study, we fixed it to ε = 10−7.

5. Results

In this section, we present and analyse results obtained for the assimilation of POD modes.
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Figure 5. Gradient test realized with α → 0.
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16 J. D’Adamo et al.

5.1 Analysis of robustness

As mentioned in the previous section, it is crucial for the assimilation technique associated with
imperfect evolution models to have good initial state trajectory. This first guess can be provided
by proposing a good initialization of the state vector at the initial state and integrating this
initial condition with the model dynamics. Such initial trajectories of the state variable can also
be provided by other estimation techniques. In these works, the initial trajectory is assumed to
be provided through the polynomial identification technique described in section 2.4. In the

a)

b)

a a a

a aa

1 2 3

1 2 3

Figure 6. Estimation for a six-mode system. Equation solution in solid line and original data in symbols. (a) POD
estimation with strong damping; (b) POD-assimilation result.
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Variational assimilation of POD low-order dynamical systems 17

case of a six-mode system we estimate an artificial viscosity for the linear term (7) νA = 2.1ν;
the corresponding solution is presented in figure 6(a). The inclusion of such artificial vorticity
allows the system to remain stable. Even if it has not been possible to obtain a limit cycle
for the temporal modes, this solution provides us a reliable first guess for the assimilation
technique. Greater values of νA produced a too strong damping, and leads to an initial solution
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Figure 7. (I) Trajectories of the coefficients of the two principal modes. (II) Trajectories of the coefficients of the
three principal modes; (a) 1000 observations; (b) first POD estimation with damping for 1000 images; (c) POD-
assimilation result (solid line) compared to observations (symbol); (d) ODE solution from POD-assimilation result
(solid line) for 1000 images compared to observations (symbol).
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18 J. D’Adamo et al.

of very bad quality. As can be observed in figure 6(b), even though the considered initial
guess was quite far from a good solution, the POD-assimilation method provides a significant
improvement.

5.2 New LODS

Another important point is that the coefficient matrices I , L and C can be updated from the
assimilation results, using the least-squares fit. The initial measurements used to evaluate
the matrices are discrete and noisy. As a result of the assimilation process, since the solution
provided for a(t) is continuous, the temporal derivatives are much better estimated. Polynomial
identification can be performed again to obtain the new coefficient matrices which allow us to
recompute new coefficient a(t) through least-squares estimation. We compare in figure 11, for
the first two modes, the solution obtained by polynomial identification, the POD-assimilation
results and the results of a polynomial identification on the assimilation result.

5.3 Analysis of phase portraits

To increase complexity in the flow, a large number of modes were retained in our dynamical
system. We have adopted up to those which show an ordered structure in the phase diagram. The
resulting dynamical system for three modes presents a trajectory, plotted in figure 7(a), which
cannot be confounded with a noise. As the subsequent modes do not exhibit any organized
trajectory (figure 8), we excluded them from our analysis. So, an iterative scheme was applied
in order to obtain a three-mode LODS.

� Firstly, we used polynomial identification to have a matrix coefficients’ estimation (6). To
avoid divergence on the ODE solution, damping was introduced in the third linear term of
(7) by means of an artificial viscosity. Otherwise, the system solution would diverge after
few time steps. Figure 7(IIb) presents this damped result.

� The assimilation algorithm was applied to the bounded solution and by means of poly-
nomial identification in this result, newer matrix coefficients were obtained to refine the
model, as previously mentioned in section 5.2. The assimilated curve is presented in
figure 7(IIc).

� The first step may restart until a convergence criterion is met.

0 5 10 15
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Figure 8. Phase diagram for a4(a1). An organized trajectory is not distinguishable.
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Figure 9. Convergence study: (a) evolution of the mean square discrepancy between estimation and observations;
(b) evolution of the convergence criterion.

In order to exhibit these results, the phase portraits of the temporal coefficients are drawn in
figure 7. For this case, the best result was achieved with one iteration and a value of artificial
viscosity νA ∼ ν.1. The two principal modes are recovered during the whole sequence. We can
see that the third component of the assimilated curve moves slightly away from the realization
trajectory. This is due to the fact that the finer structures of the third mode are computed

c) d)

a) b)

Figure 10. Instantaneous vorticity fields calculated from (a) noisy PIV images; (b) POD reconstruction s = 6 modes;
(c) POD-assimilation scheme s = 6 modes; (d) DNS simulation.
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20 J. D’Adamo et al.

a)

b)

c)

Figure 11. Equation solution in solid line and original data in symbols. (a) POD estimation by polynomial identi-
fication; (b) POD-assimilation result; (c) polynomial Identification on the assimilated result.

with less precision than those of the first two modes, as appears in figure 2(b), where more
symmetric and organized small structures were expected.

5.4 Convergence analysis

The convergence of the assimilation process is experimentally illustrated in figure 9.
Both the mean square discrepancy between the estimation and the observation and the
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Variational assimilation of POD low-order dynamical systems 21

convergence criterion defined in (36) can be computed. In the assimilation method, each
iteration enhances the results until the chosen criterion is met. We can see that the
ε = 10−7 criterion is a good choice, since the iterations could not make the criterion
exceed the value 10−8. There is a minimum error due to the observation noise that
could not be cancelled out. Indeed, the dynamical equation does not allow discontinu-
ities in the solution, and it can be noticed that the observed modes s ≥ 2 are more erratic
(figure 6(b))

5.5 Flow reconstruction analysis

It is remarkable that with s = 6 modes, the 94% of the fluctuating kinetic energy is con-
served and the LODS produces vorticity snapshots that are in good agreement with the
real flow. We compared vorticity fields of original data, POD and POD-assimilation re-
constructions in figure 10. It is evident that in this case the POD reduced order model
can improve the noisy measures. Even more, the POD-assimilated model exhibits coher-
ent structures closer to a validation case coming from direct numerical simulation (DNS).
This DNS of a 2D cylinder flow was conducted for Re = 125, in a domain Lx/D = 19
by L y/D = 12 with a grid resolution of 685 × 433. This assures that the grid step dx ≤ η

where η is the Kolmogorov dissipative scale, η ∼ D
Re3/4 . Therefore, every scale of the flow

is resolved and the discretization scheme verifies the necessary stability conditions. The
code is highly reliable in this regime and its perfomance has been reported previously [12].
The Strouhal numbers St = f D

U∞
∼ 0.2 issued from simulation (0.1787) and experiments

(0.1830) are in good agreement. To evaluate them, we have extracted the dominating fre-
quencies of the lift coefficient from DNS, and the principal frequency of the first modes from
POD.

6. Conclusions

Achieving an accurate LODS reconstruction on the basis of experimental data is a much more
difficult task than when data considered are issued from numerical simulations. In this work,
we have studied the ability of a variational data assimilation method to extract POD-Galerkin
LODS from PIV measurements.

The approach followed is partially inspired by a previous scheme [17] that uses the tempo-
ral information of the POD decomposition, avoiding the disadvantages of calculus on spatial
modes. Tests on PIV noisy experimental data have experimentally demonstrated the effi-
ciency and robustness of the assimilation technique we propose. We chose as a test case a
wake flow. The POD-assimilation technique significantly outperforms least-squares fitting
methods. Short-term and long-term predictions of good quality have been provided using this
method.

Even though the POD-assimilation technique does not provide directly the matrix coef-
ficients that describe the LODS, we have shown in this paper that it does not constitute a
limitation of the technique. As a matter of fact, these coefficients can be successfully recov-
ered and enhanced by polynomial identification on the assimilated results.

The reduced order models obtained appear to be a useful tool to correct noisy experimental
data. The results of this PIV measurements restoration have been compared to a reliable DNS
observations. This research encourages future works on experimental active flow control to
be conducted with the help of the POD-assimilation method.
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