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Abstract

We exploit the mimetic finite difference method introduced by Hyman and Shashkov
to present a framework for estimating vector fields and related scalar fields (divergence,
curl) of physical interest from image sequences. Our approach provides a basis for consis-
tent definitions of higher-order differential operators, for the analysis and a novel stabil-
ity result concerning second-order div-curl regularizers, for novel variational schemes to
the estimation of solenoidal (divergence-free) image flows, and to convergent numerical
methods in terms of subspace corrections.

1 Introduction

The estimation of highly non-rigid image flows is an important problem in various applica-
tion areas of image analysis like remote sensing, medical imaging, and experimental fluid me-
chanics. Such flows, which cannot be represented by a single parametric model, are typically
estimated by variational approaches. In contrast to standard approaches, however, higher-
order regularization is necessary in order to accurately recover important flow structures like
vortices, for example, and to incorporate physically plausible constraints, like vanishing di-
vergence of the flow.

The basis for our paper is early work on second-order regularizers constraining the gra-
dients of the flow components divergence and curl [1, 17, 10]. This regularization approach
has been elaborated in a series of papers by Mémin and co-workers [7, 8]. Moreover, the de-
composition and representation ofcontinuousvector fields by velocity potentials and stream
functions [9] has been adopted to derive piecewise parametric representations of relevant flow
structures. Recently, the direct estimation of this representation from image sequences has
been studied in [14].

The objective of this contribution is to provide a mathematically sound discrete represen-
tation of vector fields in terms of basic flow components related to quantities of physical rele-
vance, and a correponding decomposition into subspaces of the linear space of discrete vector
valued functions. By this, we obtain and can investigate a discrete analogue of known con-
tinuous representations [9] in connection with image sequence analysis of fluids. This gives
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rise, for example, to a novel variational approach for estimation solenoidal (divergence-free)
flows from image sequences. Furthermore, we remove numerical convergence problems of the
heuristic alternating numerical estimation scheme employed in [14] by adopting a subspace
correction method from numerical analysis which directly applies to our flow field represen-
tation. Finally, our analysis reveals the importance of an additional boundary regularization
term in connection div-curl regularizers (section 4.3), which has been overlooked apparently
in previous work.

In section 2, we present the discrete representation of both scalar and vector fields based
on the mimetic finite difference method introduced by Hyman and Shashkov [12, 11]. A basic
feature of this representation is that basic integral identities of vector analysis are preserved af-
ter discretization. Furthermore, basic first-order differential operators can be defined such that
compound higher-order operators with compatible domains and image spaces can be consis-
tently defined. Subsequently, we elaborate the representation of vector fields by potential and
stream functions and various useful subspace decompositions of the linear space of discrete
vector fields.

Based on this, we reconsider a few variational approaches to motion estimation in section
3. By defining all quantities in terms of the representation developed in section 2, we examine
well-posedness and stability, including the non-trivial stability issue mentioned above (section
4). Section 5 provides a natural numerical estimation approach which directly fits to the flow
field representation, along with details of the multilevel implementation. We validate our
approach with numerical experiments in section 6.

A preliminary conference version of this paper appeared in [25].

2 Vector-Field Representation

2.1 Discrete Fields and Differential Operators

We use themimetic finite difference methodintroduced by Hyman and Shashkov [12, 11] in
order to preserve basic relationships of continuous vector analysis by appropriately defining
their discrete analogues. This discretization scheme will be applied in section 2.2 to accurately
represent and decompose vector fields.

Linear Spaces. Figure 1 illustrates the definitions of the following finite-dimensional vec-
tor spaces of scalar and vector fields that naturally appear in discrete models of continuum
mechanics:

HV : the space ofscalar fieldsdefined on cells,
HP : the space ofscalar fieldsdefined on vertices,
HE: the space ofvector fieldsdefined tangential to sides,
HS: the space ofvector fieldsdefined normal to sides.

We denote withHo
P , H

o
S, H

o
E the subspaces of inner scalar and inner vector fields, respectively,

obtained by restricting the spacesHo
P , H

o
S, H

o
E, and by imposing zero boundary values.
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Notation. We denote withLi,j+1/2 the side between vertices(i, j) and (i, j + 1). The re-
lationship between vertex indices and cell indices is depicted in Figure 1 for the lower-right
cell, denoted withΩi+1/2,j+1/2. To simplify notation, we index cell (side, vertex) positions
sometimes directly with(α, β) if the meaning is unambiguous.Ω denotes the whole image
section, and∂Ω its boundary,

Convention. We consider in this paper only regular grids with unit side-lengthsLα,β = 1

and unit cell-areasΩα,β = 1 , ∀α, β. Let our grid consist ofm × n vertices. Reshaping the
scalar/vector fields columnwise into vectors, we identify:HP = Rmn, Ho

P = R(m−2)(n−2), HV =

R(m−1)(n−1), HS = Rm(n−1)+n(m−1), Ho
S = R(m−1)(n−2)+(n−1)(m−2), andHE, Ho

E with HS,
Ho
S.
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Figure 1: Definition of finite-dimensional spaces of scalar fields and vector fields on a rectan-
gular grid. Filled circles depictnodesor vertices, the other circles indicatecells. The positions
of diamonds are referred to assides.

Inner products and Norms. WhileHP andHV are equipped with the usual euclidian inner
product

〈g, h〉HV
=

∑
Ωα,β∈Ω

gα,βhα,β ,

and with the corresponding induced norm, the inner products onHS andHE are defined as
follows: let the indicesD,T,R, L refer to the sides of cellΩα,β, u ∈ HS, and

uΩα,β
:=

1√
2

(uD, uT , uR, uL)T
α,β .

Then
〈u, v〉HS

:=
∑

Ωα,β∈Ω

〈uΩα,β
, vΩα,β

〉 , ‖u‖HS
:=

√
〈u, u〉HS

.
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Analogous definitions hold forHE.

First-order Differential Operators. We define the discrete first-order differential operators
corresponding to∇,∇⊥, div, andcurl, operating on discretized 2D data:

G : HP → HE, G⊥ : HP → HS, Div : HS → HV , Curl : HE → HV , (1a)

G : HV+∂V → HS, G
⊥

: HV+∂V → HE, Div : Ho
E → Ho

P , Curl : Ho
S → Ho

P . (1b)

Let

Dm :=




−1 1 0 . . . 0 0 0

0 −1 1 . . . 0 0 0
. .. .. . .. .

0 0 0 . . . −1 1 0

0 0 0 . . . 0 −1 1



∈ Rm−1,m ,

and

D̃m :=




−2 2 0 0 . . . 0 0 0 0

0 −1 1 0 . . . 0 0 0 0

0 0 −1 1 . . . 0 0 0 0
. .. .. . .. .

0 0 0 0 . . . −1 1 0 0

0 0 0 0 . . . 0 −1 1 0

0 0 0 0 . . . 0 0 −2 2




∈ Rm,m+1 .

Then the discrete operators are represented by the following matrices

G =

(
In ⊗Dm

Dn ⊗ Im

)
, G =

(
In−1 ⊗ D̃m

D̃n ⊗ Im−1

)
,

Div =
(

In−1 ⊗Dm,Dn ⊗ Im−1

)
,

Div =
(

In−2 ⊗Dm−1,Dn−1 ⊗ Im−2

)
,

Curl =
(

Dn ⊗ Im−1,−In−1 ⊗Dm

)
,

Curl =
(

Dn−1 ⊗ Im−2,−In−2 ⊗Dm−1

)
,

where⊗ denotes the Kronecker product of matrices. The operatorG⊥ : HP → HS is defined
by

G⊥ =

( −Dn ⊗ Im
In ⊗Dm

)
.

It is easy to check that the restricted operatorG⊥|Ho
P

maps toHo
S.

Finally, for discretizing the boundary condition,n · u|∂Ω, we introduce the boundary operator

Bn : HS → ∂HS := HS\Ho
S ,
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which restricts the vector field to the vectors at the grid’s boundary multiplied by the outer
normal vectors. The matrix form of the boundary operator is:

Bn =

(
In−1 ⊗Bm 0

0 Bn ⊗ Im−1

)
,

where0 are zero matrices of appropriate sizes, and

Bm :=

( −1 0 . . . 0 0

0 0 . . . 0 1

)
∈ R2,m.

It has been shown [12] that using the operators defined above, elementary properties of
continuous fields in terms ofdiv, curl, ∇, carry over to the discrete case. For example, if
the curl of a vector fieldw is zero,Curl w ≡ 0, then the vector field can be expressed as
the gradient of a scalar fieldU , w = GU ; or, if the divergence of a vector fieldw is a zero,
Div w ≡ 0, then it should be the curl of another vector field,w = G⊥U (recall that we only
consider the 2D case in this paper).

Similarly, Green’s theorem
∫

Ω

g · div udv +

∫

Ω

∇g · udv =

∫

∂Ω

gunds (2)

becomes in the discrete case

〈g,Div u〉HV
+

〈
Gg, u

〉
HS

=
∑

Lα,β∈∂Ω

gα,βun;α,β , (3)

whereas Gauss’ theorem
∫

Ω

divudv =

∫

∂Ω

unds (4)

reads in the discrete case
∑

Ωα,β∈Ω

Div u =
∑

Lα,β∈∂Ω

un;α,β . (5)

Using the definitions above, we rewrite this equation more concisely as

1T
dimHV

Div u = 1T
dim∂HS

Bnu , (6)

where1n denotes the one-vector.
Most importantly, the additional dual operators (1b) resolve the incompatibilities of do-

mains and ranges of the primal operators (1a) when used to buildcompound second order
differential operators (cf. (16) below). For example,G andDiv cannot be regarded as mutu-
ally adjoint operators, whereasG, Div andG, Div do.
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2.2 Orthogonal Decomposition

We represent vector fields directly in terms of their irrotational and solenoidal components.
These two components are defined by the first-order variations of velocity potentialsψ ∈
HV+∂V and stream functionsφ ∈ HP , and are orthogonal to each other.

Theorem 2.1 (Basic Vector Field Decomposition [13])For any 2D vector fieldu ∈ HS, the
representation ofu in terms ofψ, φ

u = Gψ +G⊥φ, Bnu = BnGψ, (7)

whereφ∂Ω = 0, is unique up to a constant ofψ.

According to (7), let:
u = v + w , v = Gψ , w = G⊥φ .

Since the operators defined in the previous section satisfy [12, 11]:

Div G⊥ ≡ 0 , Curl G ≡ 0 ,

we have
Div w = 0 , Curl v = 0 , (8)

and
〈w, v〉HS

=
〈
Gψ,G⊥φ

〉
HS

=
〈
Curl Gψ, φ

〉
HP

≡ 0 . (9)

This shows:

Theorem 2.2 (Orthogonality) The decomposition (7) is orthogonal:

〈
Gψ,G⊥φ

〉
HS

= 0 , ∀u ∈ HS (10)

Defining the corresponding subspaces

Sir :=
{
u ∈ HS |u = Gψ

}
, (11)

Ssol :=
{
u ∈ HS |u = G⊥φ, φ∂Ω = 0

}
, (12)

the theorem asserts that the direct sum holds:

HS = Sir ⊕ Ssol (13)

Representation (7) is motivated by analogous decompositions of continuous vector fields
[9]. However, discretizing such vector fields with standard finite differences or finite ele-
ments yieldsapproximatedecompositions only, which may lead to numerical instabilities in
applications. In contrast, theorem 2.1 provides anexactorthogonal decomposition of the
finite-dimensional space of vector fieldsHS. Furthermore, as detailed below, the decompo-
sition allows to estimateψ andφ directly from a image sequence. Using variational optical
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flow approaches, the estimation can be done in parallel by applying subspace correction meth-
ods. Alternatively, we may first estimate the motion fieldu, and then computeψ andφ in a
subsequent step by solving the Neumann and Dirichlet problems

4Dψ = Div u , BnGψ = Bnu , (14)

4Cφ = Curl u , φ∂Ω = 0 , (15)

where the discrete Laplacians are defined by

4D := Div G , 4C := Curl G⊥ , (16)

and the additional constraint1T
dimHV

ψ = 0 (continuous case:
∫
Ω
ψdv = 0) is used to eliminate

the arbitrary constant in (7) and (14).
In the remainder of this paper, however, we show that directly estimatingψ, φ from image

sequence data is feasible. Throughout we adopt the strategy to express estimation problems
by direct relations between the data and unknowns. Such direct formulations allow to formu-
late hypotheses about unknowns in a proper way and avoid additional approximation errors
through the successive application of independent techniques.

2.3 Flow Representation

Consider Gauss’ theorem (5) and (6) for any vector fieldu ∈ HS. We say thatρ ∈ HV and
ν ∈ ∂HS fulfill the compatibility conditionif

1T
dimHV

ρ = 1T
dim∂HS

ν (17)

In what follows, we will make use of another flow representation, besidesu ∈ HS. To this
end, consider the operatorA : HS → HV ⊕Ho

P ⊕ ∂HS given by

A :=



Div
Curl
Bn


 ∈ RdimHS+1,dimHS , (18)

where theCurl operator is naturally extended to the whole spaceHS. The operatorA has
full rank dimHS. Moreover, we see by (6) that(ρ, ω, ν)T is in the image ofA if and only if ρ
andν fulfill the compatibility condition (17). In this case, the representation ofu in terms of
(ρ, ω, ν)T is given byu = A†(ρ, ω, ν)T, whereA† = (ATA)−1AT denotes the pseudoinverse of
A.

Proposition 2.1 There is a one–to–one correspondence between the spacesHS and

VS := {(ρ, ω, ν)T : 1T
dimHV

ρ = 1T
dim∂HS

ν} , (19)

whereu ∈ HS, ρ = Div u, ω = Curl u, ν = Bnu, and

u = A†(ρ, ω, ν)T (20)
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Remark. In practice, we do not computeu = A†(ρ, ω, ν)T which is ill-conditioned. Rather,
we solve both the Neumann problem (14) and the Dirichlet problem (15), and insert the solu-
tions into (7).

2.4 Extended Flow Decompositions

We take a closer look at the representation (20) by further decomposing the spaceVS defined
in (20). As a result, we obtain a definition oflaminar flows, insight into the influence of
boundary values, and further orthogonality relations.

The orthogonal decomposition theorem (7) shows that the two potential functionsψ, φ

can be computed through a vector fieldu and its normal boundary flowu∂Ω, and that the
representation (13) holds. This decomposition can be rewritten in a meaningful way using the
representation(ρ, ω, ν)T:

(ρ, ω, ν)T = (ρ, 0, ν)T + (0, ω, 0)T (21)

Obviously, the two components,(ρ, 0, ν)T and(0, ω, 0)T, are inVS. While (ρ, 0, ν)T is curl-
free, component(0, ω, 0)T is divergence-free. Letcρ andcω denote constants proportional to
the mean of the divergence and the curl ofu, that is

cρ := 1T
dimHV

ρ = 1T
dimHV

Div u, (22)

cω := 1T
dimHo

P
ω = 1T

dimHo
P
Curl u. (23)

Using these averaged quantities, we can further decompose the flowu ∈ HS, represented by
(ρ, ω, ν)T ∈ VS:

(ρ, ω, ν)T = (cρ, cω, ν)
T + (ρo, 0, 0)T + (0, ωo, 0)T, (24)

where1T
dimHV

ρo = 1T
dimHo

P
ωo = 0. Accordingly, we define the components

u = uc + uod + uoc

whereuc := A†(cρ, cω, ν)T, uod := A†(ρo, 0, 0)T and uoc := A†(0, ωo, 0)T. Vector uc and
(cρ, cω, ν)

T, respectively, represent thebasic patternof the non-rigid flowu and its bound-
ary distribution, whileuod, u

o
c and(ρo, 0, 0)T, (0, ωo, 0)T, respectively, are related tooscillating

flow patternsthat are curl-free and divergence-free. It is easy to verify that orthogonality
between the componentsuod anduoc is preserved

〈uod, uoc〉 = 0,

while uc anduoc, u
o
d are not orthogonal.

We summarize these properties, thereby extending theorem 2.1:

Proposition 2.2 (First Extended Vector Decomposition)For any 2D vector fieldu ∈ HS

andBnu 6= 0, the decomposition(24) of u admits the representation in terms of functions
ψc, φc, ψo, φo

u = (Gψc +G⊥φc) +Gψo +G⊥φo , Bnu = BnGψc , (25)
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whereφc∂Ω = φo∂Ω = 0, BnGψo = 0, and4Dψ
c ≡ constant,4Cφ

c ≡ constant. This repre-
sentation is unique up to two constants ofψc andψo, respectively. Moreover, the orthogonality
relation 〈

Gψo,G⊥φo
〉

= 0 (26)

holds.

While the components of the decomposition (24) and (25) are easy to interpret, a single or-
thogonality relation (26) only holds. To improve the latter situation, we consider the alterna-
tive decomposition

(ρ, ω, ν)T = (cρ, 0, ν)
T + (ρo, 0, 0)T + (0, ω, 0)T . (27)

The corresponding components ofu ∈ HS are denoted as

u = ucd + uod + uc

whereucd := A†(cρ, 0, ν)T, uod := A†(ρo, 0, 0)T anduc := A†(0, ω, 0)T. As will be shown
below, this decomposition provides the basis for representing any vector field, under additional
conditions to be specified, by three mutually orthogonal components. We first summarize the
properties of (27):

Proposition 2.3 (Second Extended Vector Decomposition)For any 2D vector fieldu ∈ HS

andBnu 6= 0, the decomposition(27) of u admits the representation in terms of functions
ψc, ψo, φ

u = Gψc +Gψo +G⊥φ , Bnu = BnGψc , (28)

whereφ∂Ω = 0, BnGψo = 0, and4Dψ
c ≡ constant. This representation is unique up to two

constants ofψc andψo, respectively. Moreover, the orthogonality relations

〈
Gψo,G⊥φ

〉
= 0 ,

〈
Gψc,G⊥φ

〉
= 0

hold.

It remains to work out conditions under which the flow componentsGψc andGψo are orthog-
onal, too. By Green’s theorem (3), we have

〈
Gψo,Gψc

〉
= −〈ψo,4Dψ

c〉+ 〈ψo, ν〉∂Ω

Taking into account the compatibility condition (17),1T
dimHV

4Dψ
c = 1T

dim∂HS
ν, we observe

that the right hand side is invariant with respect to an arbitrary additive constantC of ψo:

−〈ψo + C,4Dψ
c〉+ 〈ψo + C, ν〉∂Ω = −〈ψo,4Dψ

c〉+ 〈ψo, ν〉∂Ω

+ C(−1T
dimHV

4Dψ
c + 1T

dim∂HS
ν)

= −〈ψo,4Dψ
c〉+ 〈ψo, ν〉∂Ω .
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Hence, fixing this constant by setting〈ψo, ν〉 = 0, we obtain

−〈ψo,4Dψ
c〉+ 〈ψo, ν〉∂Ω = −cρ1T

dimHV
ψo ,

because4Dψ
c is constant by proposition 2.3. It follows that

〈
Gψo,Gψc

〉
= 0 if cρ = 0. This

means that the total divergence of flowu is zero, and that the flow entering and leaving the
domainΩ is balanced

1T
dimHV

Div u = 1T
dim∂HS

ν = 0.

Proposition 2.4 (Extended Orthogonal Vector Decomposition)Supposeu ∈ HS is a 2D
vector field withBnu 6= 0, and that the balanced boundary flow condition

1T
dim∂HS

Bnu = 0

holds. Thenu can be represented in terms of functionsψc, ψo, φ

u = Gψc +Gψo +G⊥φ , Bnu = BnGψc , (29)

whereφ∂Ω = 0, BnGψo = 0, and4Dψ
c ≡ 0. This representation is unique up to two

constants ofψc and ψo, respectively, and all three componentsGψc, Gψo andG⊥φ, are
mutually orthogonal.

Note that the basic partGψc turns out to be thelaminar flow, i.e. it is both divergence and curl
free.

As a consequence of proposition 2.4, we can refine the decomposition (13) of the vector
field spaceHS. To this end, we define further subspaces in addition to (11) and (12):

HS,o ⊂ HS subspace of vector fields with1T
dim∂HS

Bnu = 0

Sir,o ⊂ Sir subspace of irrotational vector fields with zero boundary flow
Sir,C ⊂ Sir subspace of irrotational vector fields with constant divergence
Sdiv,0 subspace of vector fields with vanishing divergence
Slam subspace of vector fields with vanishing divergence and curl

Based on these definitions, we summarize consequences of proposition 2.4:

Corollary 2.1 2D vector fieldsu ∈ HS admit the following decompositions:

HS = (Sir,C + Sir,o)⊕ Ssol (30)

HS,o = Sir,C ⊕ Sir,o ⊕ Ssol (31)

Sdiv,0 = Slam ⊕ Ssol (32)

3 Variational Approaches

In this section, we present and discuss various variants of the following variational approach
to optical flow estimation:

min
u∈HS

F (u) , F (u) := ‖I1(x+ u)− I2(x)‖2
HV

+ L(u) (33)
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Here,I1, I2 ∈ HV are subsequent images of a given sequence, andL(u) is a regularizing term
to be specified below, which makes the variational problem well-posed.

We point out that the data term – the first term in (33) – could be made robust against
outliers by using some robust estimators or theL1-norm [4]. In this paper, however, we focus
on higher-order regularization in connection with the representation (7).

3.1 Data Term

In order to alleviate the local minima problem and to capture large motions, we apply the
standard procedure of minimizingF (u) using a sequence of linearizations of the data term

F l(ul) :=
∥∥GI l1 · ul + ∂tI

l
∥∥2

HV
+ L(ul) , (34)

where{I l1, I l2}l=0,1,...,m denote linear scale-space representations of a given image pair, and
∂tI

l = I l1(x)− I l2(x− ul+1(x)).
In this connection, the prolongation operator transferring various quantities to the next

finer grid deserves special attention, in order to preserve properties based on the decomposi-
tion (7). A corresponding constrained interpolation scheme will be detailed in section 5.3.

3.2 Div-Curl Regularization

We wish to apply the following second-order regularizer (cf. the discussion of related work in
section 1):

∫

Ω

λ1|∇div u|2 + λ2|∇curlu|2dx =

∫

Ω

λ1|∇4ψ|2 + λ2|∇4φ|2dx (35)

whereλ1 andλ2 are two positive constants. This term measures the variation of the basic flow
components divergence and curl, butdoes not penalizethe components themselves. However,
both standard finite differences or finite elements discretization lead to finite-dimensional rep-
resentations which do not satisfy (7) and (10). As a result, penalizing one component may
affect the other component too. Therefore, we adopt the framework of section 2.2 which leads
to the following discretization of (35):

L(u) := Ldiv(u) + Lcurl(u) :=λ1

∥∥GDiv u
∥∥2

HS
+ λ2

∥∥GCurl u
∥∥2

HE
(36)

=λ1

∥∥G4Dψ
∥∥2

HS
+ λ2 ‖G4Cφ‖2

HE
(37)

3.3 Potential Based Non-rigid Flow Estimation

For the general non-rigid flow estimation, we consider the functional

min
u∈HS

F (u) , F (u) := ‖I1(x+ u)− I2(x)‖2
HV

+ Ldiv(u) + Lcurl(u) (38)
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Inserting the decomposition (7) and (37), we obtain the minimization problem

min
ψ,φ

F (ψ, φ) , F (ψ, φ) =
∥∥I1(x+Gψ +G⊥φ)− I2(x)

∥∥2

HV
(39)

+ λ1

∥∥G4Dψ
∥∥2

HS
+ λ2 ‖G4Cφ‖2

HE

subject to the linear constraints

1T
dim∂HV

ψ = 0 , φ∂Ω = 0 (40)

Note that the first constraint fixes the free constant mentioned in theorem 2.1. Furthermore, the
vector fields in (39) are elements of orthogonal subspaces (13), and thus may be determined
in parallel by subspace correction methods.

3.4 Estimation of Solenoidal Flows

An important special case, particularly in applications of experimental fluid dynamics, con-
cerns the estimation of divergence-free flows. In this case the decomposition (29) reduces to
(cf. (32)):

u = Gψc +G⊥φ := ucd + uc (41)

with the laminar flowucd = Gψc which only depends on the boundary flowBnu:

4Dψ
c = 0 , BnGψc = Bnu. (42)

In order to estimate solenoidal flows, we consider instead of (39) the functional

min
u∈Sdiv0

Fsol(u) , Fsol(u) := ‖I1(x+ u)− I2(x)‖2
HV

+ Lcurl(u) (43)

Inserting the decomposition (41), we obtain the minimization problem:

min
ψc,φ

Fsol(ψ
c, φ) , Fsol(ψ

c, φ) =
∥∥I1(x+Gψc +G⊥φ)− I2(x)

∥∥2

HV
+ λ ‖G4Cφ‖2

HE
(44)

subject to the constraints:

4Dψ
c = 0 , 1T

dim∂HV
ψc = 0 , φ∂Ω = 0 (45)

Note that the vector fields of (44) are elements of orthogonal subspaces (32), and thus may be
determined in parallel by subspace correction methods.

3.5 Third-order Derivative Regularizers

In both variational approaches (39) and (44) third-order regularizers appear in the energy func-
tional. A common method to reduce the order of the regularizer is to use auxiliary variables
ξ1 = 4Dψ andξ2 = 4Cφ resulting in first-order terms:

Ldiv = λ1

∥∥Gξ1
∥∥2

HS
, Lcurl = λ2 ‖Gξ2‖2

HE
, with ξ1 = 4Dψ , ξ2 = 4Cφ (46)
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In principle, this has the advantage to decrease the order of the regularizers. On the other hand,
imposing the equationsξ1 = 4Dψ , ξ2 = 4Cφ as hard constraints requires a careful analy-
sis of the underlying continuous setting in order to avoid a mismatch of spaces and boundary
constraints. Therefore, such equations are mostly applied in a least-squares sense in the lit-
erature, which introduces additional errors. In contrast, through the mimetic finite-difference
method it is possible to directly obtain problem discretizations which are both accurate and
stable.

4 Well-posedness and Stability

In this section, we analyse well-posedness of the variational approaches discussed in section 3.
To this end, we state the conditions under which the respective functionals are strictly convex.
This will be done for a single levell in (34), and in terms of vector fieldsu due to the unique
representations stated in theorem 2.1 and proposition 2.4. These representations also allow us
to point out in section 4.3 a potential source of instability in connection with the higher-order
regularizer from section 3.2. This result appears to be new in the literature. Furthermore, our
experimental results showed that removing this instability as developed below, is numerically
significant.

In order to compactly state the various conditions for well-posedness, we complement the
list of subspaces defined at the end of section 2.4. To this end, we define the linear operator

G := (GI1· ) ,

and use the notationN(A) for the null-space of a linear operatorA:

Ssol,C ⊂ Ssol subspace of solenoidal vector fields with constant curl
HS,C ⊂ HS subspace of vector fieldsHS,C := Sir,C + Ssol,C = N(GDiv ) ∩ N(GCurl )

SG0 ⊂ HS subspace of vector fieldsSG0 = {u | Gu = 0}

4.1 Well-posedness of General Flows

The variational approach (33) for estimating general flows amounts to the unconstrained con-
vex minimization problem:

min
u∈HS

F (u) , F (u) = ‖Gu+ ∂tI‖2
HV

+ λ1

∥∥GDiv u
∥∥2

HS
+ λ2

∥∥GCurl u
∥∥2

HE
(47)

As a consequence, the following is immediate:

Proposition 4.1 Problem(33) is well-posed if and only if

SG0 ∩HS,C = {0}
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As the subspaceHS,C is fixed with the problem dimension, this condition requires a suffi-
ciently high spatial variation of the grayvalue imageI to obtain well-posedness. A counter-
example is given by any imageI with 4DI ≡ Curl G⊥I = C, because for the vector field
G⊥I ∈ HE the inner product withGI · G⊥I, computed by summing up the corresponding
local expressions over all cells (see fig. 1), vanishes.

4.2 Well-posedness on Solenoidal Flows

The variational approach (43) for estimating divergence-free flows amounts to a convex quadratic
minimization problem with linear equality constraints. Expressing the restrictionu ∈ Slam ⊕
Ssol through the constraintDiv u = 0, we reformulate (43):

min
u∈HS

Fsol(u) , Fsol(u) = ‖Gu+ ∂tI‖2
HV

+ λ
∥∥GCurl u

∥∥2

HE
, s.t. Div u = 0 (48)

As a consequence, the condition for well-posedness reads:

Proposition 4.2 Problems(43)and (48)are well-posed if and only if

SG0 ∩ (Slam ⊕ Ssol,C) = {0}

Note that problem (48) apparently gives rise to three relevant null-spaces,Sg, Ssol,C , and
Slam ⊕ Ssol. However, becauseSsol,C ⊂ Ssol, we have

Ssol,C ∩ (Slam ⊕ Ssol) = Slam ⊕ Ssol,C .

4.3 Stability

It is well-known that existence of a unique solution, as established in the previous section, does
not say much aboutnumericalstability. Indeed, inspection of the second-order regularizer
(35) reveals a particular sensivity ofu with respect to the image data and suggests using a
corresponding regularizer.

To motivate this additional term, we rewrite the estimation functional using the represen-
tation(ρ, ω, u∂Ω)T (cf. prop. 2.1):

min
ρ,ω,u∂Ω

F (u) , F (u) =
∥∥GA†(ρ, ω, u∂Ω)T + ∂tI

∥∥2
+ λ1 ‖∇ρ‖2 + λ2 ‖∇ω‖2 (49)

We consider the extended decomposition due to theorem 2.3 and (30). Considering (27), the
variance of divergence and curl field related to the two components(ρo, 0, 0)T and(0, ω, 0)T

can be penalized and constrained by the respective regularizers. However, for the last part
(cρ, 0, ν)

T which is curl-free and has constant divergence, both regularization terms are not
effective.

The discussion in section (2.4) showed that this part only depends on the normal flow
at the boundaryu∂Ω. In fact, (cρ, 0, ν)T is only weakly constrained by the data term, that is

14



the gradient field of image dataI at the boundary whose estimate is noisy and unreliable.
Therefore, in practice, it turned out to be useful to reduce this sensivity ofu by including a
regularizer which additionally constrains the boundary values:

∫

∂Ω

(∂nu)
2 dl (50)

This constraint term favors continuity of vector fieldu(Ω) between the boundary and the
interior domain. By virtue of the orthogonal decomposition, it can be directly expressed in
terms ofψ.

5 Algorithms and Implementation

In this paper, we apply the space decomposition method to restore the two potential fields
φ(Ω) andψ(Ω) directly. This method provides a general framework for analysing domain de-
composition and multigrid methods [23] [24]. The essence is to decompose the solution space
into a sum of subspaces and then solve the original optimization problem sequentially or in
parallel in each subspace. Extensions to some convex optimization problems were presented
in [20], and convergence rates are analyzed in [18, 21, 19].

We describe the space decomposition method and its application to our approach in sec-
tions 5.1 and 5.2. Subsequently, we detail in sections 5.3 and 5.4 a multi-level representation
of flow fields adapted to the orthogonal decomposition.

5.1 Iterative Subspace Corrections

Suppose that for a general convex optimization problem

min
u∈V

F (u) , (51)

the solution function spaceV can be decomposed into a sum of subspaces

V = V1 + V2 + . . .+ Vm . (52)

For anyu ∈ V , there existui ∈ Vi, such thatu =
∑m

i=1 ui. Conversely, ifui ∈ Vi, then∑m
i=1 ui ∈ V . Note that in general the sum is not the direct sum, and the decomposition ofu

is not unique.
There are two versions of iterative algorithms, the Parallel Subspace Corrections (PSC)

and the Successive Subspace Corrections (SSC). In each step, PSC and SSC compute the
next iterate inV through searching each subspacesVi, i = 1, . . . ,m, in parallel or sequen-
tially, respectively. With suitable assumptions about the objective functionF (u) and the space
decomposition scheme, both algorithms converge. As we do not focus on parallel implemen-
tations in this work, we adopted SSC which, in this case, converges faster.
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Algorithm 5.1 (Successive Subspace Corrections).

• Step 1. Chooseu0
i ∈ Vi.

• Step 2. For then-th iteration, computêun+1
i ∈ Vi sequentially fori = 1, . . . ,m, by

minimization:

F
( ∑

1≤k<i
un+1
k + ûn+1

i +
∑

i<k≤m
unk

) ≤ F
( ∑

1≤k<i
un+1
k +vi+

∑

i<k≤m
unk

)
, ∀vi ∈ Vi. (53)

Chooseun+1
i ∈ Vi , i = 1, . . . ,m, such that

∥∥un+1
i − ûn+1

i

∥∥
V
≤ ε0

∥∥uni − ûn+1
i

∥∥
V
, 0 ≤ ε0 ≤ 1 . (54)

• Step 3. Go to the next iteration.

In practice, we chooseun+1
i = (1− ε0)û

n+1
i + ε0u

n
i , with ε0 ∈ [0.5, 0.75].

5.2 Application to Flow Estimation

Based on algorithm 5.1, the estimation of general flows amounts to solving the two subprob-
lems

min
ψ
F̃ (ψ, φ̄) , F̃ (ψ, φ̄) =

∥∥I(x+Gψ +G⊥φ̄)− I(x)
∥∥2

HV
+ λ1

∥∥G4Dψ
∥∥2

HS
, (55)

min
φ
F̃ (ψ̄, φ) , F̃ (ψ̄, φ) =

∥∥I(x+Gψ̄ +G⊥φ)− I(x)
∥∥2

HV
+ λ2 ‖G4Cφ‖2

HE
, (56)

whereψ̄ and φ̄ are fixed variables at each iteration. Each subproblem is an unconstained
convex quadratic problem to which the preconditioned conjugate gradient iteration [16] was
applied.

Concerning estimation of divergence-free flows, approach (44) together with (45) requires
as part of algorithm 5.1 to solve a linearly constrained quadratic problem in the subspace of
laminar flows. To this end, the Augmented Lagrangian Method is applied. For details, we
refer to [3]. The corresponding augmented Lagrangian function for theψ−subproblem reads:

Lφ̄(ψ
c, r) =

∥∥I(x+Gψc +G⊥φ̄)− I(x)
∥∥2

+ 〈r,4Dψ
c〉+

c

2
‖4Dψ

c‖2
HV

, (57)

with φ̄ being fixed at each iteration step. Direct incorporation into the augmented Langrangian
iteration of the remaining linear equality

∑
HV

ψ = 0 in (45) would destroy the sparsity of the
matrix of the penalty term and, in turn, the efficiency of the sparse solver. Instead, we simply
remove the average from iterates(ψc)n as a simple post-processing step.

In practice, the augmented Lagrangian iteration converged in less than 10 iterations.
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5.3 Multi-level Implementation

Related to section 3.1, we detail in this and in the following section the multi-level handling
of flow fields in terms of potential functionsψ, φ.

According to section 2.2, discrete fields of divergence(Div u)l , l = 1, . . . ,m, are ele-
ments of the spaceHV , and fields(Curl u)l , l = 1, . . . ,m, are inHo

P .
As described in [14, 15], two image pyramids{I li}l=1,...,m , i = 1, 2, are constructed.l = 0

denotes the original image, andl = m denotes the coarsest level. At levell, given potential
fields ψ̃l, φ̃l and the velocity field̃ul = Gψ̃l + G⊥φ̃l, imageI l2 is warped toĨ l2 = I l2(x − ũl).
The image flow between the two imagesĨ l1 andI l2 is assumed to be small enough to allow for
accurate linearization:

∂tI
l = I l1 − Ĩ l2 (58)

∆l
u = GI l1 · (ul − ũl) (59)

∆l
ψ,φ = GI l1 · (G(ψl − ψ̃l) +G⊥(φl − φ̃l)). (60)

The residual motion fieldul, in terms ofGψl +G⊥φl, is estimated by solving the problem

min
ψl,φl

F (ψl, φl) , F (ψl, φl) =
∥∥∆l

ψ,φ + ∂tI
l
∥∥2

HV
+λ1

∥∥G4Dψ
l
∥∥2

HS
+λ2

∥∥G4Cφ
l
∥∥2

HE
(61)

The minimizerψl, φl andul are postprocessed to yield the initializationψ̃l−1, φ̃l−1 andũl−1

of the next finer levell−1, as discussed in the following section. The whole process is started
at the coarsest levelm with ψ̃m = 0, φ̃m = 0 andũm = 0.

5.4 Constrained Prolongation

It is important to preserve the subspace properties during grid transfer. Corresponding divergence-
and curl-preserving interpolation schemes for vector fields are suggested in [22, 5]. In this
work, however, we transfer potential fieldsψl andφl to the next levell − 1, rather thanul.

This is done by bilinearly interpolating the divergenceρl, the curlωl, and the boundary
values ofψl, to obtainρ̃l−1, ω̃l−1 andψ̃l−1

∂Ω (cf. the notation of the previous section). Thenψ̃l−1

is computed as solution to

4Dψ = ρ̃l−1 , s.t. ψ∂Ω = ψ̃l−1
∂Ω . (62)

Analogously, we computẽφl−1 as solution to

4Cφ = ω̃l−1 , s.t. φ∂Ω = 0 . (63)

The corresponding veloctiy field̃ul−1 at the next finer levell − 1 is

ũl−1 = Gψ̃l−1 +G⊥φ̃l−1 . (64)
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6 Experiments

In this section, we validate our approach with few numerical experiments. A more thorough
evaluation from the viewpoint of experimental fluid dynamics is beyond the scope of this work
and will be reported elsewhere.

6.1 Error Measures

In pactice, evaluating non-rigid flows by computing the average angular and norm error, re-
spectively, induced by the inner product of the space(L2(Ω))2 = L2(Ω)×L2(Ω) [2], appeared
to us too insensitive to the important flow structures. Therefore, we suggest error measures
that also take into account divergence and curl of flow structures:

enorm :=
〈w,w〉DC

N
, eang := arccos

〈u, v〉DC + 1√〈u, u〉DC + 1
√〈v, v〉DC + 1

, (65)

where we adopt the average angular and norm error measures but use the inner products of
the spaceH(div; Ω) ∩H(curl; Ω) (see, e.g., [9]):

〈u, v〉DC := 〈u, v〉HS
+ 〈Div u,Div v〉HV

+
〈
Curl u,Curl v

〉
HP

. (66)

6.2 Experiment Results

6.2.1 Ground truth experiments

Figure 2 shows a synthetic image which was warped by the indicated flow. The corresponding
errors for the approach (44),enorm = 6.1e − 3 , eang = 6.51◦, are smaller than the approach
with Horn-Schunck regularization:enorm = 2.95e− 2 , eang = 13.52◦. Note, that these error
measures include flow derivatives as opposed to common measures used in the literature. It
can be clearly observed that the divergence distribution of the flow recovered by our method
(figure 2, right) is close to zero (below10−12), in comparison to the Horn-Schunck method
(middle figure 2).

6.2.2 Estimating Solenoidal Flows

Figure 3 shows the result of estimating the solenoidal flow for a real image sequence based
on the multi-level framework. The comparison with first-order regularization (Horn-Schunck
approach) in Figure 4 cleary reveals the superiority of our approach regarding the reconstruc-
tion of vortex structures. Furthermore, the (in this case) physically plausible constraint of
vanishing divergence is satisfied quite accurately.
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Figure 2: Left: Synthetic image and solenoidal velocity field.Middle: Divergence error
using Horn-Schunck regularization.Right: Divergence error using our approach.

6.2.3 Estimating General Non-Rigid Flows

Figures 5 and 6 show general non-rigid flow estimated for two different real image sequences.
As in the solenoidal case, the potential functions provide a useful representation of qualitative
properties of the flow. These experiments have been performed on images of the infra-red
channel of the meteosat satellite. They show respectively exploding convective cells (fig. 5)
and a trough of low pressure (fig. 6, left) and a convective system (fig. 6, right).

6.2.4 Application to Particle Image Velocimetry (PIV)

Figure 7 shows the result of our approach applied to the PIV image sequence from a flow
around two cylinders. The divergence field and curl field inside the area of two cylinders are
close to zero since the motion field is zero. Note that the two potential fieldsψ(Ω) andφ(Ω)

are not zero in these domains, but rather the sum of∇ψ and∇⊥φ is.
Figure 8 shows the results computed from a PIV image pairs of a liquid freezing experi-

ment, recorded by Tomasz A. Kowalewski (http://www.ippt.gov.pl/~tkowale/).

7 Conclusion and Future Works

We introduced mathematically sound discrete representations of vector fields for estimating
highly non-rigid flows from image sequences. The estimation is directly done in terms of
component functions that decompose flows into orthogonal subspaces and reveal quantitative
information of physical relevance.

Our further work will focus on the use of multigrid iterations for accelerating the sub-
problem solvers, on evaluations and applications from the viewpoint of experimental fluid
dynamics (cf., e.g. [15, 6], and on the extension to 3D image sequences.
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Figure 3:Top Left The first imageI1with the restored solenoidal flow.Top Right The diver-
gence field of the flow which is less than3 ∗ 10−12. Middle Left The potential fieldψl(Ω)

related to the laminar flow.Middle Right The potential fieldφ(Ω). Bottom Left The first
component of flow: the laminar flowulam. Bottom Right The second component of flow
related to potentialφ(Ω). The comparison with standard regularization is depicted in Figure
4.
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Figure 4: Top The restored solenoidal flowu(Ω). Bottom The restored flowuhs(Ω) using
the Horn-Schunck regularization. This results clearly show that vortex structures are better
recovered by our approach. Furthermore, the magnitude of the divergence is below10−11

throughout the image plane.
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Figure 5:Top ImageI with the restored flow fieldu. Middle Left The divergence field of
u. Middle Right The curl field ofu. Bottom Left The potential fieldψ(Ω). Bottom Right
The potential fieldφ(Ω). The divergence field, for example, which clearly detects a “source”
(blue blob), illustrates the quality and usefulness of the results.
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