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ABSTRACT
This paper describes an original method for classifying ob-
ject motion trajectories in video sequences in order to rec-
ognize dynamic events. Similarities between trajectories are
expressed from Hidden Markov Models representing each tra-
jectory. We have favorably compared our method to several
other ones, including histogram comparison, Longest Com-
mon Subsequence distance and SVM classification. Trajec-
tory features are computed from the curvature and velocity
values at each point of the trajectory, so that they are invari-
ant to translation, rotation and scale. We have evaluated our
method on two sets of data, a first one composed of typical
classes of synthetic trajectories (such as parabola or clothoid),
and a second one formed with trajectories obtained by track-
ing cars in a Formula1 race video.

Index Terms— Image sequence analysis, Image motion
analysis, Hidden Markov models, Pattern classification.

1. INTRODUCTION
Object tracking is now mature enough so that it is possible to
get reliable and accurate moving object trajectories in various
situations. These trajectories are usually given as sequences
of consecutive positions in a 2D space (the image plane (x,y)).
Investigations on their semantic analysis are growing, since
such data may help recognizing events, actions, or interac-
tions between objects. The aim is also to provide rich infor-
mation required for automatic video monitoring or exploita-
tion (video surveillance, sports video analysis,...)[1].

Several methods have been developed to classify trajec-
tories from video sequences. Buzan et al. [2] resorted to
the Longest Common Subsequence (LCSS) distance to clas-
sify trajectories computed in an image sequence acquired by
a single stationary camera for video surveillance. It is based
on a hierarchical unsupervised clustering of trajectories repre-
sented by the set of 2D trajectory points coordinates. Systems
performing trajectory clustering and abnormal event detection
were developed by Hu et al. [3], where a first clustering stage
is performed based on spatial information, and a second one
exploits temporal information. Bashir et al. [4] introduced
two trajectory classification methods inspired by speech anal-
ysis, especially one splitting trajectories into pieces using cur-

vature information, and then classifying trajectories based on
a HMM framework applied to the successive subtrajectories.
Naftel et al. also performed trajectory clustering and abnor-
mal event detection by modeling trajectories using orthogonal
basis function representations, clustering being carried out in
the chosen feature space [5]. F. Porikli designed a HMM-
based method involving a translation and scale factor invari-
ant feature [6].

These methods exploit features that are not simultane-
ously invariant to translation, rotation and scale transforma-
tion. Also most previous work on trajectory classification and
clustering amounts to form groups of similar trajectories (of-
ten exploiting explicit scene structure information). Our ap-
proach is to treat any trajectory (of any length) and to extract
classes that correspond to similar movements in terms of in-
trinsic trajectory shape and object speed, without any knowl-
edge of the scene structure and without any camera calibra-
tion. Therefore, to classify trajectories, we propose trajec-
tory features invariant to translation, rotation and scale; and a
recognition method based on HMM to capture the time evo-
lution of the viewed dynamic event.

In Section 2, we present the translation, rotation and scale
invariant feature we have considered. In Section 3, we de-
scribe our HMM-based comparison method for trajectories.
In Section 4, we introduce other classification methods to be
compared to the HMM-based one. In Section 5, we first com-
ment the two data sets used to test the methods, the second
one being formed by trajectories extracted from real videos
of a Formula 1 race. Results are then reported and discussed.

2. TRAJECTORY FEATURE EXTRACTION

In video analysis and interpretation, invariance to different
transformations is required : translation, rotation and scale at
least must be considered. It may be helpful in a wide range of
video applications.
2.1. Kernel approximation

We suppose that a trajectory Ti is defined by a set of n points
corresponding to the successive positions of the tracked object
in the image sequence, we note Ti = {(x1, y1), .., (xn, yn)}.
Before computing the trajectory features, which are differen-
tial values, it is preferable to have a continuous representation



of the curve formed by the trajectory. To this end, we compute
a kernel approximation of Ti defined by :
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Such a representation will allow us to explicitly derive expres-
sions for the first and second order temporal derivatives of u

and v, u̇t, v̇t, üt and v̈t, and a Gaussian kernel is an usual and
convenient choice.

2.2. Invariant features
Most of the video trajectories clustering methods developed
so far use trajectory coordinates ut and vt as input features.
These coordinates are helpful to study spatial resemblance be-
tween trajectories, but our approach is more to consider the
overall shape of trajectories than their exact instances. First,
taking into account the successive local orientations of the tra-
jectories is more attractive and it helps comparing the overall
shape of the trajectories. If we consider γ = arctan( v̇

u̇
) value,

we have a translation and scale invariant feature value.
Let us now consider γ̇t. We have d(tan γt)

dt
= 1
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γ̇t.

On the other hand, we can write:
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2 the local speed of point (ut, vt). The
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is a determinant

and then is rotation invariant. The denominator u̇2
t + v̇2

t is
the square of the speed and is rotation invariant, then γ̇t is
rotation invariant. Since γt is translation and scale invariant,
as a consequence γ̇t is translation, scale and rotation invariant.
The feature vector considered to represent a given trajectory
is then the vector containing the successive values of γ̇t : V =
[γ̇1, γ̇2, ..., γ̇n−1, γ̇n].

3. TRAJECTORY SIMILARITY AND
CLASSIFICATION

3.1. Hidden Markov model approach
To model the distribution of γ̇, we first focus on an interval
containing a given percentage P of measured γ̇ values (for the
entire set of trajectories to classify) in order to eliminate the
“outlier” measurements and maintaining the Markov chains
states to a bounded and representative number. Then [-S, S] is

divided into a given number N of bins (in Fig. 1 a histogram
corresponding to a trajectory of the sinusoid class in [-S, S]).
For every trajectory, the histogram will be bounded to [-S, S]
and evaluated with the same number of bins.

Fig. 1. Example of a normalized histogram (histogram of a trajec-
tory of the sinusoid class) with h = 3, P = 90 (see text), and N = 31
(number of bins).

We then turn toward an additional information, i.e., the
temporal transitions between γ̇ values. A usual tool to ac-
count for this is the Markov chains framework. A Markov
chain with N states, is characterized by :

- the state transition matrix A = {aij} with
aij = P [ qt+1 = Sj | qt = Si ], 1 ≤ i, j ≤ N.

where Si corresponds to the state index i, and qt is the state
at time t.

- the initial state distribution π = {πi}, where

πi = P [ q1 = Si ], 1 ≤ i ≤ N.

In our setup, we associate the states with the histogram
bins, and each trajectory is associated with a Markov chain.
However, some aij could be hard to train (for example, for
a small trajectory, there will be few observations, and sev-
eral histogram values could be empty). This would lead to
infinite distance measures between Markov chains represent-
ing different trajectories. To avoid such configurations, we
turn toward an original discrete HMM. We now consider that
the states qt are hidden and the HMM is characterized by the
triplet (A, B, π) where B is composed of conditional obser-
vation probabilities B = {bj(γ̇t)}, with

bj(γ̇t) = P [γ̇t | qt = Sj ],

where qt is the unknown hidden state at time t.
For the conditional observation probability bi(γ̇t), we adopt

a Gaussian distribution of mean µi (given by the median value
of the histogram bin Si). Its standard deviation σ is specified
so that the interval [µi − σ, µi + σ] corresponds to the bin
width (therefore, it does not depend on the state for an uni-
form quantization). This conditional observation model can
reasonably account for measurement uncertainty. It will also
prevent from having zero values when estimating matrix A in
the training stage by lack of measures.

We have adapted the least-squares technique introduced
in [7] to estimate A and Π, where the HMM is assimilated to
a count process. If we denote H

(i)
t = P (γ̇t|qt = i) (i.e., a

weight for the count process), empirical estimates of A and
Π, for a trajectory of size M are given by
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3.2. Similarity measure and classification
The distance used to compare two HMMs associated to two
trajectories is the one proposed by Rabiner [8]. Given two
HMMs, λ1 and λ2 (λi = (Ai, Bi, πi), i = 1, 2), we consider

D(λ1, λ2) =
1

T
[log P (O(2)|λ2) − log P (O(2)|λ1)]

and the symmetrized version is :
Ds(λ1, λ2) =

1

2
[D(λ1, λ2) + D(λ2, λ1)].

where O(j) = γ̇1γ̇2...γ̇T is the sequence of states correspond-
ing to Tj knowing λj (estimated using a Viterbi algorithm)
and P (O(j)|λi) expresses the probability of observing O(j)

with model λi. To define the distance between a trajectory Ti

and a class of trajectories Gj , we use the average link tech-
nique by computing the mean of the distance of Ti to all tra-
jectories Tlj in Gj :

Daverage link(Ti, Gj) =

∑

Tlj
∈Gj

Ds(Ti, Tlj )

#Gj

.

Classification is then performed by assigning the processed
trajectory to the nearest class.

4. OTHER APPROACHES TO BE COMPARED
4.1. Bhattacharyya distance between histograms
To demonstrate the importance of introducing temporal causal-
ity, i.e., transitions between bins, we have implemented a Bhat-
tacharyya distance-based classification method. The Bhat-
tacharyya distance Db between two (normalized) histograms
hi and hj is defined as :

Db(hi, hj) = 1 −

N
∑
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j

where hk
i is the histogram value of bin k for trajectory i. Sim-

ilarly to the HMM-based method, we assign the test trajectory
to the nearest class and the distance to a class is defined using
an average link method (see subsection 3.2).

4.2. SVM classification method
An efficient tool to classify patterns is SVM [9]. As input
for SVM, we take the HMM parameters corresponding to the
trajectories. SVM need patterns to be represented by vec-
tors. Hence, for each trajectory, we create a vector contain-
ing the corresponding HMM parameters. For example, let us
consider the HMM λi corresponding to the trajectory Ti (for
convenience, we develop an example with only N = 3) such
that

Ai =

0

@

a11 a12 a13

a21 a22 a23

a31 a32 a33

1

A , πi = [a1 a2 a3].

Xi = [a11 a12 a13 a21 a22 a23 a31 a32 a33 a1 a2 a3] will
be the vector characterizing trajectory Ti. We use a SVM
classification technique with a Gaussian Radial Basis Func-
tion kernel. The reported results are obtained using the “one
against all” classification scheme.

5. EXPERIMENTS
5.1. Synthetic trajectories
First, to test the designed method, we have generated a set of
typical trajectories. More specifically, we have considered 8
classes (sinusoid, parabola, hyperbola, ellipse, cycloid, spiral,
line and clothoid) and we have simulated 8 different trajecto-
ries for each class, corresponding to different parametrization
of the curves, and for several geometric transformations (ro-
tation, scaling) (Fig. 2).

Fig. 2. Plots of one synthetic trajectory for four classes.

5.2. Video trajectories
We have also processed real trajectories extracted from a For-
mula1 race TV program filmed with several cameras. The
trajectories are computed with a tracking method based on
optical flow calculated on interest points. The background
motion due to camera panning, zooming and tilt is canceled
(as plotted on Fig. 3 and 4).The trajectories supplied by this
method are then very similar to the real 3D trajectories of the
cars (up to an homography, since the 3D motion is plane).

Fig. 3. Images from video shots acquired by two different cameras
at two different places on the circuit. The computed trajectories are
overprinted on the images.

Fig. 4. Plots of the 10 classes of dynamic content (trajectories)
for a Formula1 race video, each box contains a different class. A
class of trajectories is composed of trajectories extracted from shots
acquired by the same camera. The different classes correspond to
different cameras placed throughout the circuit at different strategic
turns.



5.3. Experimental results

We have compared our HMM-based method with the SVM
classification, the technique based on the Bhattacharyya dis-
tance and the LCSS distance based one. To evaluate the per-
formances, we have adopted the leave-one-out cross valida-
tion for a wide range of values for h (smoothing parameter in
the curve approximation step), P (percentage of data consid-
ered to specify [-S, S]) and N (number of states).

By adding noise to the simulated trajectories, we can eval-
uate the influence of the h parameter value. Classification re-
sults with noised data shows that the parameter h helps han-
dling efficiently noised data, by smoothing the processed tra-
jectories. A high value is required for highly corrupted data
(Table 1).

Tests performed on the sets of synthetic trajectories gave
very promising results, hence a perfect classification was per-
formed for most parameter configurations (i.e., for N , h and
Pv) with the SVM and HMM methods, while the technique
based on the Bhattacharyya distance fails to efficiently clas-
sify synthetic trajectories (highlighting the importance of the
temporal causalities modeled with HMM). The technique based
on the Longest Common Subsequence distance (LCSS) [2]
gave good results but not perfect, and with a higher computa-
tion time (more than five times longer than with HMM based
method).

For the evaluation on real videos, four cases were consid-
ered: 4, 6, 8 and 10 classes, the group of 4, 6 and 8 classes
being nested subsets of the ten ones presented in Fig.4. Quite
satisfactory classification results were obtained for most pa-
rameter configurations with the SVM and HMM methods,
while the techniques based on the Bhattacharyya distance and
the LCSS distance provide less accurate classification results
(Table 2). Our HMM based method gave better results than
the SVM method, showing the importance of the Viterbi algo-
rithm used to compute the Rabiner distance between HMMs.
Besides, our HMM method is much more flexible than the
SVM classification stage (e.g., adding a new class only re-
quires to learn the parameters of that class).

Best classification results are obtained when P is set to
95%. The choice of the number of states N is less straightfor-
ward to fix. For some configurations, considering few states
gives best results, and for other ones, a higher N (30 to 50)
gives better results.

Table 1. Classification results for the synthetic trajectories, with a
HMM-based method, using the leave-one-out cross validation tech-
nique, for different values of h and σ (σ is the standard deviation of
the added noise).

Table 2. Comparison of the best recognition percentages for the
trajectories extracted from real video, using the leave-one-out cross
validation technique.

6. CONCLUSION
We have proposed a HMM-based method to classify video
events. Extracted trajectories of moving objects are adequate
image primitives to characterize dynamic contents, and we
have defined appropriate trajectory features invariant to trans-
lation, rotation and scale transformations. By comparing the
designed method to other ways of tackling this problem, we
have justified the choice of these features and of a HMM-
based classification scheme. Very promising results on syn-
thetic and real examples have been obtained. We are carrying
out additional experiments on real videos to further assess the
performances of the method.
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