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Abstract

We exploit the mimetic finite difference method introduced by Hyman and Shashkov
to present a framework for estimating vector fields and related scalar fields (divergence,
curl) of physical interest from image sequences. Our approach provides a basis for consis-
tent definitions of higher-order differential operators, for the analysis and a novel stabil-
ity result concerning second-order div-curl regularizers, for novel variational schemes to
the estimation of solenoidal (divergence-free) image flows, and to convergent numerical
methods in terms of subspace corrections.

1 Introduction

The estimation of highly non-rigid image flows is an important problem in various applica-
tion areas of image analysis like remote sensing, medical imaging, and experimental fluid me-
chanics. Such flows, which cannot be represented by a single parametric model, are typically
estimated by variational approaches. In contrast to standard approaches, however, higher-
order regularization is necessary in order to accurately recover important flow structures like
vortices, for example, and to incorporate physically plausible constraints, like vanishing di-
vergence of the flow.

The basis for our paper is early work on second-order regularizers constraining the gra-
dients of the flow components divergence and curl [1, 17, 10]. This regularization approach
has been elaborated in a series of papers bynM and co-workers [7, 8]. Moreover, the de-
composition and representationadntinuousvector fields by velocity potentials and stream
functions [9] has been adopted to derive piecewise parametric representations of relevant flow
structures. Recently, the direct estimation of this representation from image sequences has
been studied in [14].

The objective of this contribution is to provide a mathematically sound discrete represen-
tation of vector fields in terms of basic flow components related to quantities of physical rele-
vance, and a correponding decomposition into subspaces of the linear space of discrete vector
valued functions. By this, we obtain and can investigate a discrete analogue of known con-
tinuous representations [9] in connection with image sequence analysis of fluids. This gives
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rise, for example, to a novel variational approach for estimation solenoidal (divergence-free)
flows from image sequences. Furthermore, we remove numerical convergence problems of the
heuristic alternating numerical estimation scheme employed in [14] by adopting a subspace
correction method from numerical analysis which directly applies to our flow field represen-
tation. Finally, our analysis reveals the importance of an additional boundary regularization
term in connection div-curl regularizers (section 4.3), which has been overlooked apparently
in previous work.

In section 2, we present the discrete representation of both scalar and vector fields based
on the mimetic finite difference method introduced by Hyman and Shashkov [12, 11]. A basic
feature of this representation is that basic integral identities of vector analysis are preserved af-
ter discretization. Furthermore, basic first-order differential operators can be defined such that
compound higher-order operators with compatible domains and image spaces can be consis-
tently defined. Subsequently, we elaborate the representation of vector fields by potential and
stream functions and various useful subspace decompositions of the linear space of discrete
vector fields.

Based on this, we reconsider a few variational approaches to motion estimation in section
3. By defining all quantities in terms of the representation developed in section 2, we examine
well-posedness and stability, including the non-trivial stability issue mentioned above (section
4). Section 5 provides a natural numerical estimation approach which directly fits to the flow
field representation, along with details of the multilevel implementation. We validate our
approach with numerical experiments in section 6.

A preliminary conference version of this paper appeared in [25].

2 \ector-Field Representation

2.1 Discrete Fields and Differential Operators

We use thanimetic finite difference methodtroduced by Hyman and Shashkov [12, 11] in
order to preserve basic relationships of continuous vector analysis by appropriately defining
their discrete analogues. This discretization scheme will be applied in section 2.2 to accurately
represent and decompose vector fields.

Linear Spaces. Figure 1 illustrates the definitions of the following finite-dimensional vec-
tor spaces of scalar and vector fields that naturally appear in discrete models of continuum
mechanics:

Hy: the space o$calar fieldsdefined on cells,

Hp: the space o$calar fieldsdefined on vertices,

Hpg: the space ovector fieldsdefined tangential to sides,

Hg: the space o¥ector fieldsdefined normal to sides.
We denote with ¢, HZ, H¢, the subspaces of inner scalar and inner vector fields, respectively,
obtained by restricting the spac#s,, HS, Hy, and by imposing zero boundary values.



Notation. We denote with; ./, the side between verticds, j) and(i,j + 1). The re-
lationship between vertex indices and cell indices is depicted in Figure 1 for the lower-right
cell, denoted with2;,, /2 ;11/2. To simplify notation, we index cell (side, vertex) positions
sometimes directly witl{, 3) if the meaning is unambiguous$? denotes the whole image
section, andf? its boundary,

Convention. We consider in this paper only regular grids with unit side-lendthg = 1
and unit cell-area$), 3 = 1, Va, 3. Let our grid consist ofn x n vertices. Reshaping the
scalar/vector fields columnwise into vectors, we identifis = R™", Hp = Rm=20=2) [, —
R(m—l)(n—l)7 Hg = Rm(n—l)m(m—l)?Hg - R(m—l)(n—Q)Jr(n—1)(m—2)7 and Hy, Hg with Hg,
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Figure 1. Definition of finite-dimensional spaces of scalar fields and vector fields on a rectan-
gular grid. Filled circles depictodesor vertices the other circles indicateells The positions
of diamonds are referred to asles

Inner products and Norms. While Hp and Hy, are equipped with the usual euclidian inner
product

<g7 h>HV = Z ga,ﬁha,ﬁ )
Q

a,BER

and with the corresponding induced norm, the inner productd @and Hy are defined as
follows: let the indicesD, T', R, L refer to the sides of cefd, 3, u € Hg, and

1 T
U, , = E (up, ur, ur,uL)g 5 -

Then

<u7U>HS = Z <uQa,[3’UQa,ﬁ> ) HUHHS = <U’U>HS :
QaﬁEQ



Analogous definitions hold fof .
First-order Differential Operators. We define the discrete first-order differential operators
corresponding t&7, V+, div, andcurl, operating on discretized 2D data:
G:Hp— Hp, Gt : Hp — Hg, Div : Hg — Hy, Curl : Hy — Hy,  (1a)
G:Hy.oy — Hg, G : Hyipy — Hp, Div : Hy — H%, Curl : HS — H%.  (1b)

Let
-1 1 0 . 0 0 0
o -1 1 ... 0 0 0
D,, = e R b
0 0o 0 . —1 1 0
O 0 0 . 0 —1 1
and
-2 2 0 0O 0 00
0 —1 1 0 0 00
0 0 -1 1 0 0 00
D,, = Lot e R
0 0 o 0 ... —1 1 0 0
0 0 0O 0 ... 0 —1 10
0 0 0o 0 ... 0 0 —2 2

Then the discrete operators are represented by the following matrices

o In®Dm —~ In—1®Dm
G = (Dn®1m)’ &= (-D7’L(®I’rrz—1)7

Div = (I,.1®Dy, D@1, ),

Div = (I,2®Dy1, D01 @1, 5 ),
Curl = (D, @Iy 1,—I,1®D,,),
Curl = ( D, &I, 1, 9% D, )7

where® denotes the Kronecker product of matrices. The opefator Hp» — Hy is defined

by
. (-D,®I,
G _(Inwm |

It is easy to check that the restricted operaiot| mg, Maps toHg.

Finally, for discretizing the boundary conditiom; u|sq, we introduce the boundary operator

Bn : HS — 8HS = Hs\ng,



which restricts the vector field to the vectors at the grid’s boundary multiplied by the outer
normal vectors. The matrix form of the boundary operator is:

5 _ ( In1®Bu 0
e 0 B7L®Im—1 ’

where0 are zero matrices of appropriate sizes, and

B (10 00 pen
00 ...0°1

It has been shown [12] that using the operators defined above, elementary properties of
continuous fields in terms afiv, curl, V, carry over to the discrete case. For example, if
the curl of a vector fieldv is zero,Curl w = 0, then the vector field can be expressed as
the gradient of a scalar field, w = GU:; or, if the divergence of a vector field is a zero,

Div w = 0, then it should be the curl of another vector field= G+U (recall that we only
consider the 2D case in this paper).

Similarly, Green’s theorem

/ g - divudv + / Vg -udv = / gu,ds (2)
Q Q o0
becomes in the discrete case
<gv Div U>HV + <@g, U>HS = Z Ga,pUn;a,B 5 (3)
L, 3002

whereas Gauss’ theorem

/ divudy = / Uy, ds (4)
Q a0

Z Div u = Z Unsa 3 - (5)

Qq, 3R Lo, g€082

reads in the discrete case

Using the definitions above, we rewrite this equation more concisely as
1IanV Div u = 1Iiim8H5 Buu, (6)

wherel,, denotes the one-vector.

Most importantly, the additional dual operators (1b) resolve the incompatibilities of do-
mains and ranges of the primal operators (1a) when used to domgound second order
differential operators (cf. (16) below). For examplzandD:v cannot be regarded as mutu-
ally adjoint operators, whereds Div andG, Div do.



2.2 Orthogonal Decomposition

We represent vector fields directly in terms of their irrotational and solenoidal components.
These two components are defined by the first-order variations of velocity potentials
Hy 5y and stream functiong € Hp, and are orthogonal to each other.

Theorem 2.1 (Basic Vector Field Decomposition [13])}or any 2D vector field, € Hg, the
representation of: in terms ofy), ¢

uw=Gy+Gto, B,u=B,Gv, (7)

wheregy, = 0, IS unique up to a constant of.

According to (7), let:
u=v4+w, v=Gy, w=G¢.

Since the operators defined in the previous section satisfy [12, 11]:

Div Gt =0, Curl G=0,
we have
Divw =0, Curlv=0, (8)
and
(w, )y, = (G, G ¢), = (Curl Gy, ¢), =0. (9)
This shows:

Theorem 2.2 (Orthogonality) The decomposition (7) is orthogonal:
(Gy, Gi¢>HS =0, YueHg (10)
Defining the corresponding subspaces

Sy = {u € Hg|u=Gu) (11)
Seot = {u € Hg|u=G" ¢, gpoo =0} , (12)

the theorem asserts that the direct sum holds:
HS - Sir S¥) Ssol (13)

Representation (7) is motivated by analogous decompositions of continuous vector fields
[9]. However, discretizing such vector fields with standard finite differences or finite ele-
ments yieldsapproximatedecompositions only, which may lead to numerical instabilities in
applications. In contrast, theorem 2.1 provideseaactorthogonal decomposition of the
finite-dimensional space of vector fieldss. Furthermore, as detailed below, the decompo-
sition allows to estimate and¢ directly from a image sequence. Using variational optical

6



flow approaches, the estimation can be done in parallel by applying subspace correction meth-
ods. Alternatively, we may first estimate the motion fieldand then compute¢ and¢ in a
subsequent step by solving the Neumann and Dirichlet problems

Apyp =Divu, B,GY =DByu, (14)
Acg=Curlu, ¢oso=0, (15)

where the discrete Laplacians are defined by
Ap :=Div G, A¢ = Curl G* | (16)

and the additional constraiij;,, ;. ¥ = 0 (continuous casef,, ¢'dv = 0) is used to eliminate
the arbitrary constant in (7) and (14).

In the remainder of this paper, however, we show that directly estimatingrom image
sequence data is feasible. Throughout we adopt the strategy to express estimation problems
by direct relations between the data and unknowns. Such direct formulations allow to formu-
late hypotheses about unknowns in a proper way and avoid additional approximation errors
through the successive application of independent techniques.

2.3 Flow Representation

Consider Gauss’ theorem (5) and (6) for any vector field Hs. We say thap € Hy and
v € 0Hg fulfill the compatibility conditionf
1£imHV pP= lzlimBHS v (17)

In what follows, we will make use of another flow representation, besidesHgs. To this
end, consider the operatdr: Hg — Hy © H% & 0Hg given by

Div
A= m c RdimHs—H,dimHS 7 (18)
B,

where theCurl operator is naturally extended to the whole spage The operatord has
full rank dimHg. Moreover, we see by (6) thgp, w, )" is in the image ofA if and only if p
andv fulfill the compatibility condition (17). In this case, the representation of terms of
(p,w,v)"is given byu = Af(p,w, )T, whereAt = (ATA)~L AT denotes the pseudoinverse of
A.

Proposition 2.1 There is a one—to—one correspondence between the spacasd

Vs = {(p,LU, V)T : 111imHV p= lziimaHs V} ) (19)
whereu € Hg, p = Div u, w = Curl u, v = B,u, and

u= Al(p,w,v) (20)
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Remark. In practice, we do not compute= A'(p,w, v)” which is ill-conditioned. Rather,
we solve both the Neumann problem (14) and the Dirichlet problem (15), and insert the solu-
tions into (7).

2.4 Extended Flow Decompositions

We take a closer look at the representation (20) by further decomposing thelspaetned
in (20). As a result, we obtain a definition &minar flows insight into the influence of
boundary values, and further orthogonality relations.

The orthogonal decomposition theorem (7) shows that the two potential funetians
can be computed through a vector fielcand its normal boundary flows,, and that the
representation (13) holds. This decomposition can be rewritten in a meaningful way using the
representatiofip, w, )"

(p,w,v)" = (p,0,1)" + (0,w,0)" (21)

Obviously, the two componentsp, 0, ~)" and (0, w,0)", are inVs. While (p,0,v)" is curl-
free, component0,w, 0)" is divergence-free. Let, andc, denote constants proportional to
the mean of the divergence and the curkipthat is

CUJ = 1£1mH;’3 w = 1£1mH1(§, CUT[ Uu. (23)
Using these averaged quantities, we can further decompose the flow s, represented by

(pawa V>T S VS:
(p,w, )" = (¢py €, V)" + (p°,0,0)" + (0,0, 0)7, (24)

wherely,, y, p° = lgmugw” = 0. Accordingly, we define the components
u = u + ug + ug

whereu® = Af(c,, c,,v)", ug = Al(p°,0,0)" andu® = AT(0,w°,0)". Vectoru® and
(cp, cu, V)", respectively, represent thmasic patternof the non-rigid flowu and its bound-

ary distribution, whileug, «¢ and(p°,0,0)", (0,w?,0)", respectively, are related tscillating

flow patternsthat are curl-free and divergence-free. It is easy to verify that orthogonality
between the component§ andw? is preserved

<u27 ug> =0,

while u¢ andu?, uj are not orthogonal.
We summarize these properties, thereby extending theorem 2.1:

Proposition 2.2 (First Extended Vector Decomposition)For any 2D vector field: € Hg
andB,u # 0, the decompositio24) of v admits the representation in terms of functions

Ve, 9, ), ¢°
u = (GyY° + G¢°) + Gy° + G ¢°, Bou=DB,Gy°, (25)

8



where¢s, = ¢%g = 0, B,Gy° = 0, and Apy° = constant,A\q¢¢ = constant. This repre-
sentation is unigue up to two constants/6fand°, respectively. Moreover, the orthogonality
relation

(Gy°,Gr¢°) =0 (26)
holds.
While the components of the decomposition (24) and (25) are easy to interpret, a single or-

thogonality relation (26) only holds. To improve the latter situation, we consider the alterna-
tive decomposition

(p,w,v)" = (cy,0,)" 4+ (p°,0,0)" + (0,w, 0)" . (27)
The corresponding componentsiwoE Hg are denoted as
U= ug + uy + U

whereu§ = Af(c,,0,v), u§ := Al(p°,0,0)" andu, := AT(0,w,0)". As will be shown
below, this decomposition provides the basis for representing any vector field, under additional
conditions to be specified, by three mutually orthogonal components. We first summarize the
properties of (27):

Proposition 2.3 (Second Extended Vector Decompositiorffor any 2D vector field, € Hg
andB,u # 0, the decompositio27) of v admits the representation in terms of functions

(AP A
uw=Gy*+Gy°+Gt¢, Bou=DB,Gy°, (28)

whereg,n = 0, B,Gvy° = 0, and A py¢ = constant. This representation is unique up to two
constants of)¢ and°, respectively. Moreover, the orthogonality relations

(Gy°,Gr¢) =0,  (Gy",G ¢) =0
hold.

It remains to work out conditions under which the flow componé&hts andG+/° are orthog-
onal, too. By Green’s theorem (3), we have

(Gy°,Gy°) = — (¥°, Apd®) + (9%, 1) 5,

Taking into account the compatibility condition (1), Apy® = 14i,9m,7, WE Observe
that the right hand side is invariant with respect to an arbitrary additive corstaht)°:

— (W + C, ApY®) + (° + C,v) yq = — (V°, ApY©) + (Y%, V) 5

+ C(=Limm, AoV + LiimansV)
= — (V% ApyY©) + (Y%, V)5 -



Hence, fixing this constant by settitig?, ») = 0, we obtain

— (Y%, Apy©) + (¥°, V>aQ = _Cplgimvao )
because) py° is constant by proposition 2.3. It follows theE°, Gy°) = 0 if ¢, = 0. This
means that the total divergence of flaws zero, and that the flow entering and leaving the

domainf? is balanced
T . T
Limer, Div v = Lginppg = 0.

Proposition 2.4 (Extended Orthogonal Vector Decomposition)Suppose:, € Hg is a 2D
vector field withB,u« # 0, and that the balanced boundary flow condition

1£imaHanU =0
holds. Then: can be represented in terms of functiaffs °, ¢
u=Gy°+ Gy’ +Gro, Byu=B,Gy", (29)

where gsq = 0, B,Gy° = 0, and Apy¢ = 0. This representation is unique up to two
constants of° and ¢°, respectively, and all three componerig, G° and G'¢, are
mutually orthogonal.

Note that the basic pafi«° turns out to be theaminar flow i.e. it is both divergence and curl
free.
As a consequence of proposition 2.4, we can refine the decomposition (13) of the vector

field spaceH 5. To this end, we define further subspaces in addition to (11) and (12):

Hsz C Hs subspace of vector fields witt};, oz Bou = 0

Siro C Sir  subspace of irrotational vector fields with zero boundary flow

Sic C S subspace of irrotational vector fields with constant divergence

Sdiv,0 subspace of vector fields with vanishing divergence

Slam subspace of vector fields with vanishing divergence and curl

Based on these definitions, we summarize consequences of proposition 2.4:

Corollary 2.1 2D vector fields: € Hgs admit the following decompositions:

HS - (Sir,C + Sir,o) S¥ Ssol (30)
HS,5 = ir,C S Sir,o S Ssol (31)
Sdiv,O = Slam b Ssol (32)

3 Variational Approaches

In this section, we present and discuss various variants of the following variational approach
to optical flow estimation:

min F(u), F(u) = |[I1(z +u) — L(2)|[3;, + L(u) (33)

u€eHg
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Here,I,, I, € Hy are subsequent images of a given sequencelamyis a regularizing term
to be specified below, which makes the variational problem well-posed.
We point out that the data term — the first term in (33) — could be made robust against
outliers by using some robust estimators or fAenorm [4]. In this paper, however, we focus
on higher-order regularization in connection with the representation (7).

3.1 Data Term

In order to alleviate the local minima problem and to capture large motions, we apply the
standard procedure of minimizing(«) using a sequence of linearizations of the data term

Fll) = |GL - u' + 00", + L) (34)

oIt = Il (z) — IL(x — u*i(2)).

In this connection, the prolongation operator transferring various quantities to the next
finer grid deserves special attention, in order to preserve properties based on the decomposi-
tion (7). A corresponding constrained interpolation scheme will be detailed in section 5.3.

3.2 Div-Curl Regularization
We wish to apply the following second-order regularizer (cf. the discussion of related work in
section 1):

/ M|Vdivul® 4+ Ao| Veurl uf*dr = / MIVAY? + \| VA ¢ dx (35)
Q Q

where)\; and)\, are two positive constants. This term measures the variation of the basic flow
components divergence and curl, does not penalizéhe components themselves. However,
both standard finite differences or finite elements discretization lead to finite-dimensional rep-
resentations which do not satisfy (7) and (10). As a result, penalizing one component may
affect the other component too. Therefore, we adopt the framework of section 2.2 which leads
to the following discretization of (35):

L(u) := Laiv(u) + Lewri(u) =M H@Div uHiIS + A2 ”GCUN uHiE (36)
=X [GADY|,. + A2 IGACHI, (37)

3.3 Potential Based Non-rigid Flow Estimation

For the general non-rigid flow estimation, we consider the functional

min F(u), F(u) = ||Ii(z +u) — L(x)|[3;, + Laiw(t) + Leun(u) (38)

uEHg
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Inserting the decomposition (7) and (37), we obtain the minimization problem

min F(¥,6), F(¥,9) = Lz +Cv+G o) - b}, (39)
+ M [[Gapy |, + X [GACH},
subject to the linear constraints
Limorm, ¥ =0,  ¢aa =0 (40)

Note that the first constraint fixes the free constant mentioned in theorem 2.1. Furthermore, the
vector fields in (39) are elements of orthogonal subspaces (13), and thus may be determined
in parallel by subspace correction methods.

3.4 Estimation of Solenoidal Flows

An important special case, particularly in applications of experimental fluid dynamics, con-
cerns the estimation of divergence-free flows. In this case the decomposition (29) reduces to
(cf. (32)):

u=GyY°+Gro = u§+ u,. (41)

with the laminar flowu$ = G which only depends on the boundary fldyu:
Apyt =0, B,Gy°=DB,u. (42)
In order to estimate solenoidal flows, we consider instead of (39) the functional

min Fu(u) ,  Fa(u) = ||11(z +u) — L(z)|3;, + Leurt(u) (43)

UES div0

Inserting the decomposition (41), we obtain the minimization problem:
min Fu(1,6) . Fu(0%,0) = [ Lz + G +G6) = b@)|[,, + MIGAH], (@4)
subject to the constraints:
Ap* =0, Lymom, V=0, ¢oaa=0 (45)
Note that the vector fields of (44) are elements of orthogonal subspaces (32), and thus may be

determined in parallel by subspace correction methods.

3.5 Third-order Derivative Regularizers

In both variational approaches (39) and (44) third-order regularizers appear in the energy func-
tional. A common method to reduce the order of the regularizer is to use auxiliary variables
&1 = Apy and&, = Acg resulting in first-order terms:

Ly, = A1 H@ngi{S ) Lewrr = A2 ||G§2H?{E ) with gl - AD7v/}7 52 = Acﬁb (46)
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In principle, this has the advantage to decrease the order of the regularizers. On the other hand,
imposing the equation§; = Apy, & = Ac¢ as hard constraints requires a careful analy-

sis of the underlying continuous setting in order to avoid a mismatch of spaces and boundary
constraints. Therefore, such equations are mostly applied in a least-squares sense in the lit-
erature, which introduces additional errors. In contrast, through the mimetic finite-difference
method it is possible to directly obtain problem discretizations which are both accurate and
stable.

4 Well-posedness and Stability

In this section, we analyse well-posedness of the variational approaches discussed in section 3.
To this end, we state the conditions under which the respective functionals are strictly convex.
This will be done for a single levélin (34), and in terms of vector fieldsdue to the unique
representations stated in theorem 2.1 and proposition 2.4. These representations also allow us
to point out in section 4.3 a potential source of instability in connection with the higher-order
regularizer from section 3.2. This result appears to be new in the literature. Furthermore, our
experimental results showed that removing this instability as developed below, is numerically
significant.

In order to compactly state the various conditions for well-posedness, we complement the
list of subspaces defined at the end of section 2.4. To this end, we define the linear operator

G .= (@Il ) 5

and use the notatiol (A) for the null-space of a linear operatdr

Sso.c C Ssor SUbspace of solenoidal vector fields with constant curl
Hsc C Hy  subspace of vector field$s o := Si,.c + Ss.c = N(GDiv ) N N(GCurl)
Sao C Hg subspace of vector fields;o = {u | Gu = 0}

4.1 Well-posedness of General Flows

The variational approach (33) for estimating general flows amounts to the unconstrained con-
vex minimization problem:

. 2 . 2 - |12
g}gF(u) ;o Fu) = ||Gu+ 0|y, + M |GDiv uHHS—I—)\QHGCurluHHE 47)
As a consequence, the following is immediate:

Proposition 4.1 Problem(33)is well-posed if and only if

SGO N H&c = {0}
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As the subspacéis ¢ is fixed with the problem dimension, this condition requires a suffi-
ciently high spatial variation of the grayvalue imafjéo obtain well-posedness. A counter-
example is given by any imagewith Apl = Curl G I = C, because for the vector field
GrIec Hp, the inner product wittG 1 - @LI, computed by summing up the corresponding
local expressions over all cells (see fig. 1), vanishes.

4.2 Well-posedness on Solenoidal Flows

The variational approach (43) for estimating divergence-free flows amounts to a convex quadratic
minimization problem with linear equality constraints. Expressing the restriatiorb;,,, ®
Sso through the constrairidiv v = 0, we reformulate (43):

min Fyy(u), Fs(u) = ||Gu + 8t[H12qv + M ||GCurl uHiIE , St.Divu=0  (48)

u€Hg

As a consequence, the condition for well-posedness reads:
Proposition 4.2 Problems(43) and (48) are well-posed if and only if
SG’O N (Slam S% SSOI,C') - {0}

Note that problem (48) apparently gives rise to three relevant null-spages,,, «, and
Slam ® Ssoi.- HOwever, becaus€;, c C Ss., We have

Ssol,C N (Slam N> Ssol) - Slam s> Ssol,C’ .

4.3 Stability

Itis well-known that existence of a unique solution, as established in the previous section, does
not say much aboutumericalstability. Indeed, inspection of the second-order regularizer
(35) reveals a particular sensivity afwith respect to the image data and suggests using a
corresponding regularizer.

To motivate this additional term, we rewrite the estimation functional using the represen-
tation (p, w, uso)" (cf. prop. 2.1):

pglqlllalﬂ F(u), F(u)= HGAT(p, w, upn)" + 8JH2 + A\ ||Vp||2 + Ay HVWH2 (49)

We consider the extended decomposition due to theorem 2.3 and (30). Considering (27), the
variance of divergence and curl field related to the two components, 0)" and (0, w, 0)"
can be penalized and constrained by the respective regularizers. However, for the last part
(¢,,0, )" which is curl-free and has constant divergence, both regularization terms are not
effective.

The discussion in section (2.4) showed that this part only depends on the normal flow
at the boundaryisq. In fact, (c,,0,v)" is only weakly constrained by the data term, that is
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the gradient field of image dataat the boundary whose estimate is noisy and unreliable.
Therefore, in practice, it turned out to be useful to reduce this sensivitybyfincluding a
regularizer which additionally constrains the boundary values:

/a Q(anu)2 dl (50)

This constraint term favors continuity of vector field(2) between the boundary and the
interior domain. By virtue of the orthogonal decomposition, it can be directly expressed in
terms ofq.

5 Algorithms and Implementation

In this paper, we apply the space decomposition method to restore the two potential fields
»(2) andy(Q2) directly. This method provides a general framework for analysing domain de-
composition and multigrid methods [23] [24]. The essence is to decompose the solution space
into a sum of subspaces and then solve the original optimization problem sequentially or in
parallel in each subspace. Extensions to some convex optimization problems were presented
in [20], and convergence rates are analyzed in [18, 21, 19].

We describe the space decomposition method and its application to our approach in sec-
tions 5.1 and 5.2. Subsequently, we detail in sections 5.3 and 5.4 a multi-level representation
of flow fields adapted to the orthogonal decomposition.

5.1 lIterative Subspace Corrections

Suppose that for a general convex optimization problem

min F'(u) , (51)

ueV

the solution function spacé can be decomposed into a sum of subspaces
V=Vi+Va+...+V,. (52)

For anyu € V, there exist; € V;, such thatu = ", u;. Conversely, ifu; € V;, then
>, u; € V. Note that in general the sum is not the direct sum, and the decomposition of
is not unique.

There are two versions of iterative algorithms, the Parallel Subspace Corrections (PSC)
and the Successive Subspace Corrections (SSC). In each step, PSC and SSC compute the
next iterate inV/ through searching each subspatgs = 1,...,m, in parallel or sequen-
tially, respectively. With suitable assumptions about the objective funétian and the space
decomposition scheme, both algorithms converge. As we do not focus on parallel implemen-

tations in this work, we adopted SSC which, in this case, converges faster.
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Algorithm 5.1 (Successive Subspace Corrections)

e Step 1. Choose! € V.

e Step 2. For then-th iteration, computei? ™' € V; sequentially fori = 1,...,m, by
minimization:
Z At + Z up) < F( Z uiH Z up), Vv € Vi. (53)
1<k<i i<k<m 1<k<i i<k<m

Chooseu™ € V;, i =1,...,m, such that

n+1 ~n+1
— Y HV

|} <eollur —aytY,, 0<e<1. (54)

e Step 3. Go to the next iteration.

In practice, we choose! ™ = (1 — ¢y)a™ + epul?, with ¢; € [0.5,0.75].

5.2 Application to Flow Estimation

Based on algorithm 5.1, the estimation of general flows amounts to solving the two subprob-
lems

n}binﬁ’(w,gz_ﬁ), F(,) = |[I(z + Gy + G*¢) — I(2)|[;, + M [[Gape|},_ . (55)

min F($.6) . F(.6) = [I(z + G+ G*0) — 1), + X GAcolly, . (56)

where and ¢ are fixed variables at each iteration. Each subproblem is an unconstained
convex quadratic problem to which the preconditioned conjugate gradient iteration [16] was
applied.

Concerning estimation of divergence-free flows, approach (44) together with (45) requires
as part of algorithm 5.1 to solve a linearly constrained quadratic problem in the subspace of
laminar flows. To this end, the Augmented Lagrangian Method is applied. For details, we
refer to [3]. The corresponding augmented Lagrangian function fap theubproblem reads:

Ly, r) = |[I(x + Gy + GH@) — I(@)||” + (r, Apy®) + —||ADwCH?{V . (57)

with ¢ being fixed at each iteration step. Direct incorporation into the augmented Langrangian
iteration of the remaining linear equaIiEHV 1 = 0in (45) would destroy the sparsity of the
matrix of the penalty term and, in turn, the efficiency of the sparse solver. Instead, we simply
remove the average from iteratgs’)" as a simple post-processing step.

In practice, the augmented Lagrangian iteration converged in less than 10 iterations.
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5.3 Multi-level Implementation

Related to section 3.1, we detail in this and in the following section the multi-level handling
of flow fields in terms of potential functiong, ¢.

According to section 2.2, discrete fields of diverge®ev v)!, | = 1,...,m, are ele-
ments of the spacHy, and fields(Curl v)!, | = 1,...,m, are inH.
denotes the original image, ahd= m denotes the coarsest level. At levebiven potential
fields<', ¢! and the velocity fieldi’ = G¢! + G'¢', imagell, is warped tal} = I}(x — @').
The image flow between the two imagBsand’ is assumed to be small enough to allow for
accurate linearization:

oI =1 -1} (58)
Al =G - (uf — @) (59)
Al =Gl - (G =) + G (¢' - ¢)). (60)

The residual motion field!, in terms ofG+)! + G*¢!, is estimated by solving the problem

min F(y',¢') , F',¢') = ||A}, + 01" (61)

+\ H@ADW
Pt

2 2 2
I, iz + 22 [CLed [,

The minimizery!, ¢' andu! are postprocessed to yield the initializatioh*, ¢'~* anda!
of the next finer level — 1, as discussed in the following section. The whole process is started
at the coarsest level with ™ = 0, ¢™ = 0 andu™ = 0.

5.4 Constrained Prolongation

Itis important to preserve the subspace properties during grid transfer. Corresponding divergence-
and curl-preserving interpolation schemes for vector fields are suggested in [22, 5]. In this
work, however, we transfer potential fielg¢sand¢' to the next level — 1, rather than'.

This is done by bilinearly interpolating the divergenéethe curlw!, and the boundary
values ofy!, to obtainj'~!, &'~ andi;! (cf. the notation of the previous section). Them!
is computed as solution to

Apth =", st bgg =g (62)
Analogously, we computé'~* as solution to
Nep =", st ¢oa=0. (63)
The corresponding veloctiy field—! at the next finer level — 1 is

ﬂl—l _ @&l—l + GJ_QNSl—l ) (64)
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6 Experiments

In this section, we validate our approach with few numerical experiments. A more thorough
evaluation from the viewpoint of experimental fluid dynamics is beyond the scope of this work
and will be reported elsewhere.

6.1 Error Measures

In pactice, evaluating non-rigid flows by computing the average angular and norm error, re-
spectively, induced by the inner product of the spdc&(2))? = L?(Q) x L*(Q2) [2], appeared

to us too insensitive to the important flow structures. Therefore, we suggest error measures
that also take into account divergence and curl of flow structures:

1
Crorm ‘= (W) pe . €ang 1= AICCOS V) pe + : (65)
N VA, u)pe +13/(v,v) pe + 1

where we adopt the average angular and norm error measures but use the inner products of
the spaced (div; Q) N H(curl; Q) (see, e.g., [9]):

(u,v) po = (U, v) g + (Div u, Div vy + (Curl u,Curl ?J>HP : (66)

6.2 Experiment Results
6.2.1 Ground truth experiments

Figure 2 shows a synthetic image which was warped by the indicated flow. The corresponding
errors for the approach (449, = 6.1e — 3, €4y = 6.51°, are smaller than the approach

with Horn-Schunck regularization;,,.,, = 2.95e — 2, eqny = 13.52°. Note, that these error
measures include flow derivatives as opposed to common measures used in the literature. It
can be clearly observed that the divergence distribution of the flow recovered by our method
(figure 2, right) is close to zero (below)~'?), in comparison to the Horn-Schunck method
(middle figure 2).

6.2.2 Estimating Solenoidal Flows

Figure 3 shows the result of estimating the solenoidal flow for a real image sequence based
on the multi-level framework. The comparison with first-order regularization (Horn-Schunck
approach) in Figure 4 cleary reveals the superiority of our approach regarding the reconstruc-
tion of vortex structures. Furthermore, the (in this case) physically plausible constraint of
vanishing divergence is satisfied quite accurately.
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Figure 2: Left: Synthetic image and solenoidal velocity fieltMiddle: Divergence error
using Horn-Schunck regularizatioRight: Divergence error using our approach.

6.2.3 Estimating General Non-Rigid Flows

Figures 5 and 6 show general non-rigid flow estimated for two different real image sequences.
As in the solenoidal case, the potential functions provide a useful representation of qualitative
properties of the flow. These experiments have been performed on images of the infra-red
channel of the meteosat satellite. They show respectively exploding convective cells (fig. 5)
and a trough of low pressure (fig. 6, left) and a convective system (fig. 6, right).

6.2.4 Application to Particle Image Velocimetry (PI1V)

Figure 7 shows the result of our approach applied to the PIV image sequence from a flow
around two cylinders. The divergence field and curl field inside the area of two cylinders are
close to zero since the motion field is zero. Note that the two potential fi€kds and$(€2)
are not zero in these domains, but rather the suRiwlandV-¢ is.

Figure 8 shows the results computed from a PIV image pairs of a liquid freezing experi-
ment, recorded by Tomasz A. Kowalewsktp://www.ippt.gov.pl/ tkowale/).

7 Conclusion and Future Works

We introduced mathematically sound discrete representations of vector fields for estimating
highly non-rigid flows from image sequences. The estimation is directly done in terms of
component functions that decompose flows into orthogonal subspaces and reveal quantitative
information of physical relevance.

Our further work will focus on the use of multigrid iterations for accelerating the sub-
problem solvers, on evaluations and applications from the viewpoint of experimental fluid
dynamics (cf., e.g. [15, 6], and on the extension to 3D image sequences.
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Figure 3:Top Left The first imagel;with the restored solenoidal flowop Right The diver-
4.

gence field of the flow which is less than< 10~!2. Middle Left The potential field),

related to the laminar flowMiddle Right The potential fieldp

component of flow: the laminar flow,,,,.
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the Horn-Schunck regularization. This results clearly show that vortex structures are better
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recovered by our approach. Furthermore, the magnitude of the divergence is lefdw

Figure 4: Top The restored solenoidal flow(€2). Bottom The restored flowu,
throughout the image plane.
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Figure 5: Top Image! with the restored flow field.. Middle Left The divergence field of
u. Middle Right The curl field ofu. Bottom Left The potential field)(€2). Bottom Right

The potential fields(2). The divergence field, for example, which clearly detects a “source”
(blue blob), illustrates the quality and usefulness of the results.
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