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Abstract— This paper introduces a common method, based on
the Cross-Entropy method, in oder to solve a variety of search
problems when search resources are scarce compared to the size
of the space of search. In particular, we solve: detection and
information search problems, a detection search game, and a
two-targets detection search problem. Our approach is built of
two steps: first, decompose a problem in a hierarchical manner
(two optimization levels) and then, solve the global level using
the Cross-Entropy method. At local level, different solutions are
conceivable, depending of the kind of the problem. Problems of
interest are in the field of combinatorial optimization and are
considered to be hard to solve: we find optimal solution in most
cases with a reasonable computation time.
Keywords: Sensor management, Cross-Entropy, informa-
tion games, multitarget.

I. INTRODUCTION

Search theory is a major discipline within the field of
operations research. During the second world war, through
his work on antisubmarine warfare, B.O. Koopman [4] laid
the principles of search theory: the aim is to find the best
manner of searching for an object, given the probabilities on
the location of the searched object and the characteristics of
the searchers. One can extract two classes of search theory
problems:
• the one-sided class: in such search problems, decisions

are only made by the searcher
• the two-sided class: in this case, decisions are made both

by searchers and searched (search games . . . )
Furthermore, the search problem can be static or dynamic
(time dependent). Actually, there is substantial literature on
the topic. However, few papers deal with the optimization of
hierarchical search problems, despite hierarchical approaches
could be very useful. That is especially the case when the
space of search is large and the search resources are scarce or
when probabilities on the location of the searched object are
imprecise. Here we will present algorithms based on the Cross-
Entropy method, which was developed by R. Rubinstein [8]
in order to optimize some static hierarchical search problems.

This paper is organized as follows: in section II, the frame-
work of our work is presented; followed by the study of four
static hierarchical search problems:
• the first one deals with the optimization of the reparti-

tion of the search resources, in order to maximize the

probability of detecting a unique stationary target,
• the second one deals with the optimization of the reparti-

tion of the search , in order to maximize the information
gain on the location of a unique stationary target,

• the third one deals with the optimization of a search
game, in order to maximize the probability of detecting
a unique stationary target,

• the last one deals with the two-targets static detection
problem (there are two objects to detect).

II. FRAMEWORK

In real life, one may want to search a target in a large space
of search. Furthermore, available search resources (search
resources will be called sensors in the following) might be
scarce, compared to the size of the space of search. Thus
we need to optimize the use of these resources in order to
maximize the probability of detecting the target(s). One way
to do that is to partition the space of search into search zones,
to which we will then have to choose to allot (or not) one
(or more) sensor(s). So, the optimization of the search policy
for a sensor will be restricted to a unique zone. Then we can
define two interconnected optimization levels:
• a global level: which will manage the allotment of sensors

to search zones,
• a local level: which will manage the optimization of a

search policy for each sensor, when an allotment has been
defined.

Such kind of problems are often very hard to solve because
of their complexity. In order to overcome this difficulty we
may use simulation methods, as the Cross-Entropy method.
Here we especially use the Cross-Entropy method in the
optimization of global level.
In this section, we will first introduce the main notations,
common to the four hierarchical problems; and then present
the Cross-Entropy method.

A. Definitions and notations

1) The space of search: We denote E the space of search.
We consider that it has been partitioned into |Z| smaller
search zones in order that a sensor can explore efficiently a
whole zone (time constraints, autonomy, velocity. . . ). A zone
is denoted Ez .



Furthermore, characteristics of the land (due to vegetation. . . )
within E are variable: we discretize E into small homogeneous
areas. We call them units and denote them Eu. Thus, a search
zone is a set of units.

2) The target(s): Sensors are searching for a set T of target,
an elementary target called t. Each of these targets is hidden
into one of the units of the space of search. The location of a
target t is characterized by a prior probability αt,u, over the
units of E. Thus:

∀t ∈ T ,
∑

u

αt,u = 1 (1)

This prior may be relatively informative and results (in gen-
eral) from operational considerations, previous searches, etc.
Remark: In the following, if |T | = 1, the prior probability of
the target will be denoted αu.

3) Means of search: We will consider that the search is
carried out by |S| sensors, an elementary one called s. These
sensors can be men, radars, etc. A sensor can only be alloted to
a unique search zone (but none, one, or more than one sensors
can be alloted to the same search zone). We consider that an
allotment of the sensors to the search zones is represented by
a mapping m : s 7−→ z. Moreover, each sensor disposes of
a limited capacity of search Φs. For example, it could be the
exploration time to share between units of a zone. Investigation
of a unit Eu, if the explorer is s, requires a quantity of resource
ϕs(Eu) (we consider that the resources of each sensor are
continuous). As a consequence, the investigation carried out
by a sensor is constrained by its capacity of search:

∑

u|Eu∈Ez
ϕs(Eu) ≤ Φs, (2)

where Ez is the zone to which the sensor s is alloted. Of
course, if a sensor s is alloted to a zone Ez , ∀u| Eu /∈ Ez ,
ϕs(Eu) = 0. The aim is then to optimize sensors’ use.

4) Visibility coefficients: We must qualify the quality of
detection of a sensor for a target, over a unit. This is done
by means of visibility coefficients, wts,u ∈ ]0; 1[, which are
characteristic of:
• the sensor s
• the target t
• the unit Eu.

A visibility coefficient wts,u = 0 means that the sensor s has no
visibility on the target t, if it is hidden into the unit Eu. That
is to say: whatever the resource quantity of sensor s alloted
for the search in Eu, the target will remain undetected.
As for the prior probabilities of the targets, when |T | = 1,
wts,u will be denoted ws,u.

5) Probabilities of non detection: The detection of a target
t hidden in a unit Eu by the sensor s, both depends on the
quantity of resource ϕs(Eu) of the sensor invested in the
search in unit Eu and on the visibility coefficient wts,u (see
[4]). Thus, the probability of not detecting the target t if it is
hidden into the unit Eu, and if it is searched by sensor s is:

exp(−wts,u ϕs(Eu)) (3)

Furthermore, detections made by different sensors are consid-
ered to be independent. As a finite set of sensors is alloted to
a search zone, and because a unit belongs to only one search
zone, the non detection probability if the target t is hidden
into Eu is:

∏

s|s∈m−1(z)

exp(−wts,uϕs(Eu)) (4)

At last the non detection probability associated to a search
zone Ez , when there is only one target to search is:

∑

u|Eu∈Ez
αu

∏

s|s∈m−1(z)

exp(−ws,uϕs(Eu)) (5)

B. The CE method
1) Brief description: The Cross-Entropy method is a sim-

ulation method which has been developed by Rubinstein [8]
in order to evaluate rare events probabilities (e.g. failure prob-
abilities, etc.). However, this method can also be employed
to solve combinatorial optimization problems (see [8]): first,
the problem must be translated into a stochastic problem.
The set of feasible solutions of the original problem is then
regarded as a set of events subjected to an importance density.
Thus, finding the optimal solution to the original problem is
considered as a rare event. We present next the Cross-Entropy
algorithm.

2) General algorithm: Let B be an evaluation function for
the draws.

1) Choose a family of probability laws (Pν) representative
of the problem;

2) Initialize the law : ν = ν0;
3) Perform until convergence:

• Draw N samples m1,m2, . . . ,mN according to Pν ;
• Select the R = ρ × N , 0 < ρ < 1, best draws,

according to B(mj);
Call them m̃1, m̃2, . . . , m̃R;

• Find ν′ minimizing the Kullback distance, i.e. max-

imizing:
R∑

r=1

ln(Pν (m̃r));

• Set ν := ν′;

III. DETECTION AND INFORMATION PROBLEMS

A. Common Settings
The aim of this section is to compare optimization of the

search problem described in section II, when the optimization
functional is a detection function, and when it is an infor-
mation function. In both cases, sensors are searching for a
motionless target. A prior on the location of the target is
also given. Then, the optimization problem is of the following
form:

min
ϕ, m

F (m,ϕs) (6)

s.t.:





∀z, ∀s ∈ m−1(z),
∑

u|Eu∈Ez
ϕs(Eu) ≤ Φs

m : 1...|S| 7−→ 1...|Z|
∀u , ∀s , ϕs (Eu) ≥ 0

where F is separable in z. This problem is hierarchical: thus



we can slip it into two interconnected levels:
• a global level: find the best allotment of sensors to search

zones
• a local level: when an allotment is given, find the best

sensors’ resource sharing
Thus, a modification in the sensors allotment implies a need to
compute again the local settings. Conversely, the solutions of
the local level determine the quality of the global allotments.

B. Detection problem

We are interested in the optimization of a detection function
. Thus, the optimization functional F define in (6) is:

F (m,ϕ) =
∑

z

∑

u|Eu∈Ez
αu

∏

s∈m−1(z)

exp(−ws,uϕs(Eu)).

(7)
We will first describe the optimization of the local level.

1) Resource sharing: In the particular case where at most
one sensor is allotted to a search zone, say sensor s alloted to
zone Ez , the following discrete problem must be solved:

min
ϕs

∑

u|Eu∈Ez
αu exp(−wsu ϕs(Eu)) (8)

s.t.:





∑

u|Eu∈Ez
ϕs (Eu)− Φs ≤ 0

∀ Eu ∈ Ez ϕs (Eu) ≥ 0
This is a convex problem. According to the Karush, Kuhn and
Tucker (KKT) conditions, it could be optimized by solving:

∑

u|Eu∈Ez
ϕs(Eu) − Φs = 0, (9)

with:

∀ Eu ∈ Ez, ϕs (Eu) = max


 0 , −

ln
(

λ
wsu α(Eu)

)

wsu




(10)
We must find the value of the multiplier λ, associated to the
resource consumption constraint of sensor s (see (2)). Due to
the convexity of the objective functional, λ is unique and can
easily be found by means of a dichotomy search.
However, more than one sensor can be allotted to the same
search zone. When a subset m−1(z) of sensors is allotted to
the zone Ez , the following problem has to be solved:

min
ϕ

∑

u|Eu∈Ez
α(Eu)

∏

s∈m−1(z)

exp(−wsu ϕs(Eu)) (11)

s.t.:




∀s ∈ m−1(z),

∑

u|Eu∈Ez
ϕs( Eu )− Φs ≤ 0

∀s ∈ m−1(z), ∀ Eu ∈ Ez ϕs( Eu ) ≥ 0
This problem is also a convex problem. Thus, a simple method
for optimizing resource sharing is to optimize successively
each variable ϕs, according to the following scheme:

1) Initialize ϕs(Eu) = 0 for each sensor s ∈ m−1(z) ,
2) Compute the non-detection probability for the search

zone Ez , call it Probz1 ,

3) For each sensor s ∈ m−1(z) , do:
• Compute the best resource sharing for the current

sensor, according to a de Guenin optimization (for
all other sensors, the variables ϕs(Eu) are fixed to
their last values),

• ∀u, memorize ϕs(Eu) ,
4) Compute the new non-detection probability, call it

Probz2 ,
5) If Probz1 ≈ Probz2 then stop; else set Probz1 := Probz2

and go to 3.
We now need to present the global optimization algorithm.

2) Sensors-to-zones Allotments: In this section, we present
two approaches in order to solve the sensors-to-zones
allotment (global level): linear programming (LP) and the
Cross-Entropy method (CE). We will see that when the
allotment is not injective, LP can not be used to solve the
hierarchical optimization problem.

a) Linear Programming: In the case where the mapping
m is injective, the hierarchical problem is quite simple. Then,
it could be optimized optimally with a method coupling LP
(global level) and the algorithm of de Guenin (local level). In
the case where LP is used, the LP program has Z×S contin-
uous variables (one per couple sensor-zone). These variables
are denoted xsz . They are continuous and they take values in
[0; 1]. Costs Csz of these variables are defined by means of the
de Guenin algorithm, and are the optimal solutions of:

Csz = min
ϕs

∑

u|Eu∈Ez
α(Eu) exp (−wsu ϕs(Eu)) (12)

Then we solve the following problem:

min
∑

z

∑

s|s∈m−1(z)

Cszx
s
z (13)

s.t.:





∀s
∑

z

xsz = 1

∀z
∑

s

xsz = 1

∀s, ∀z : xsz ≥ 0

However, in the general case (injective assumption is
removed), it is no more possible to model the allocation
of a sensor to a zone by means of a continuous variable.
Indeed, the optimization problem at global level becomes an
integer programming problem (IP). Thus, in large dimensions,
classical methods will fail to obtain an optimal solution in
low time consumption. An alternative can be to use the CE,
which is adaptive, and is particularly indicated for solving
such kind of problems (see [8]).

3) Cross-Entropy method: The de Guenin [2] optimization
at local level can be coupled with the use of CE at global level.
Here, the principle of the CE algorithm is to draw particular
allotments of sensors to search zones that will be evaluate
and then selected, in order to obtain a drawing law which
gives the optimal allotment. First, we must choose a family



of probability laws, (Pν), describing a probabilistic choice of
m. The aim is to find: ν∗ ∈ arg min

ν

∑

m

Pν(m)B(m), with

B(m) = min
ϕ

F (m, ϕ). We choose to associate to each

sensor a discrete probability law P (Ez|s), which represents
the probability of allotting the sensor s to the zone Ez . Thus:

∀s,
∑

z

P (Ez|s) = 1. (14)

These probability laws will be described by a matrix M =




P (Ez = E1|s = 1)M . . . P (Ez = E|Z||s = 1)M

P (Ez = E1|s = 2)M . . . P (Ez = E|Z||s = 2)M

...
. . .

...
P (Ez = E1|s = |S|)M . . . P (Ez = E|Z||s = |S|)M




(15)
where P (Ez|s)M is the probability of allotting sensor s to Ez ,
according to M. As explained in the second section, the CE
iteration works as follows:

• Generate |N | draws of the sensors-to-zones mapping,
denoted mk, with 1 ≤ k ≤ |N |. These draws are sampled
according to the probability laws described by M

• Select the |R| = ρ × |N | best samples according to F
and denote them m̃1...m̃|R|.

The update M′ of M is given by the minimization of the
Kullback-Leiber distance. This results in the following updat-
ing formula:

P (Ez|s)M
′

=
|k, 1 ≤ k ≤ |R|, m̃k(s) = Ez|

|R| (16)

This algorithm describe the case where m can be any mapping
(injective or not). However, in the case where m is an injective
mapping, some adaptations must be operated. In fact, the
probability law must return only injective allotments. One way
to do that is to use the same laws (M) than in the general case,
but with a penalization or a reject on the samples where the
allotment is not injective.

C. Information Problem

In the previous section, we have shown how CE method can
be employed for the optimization of combinatorial problems.
However, the optimization functional was simple enough so
that we can solve the low-level part (resource sharing) with
classical means. Here, we use the Cross-entropy method in
order to solve problems with more complicated optimization
functionals. We are particularly interested in the optimization
of information problems, as described by Nakai [7].

1) The information fonctionnal: We want to allot the
sensors to the zones, and then the resources of the sensors
to the units of the zones, in order to maximize the gain
of information concerning the location of the target. The
optimization problem is the same as for the detection problem
(see (6)), except of the functional. The expected amount of
information concerning the location of the target under the

search policy (m,ϕ) is given by:

Im,ϕ =
∑

z

Izm,ϕ, with Izm,ϕ = Hz(α)−Gzm,ϕHz(α′). (17)

where:

Gzm,ϕ =


 ∑

u|Eu∈Ez
αu

∏

s|s∈m−1(z)

exp(−wsuϕs(Eu))


 (18)

Hz(α) is the well-known entropy function used by Shannon
in communication network:

Hz(α) = −
∑

u|Eu∈Ez
αu ln(αu); (19)

and α′ is the posterior distribution of the position of the target
given that the prior distribution is α and that it is not detected
by the policy (m,ϕ).

∀Eu ∈ Ez, α′u =

αu
∏

s|s∈m−1(z)

exp(−wsuϕs(Eu))

∑

u|Eu∈Ez
αu

∏

s|s∈m−1(z)

exp(−wsuϕs(Eu))

(20)
Thus, we have to solve the problem (see (6)) with the
following optimization fonctional:

Fm,ϕ = −
∑

z

∑

u|Eu∈Ez
αu

∏

s|s∈m−1(z)

[
exp(−wsuϕsu) ln(Jzm,ϕ)

]

(21)
where:

Jzm,ϕ =

∑

u′|Eu′∈Ez
αu′

∏

s|s∈m−1(z)

exp(−wsu′ϕsu′)

αu
∏

s|s∈m−1(z)

exp(−wsuϕsu)
(22)

As for the detection search problem, the two levels of
hierarchy are:
• global level: find the best allotment of sensors to search

zones;
• local level: find the best resource sharing among the units

of the zones.
However, this time we can not find by a direct computation the
optimal resource sharing at local level for a given allotment
at high level. Thus we will use the Cross-Entropy method for
optimization at both levels.

2) Solving the information search problem: We solve the
information search problem by using the CE method at both
high and low level: we define two CE algorithms, one for
each level. For the global level, we employ the CE method
described in section III-B.3 (denoted CEg). For the local level,
we will use another CE method, denoted CEl, based on the
optimization of multi-normal distributions. These two methods
are interconnected as follows:
• for each allotment drawn by CEg

– for each zone



∗ find the best resource sharing for all the sensors
alloted to the zone, according to the information
functional, using CEl

– value the contribution of the zone to the optimization
functional

• value the allotment

In the following, we describe the CE method for the
optimization of local level.

a) Algorithm CEl: Let Ez be a zone to which sensors
{σ1, σ2, ...} are allotted by a draw of CEg. Let |Uz| be the
number of units such that: Eu ∈ Ez . For each sensor σi
allotted to the zone, we define a |Uz| − 1 dimensional multi-
normal distribution. We call them Nσi(Σσi , µσi). The aim is
to optimize Nσi for each sensor, according to the information
functional. Thus, we introduce the following algorithm:

• repeat until convergence of the Nσi
– for n in 1..N

∗ A: draw a resource sharing for each sensor;
∗ B: denote vσin,j the value for the draw n, for the

sensor σi and for the dimension j of Nσi ;
∗ C: value the information functional restricted to

the zone.

– select the R best draws, according to the information
functional;

– for each σi, update Nσi :

∗ µσij =
1

R

r=R∑

r=1

vσir,j ;

∗ Σσij,k =
1

R

r=R∑

r=1

(vσir,j − µσij )(vσir,k − µσik ).

In order to explain the steps A,B and C, we have to clarify
the built of the laws Nσi . Thus, we describe the algorithm
employed in order to draw the resource sharing for a given
sensor.

b) Drawing in Ns: A random resource sharing for the
sensor s, alloted to the zone Ez , according to Ns(Σs, µs), is
obtained by the following algorithm:

• draw ys1, ..., y
s
|Uz|−1 in ]−1; 1 [ , such that ∀k odd, (ysk)2+

(ysk+1)2 ≤ 1 ;

• ∀k odd, compute zsk =

√
−2 ln((ysk)2 + (ysk+1)2)

(ysk)2 + (ysk+1)2
;

Set: Y sk = zsk y
s
k and Y sk+1 = zsk y

s
k+1.

At that point, we have: ∀k, Y sk ∈ N (0, 1).
• set (xs1, ..., x

s
|Uz|−1) = H(Y s1 , ..., Y

s
|Uz|−1) + µ, where H

is the Cholesky decomposition of Σs.
Hence: ∀k, xsk ∈ N (Σs, µs).

• ∀k, set: θsk = exp(xsk).
We obtain a vector θs = (θs1, ..., θ

s
|Uz|−1) where each θsk

corresponds to a line, such that: ϕsk+1 = θsk ϕ
s
k.

• The value ϕsu is given by:

ϕsu =
Φs

1 +



j=u−1∑

j=1

k=u−1∏

k=j

1

θk


+



j=|U |−1∑

j=u

k=j∏

k=u

θk




(23)

IV. DETECTION GAME

In the previous section, we described a search problem
where a detailed prior probabilistic density on the location
of the target was given; However, in the real world this prior
is usually unknow. Instead, we often have a global idea on the
position of the target, that can be modelled by a prior over
the zones of the space of search. In this section we describe a
detection problem where a prior on the location of the target
over the zones is given. We solve a hierarchical detection
problem where global level is the optimization of allotments
of sensors to search zones (as in the preceding sections) and
local level is the optimization of a min-max problem between
the target and the searchers.

A. The min-max problem

We want to solve the problem described in (6). However,
we do not know the prior αu but only a prior on the location
of the target over the zones: αz , such that:

∑

z

αz = 1. (24)

We denote αu|z the probability that the target may be hidden
into the unit Eu if it is known that the target is hidden into
the zone Ez . We have:

∀Ez,
∑

u|Eu∈Ez
αu|z = 1. (25)

As a unit belongs to a unique search zone:

∀Eu ∈ Ez, αu = αzαu|z (26)

Thus, we solve the following problem:

min
m

∑

z

αz


min

ϕs
max
α

∑

u|Eu∈Ez
αu|z

∏

s|s∈m−1(z)

exp(−wsuϕs(Eu))




(27)

s.t.:




Ez,

∑

u|Eu∈Ez
ϕs (Eu)− Φs ≤ 0

∀Ez, ∀ Eu ∈ Ez ϕs (Eu) ≥ 0
Here again, we can split the problem into two interconnected
levels:
• a global level: optimization of allotment of sensors to

search zones
• a local level: optimization of both prior of the target αu|z

and of the repartition of resources of sensors alloted to a
search zone.

We do not describe the optimization of global level, as we
use the CE algorithm (CEg) described in section III-B.3. The
evaluation of allotments for each zone is given by the result
of the local optimization presented in the following section.



B. The local detection game

We consider the zone Ez where a set of sensors has been
alloted by a draw of m. We introduce a min-max problem with
two players. The first one is the target, which wants to hide
into one of the units of the zone of search. The second one
is the set of sensors alloted to the zone. The target wants to
maximize the probability of non detection into the zone, while
the sensors want to minimize the probability of non detection
into the zone. We have the following optimization problem:

max
αu|z

min
ϕs

D(ϕs, αu|z) (28)

where: D(ϕs, αu|z) =
∑

u|Eu∈Ez
αu|z

∏

s∈m−1(z)

exp(−wsuϕs(Eu))

(29)

s.t.:





∑

u|Eu∈Ez
ϕs(Eu) = Φ

∑

u|Eu∈Ez
αu|z = 1

∀Eu ∈ Ez, αu|z ≥ 0
∀Eu ∈ Ez, ϕs(Eu) ≥ 0

Thus, the optimization functional are :
• for the target:

[
maxαu|z minϕs D(ϕs, αu|z)

]
;

• for the sensors:
[
minϕs maxαu|z D(ϕs, αu|z)

]
.

In a two-person zero-sum game, if there is a couple (ϕ∗s, α
∗
u|z)

such that:

D(ϕ∗s, αu|z) ≤ D(ϕ∗s, α
∗
u|z) ≤ D(ϕs, α

∗
u|z), (30)

then:

max
αu|z

min
ϕs

D(ϕs, αu|z) = min
ϕs

max
αu|z

D(ϕs, αu|z) = D(ϕ∗s, α
∗
u|z).

(31)
In the case where only one sensor is allotted to the search
zone, the strategies of the target and of the sensors are given
by the result of Nakai [7]:

ϕ∗s(Eu) =
Φs
wsu

1
∑

u|Eu∈Ez

1

wsu

(32)

α∗u|z =
1

wsu

1
∑

u|Eu∈Ez

1

wsu

(33)

The following deals with the optimization of the search
problem when more than one sensors are allotted to the same
search zone.

1) Optimization of the target strategy: We restrict the study
to the units that belong to the zone Ez . We consider that the
optimal search effort, ϕ∗s is given. The optimization problem
for the target is then:

min
α∗
u|z
−D(ϕ∗s, αu|z) (34)

s.t.:





∑

u

αu|z = 1

∀u, αu|z ≥ 0

A multiplier µ is associated to first constraint and a multiplier
θu ≥ 0 is associated to each positivity constraint.The KKT
optimality conditions give, ∀u:
−∏s exp(−wusϕs(Eu)) + µ− θu = 0

µ
(∑

u αu|z − 1
)

= 0

θu
(
−αu|z

)
= 0

Two cases are identified:

• if α∗u|z > 0:
∏

s

exp(−wsuϕ∗s(Eu)) = µ,

• if α∗u|z = 0: −
∏

s

exp(−wsuϕ∗s(Eu)) < µ.

2) Optimization of the sensor strategy.: We consider that
the optimal probability of the location of the target into the
zone Ez , α∗u|z , is given. The optimization problem for the
target is then:

min
ϕs

D(ϕs, α
∗
u|z) (35)

s.t.:




∀s,

∑

u

ϕs(Eu) = Φs

∀s, ∀u, ϕs(Eu) ≥ 0

A multiplier νs is associated to each constraint of the
first bloc. For each positivity constraint, we associate a
multiplier τ su ≥ 0.The KKT optimality conditions give:
∀s, ∀u,−wusα∗u|z exp(−wsuϕ∗s(Eu))∏

s′ 6= s exp(−ws′u ϕ∗s′(Eu)) + νs − τ su = 0;

∀s, νs (ϕ∗s(Eu)− Φs) = 0;

∀s, ∀u, τ su (−ϕ∗s(Eu)) = 0.

Two cases arise:

• if ϕ∗s(Eu) > 0:

−wusα∗u|z exp(−wsuϕ∗s(Eu))
∏

s′ 6=s
exp(−ws′u ϕ∗s′(Eu)) = νs,

• if ϕ∗s(Eu) = 0:

−wusα∗u|z exp(−wsuϕ∗s(Eu))
∏

s′ 6=s
exp(−ws′u ϕ∗s′(Eu)) < νs.

For a given sensor s, the dual functional is:
L(ϕ∗s, α.|z) =

∑

u|ϕ∗u>0

− νs
wsu

+
∑

u|ϕ∗u=0

−νs + τu
wsu

+ νs(Φs −
∑

u

ϕ∗s(Eu))−
∑

u

τ suϕ
∗
s(Eu).

The maximization of L considering the τ su implies that
∀u, τ su = 0.
So, at the optimum we have:
∀s, −wusα∗u|z

∏

s

exp(−wusϕ∗s(Eu)) + νs = 0 and νs > 0.

Thus, if we consider the problem (34): ∀u, α∗u|z > 0.
3) Global conditions.: By considering both optimality con-

ditions of the target strategy and of the sensors strategy, we



determine a set of equivalent solutions such that:

α∗u|z =
1

∑

u′

1∑

s

wsu
∏

s′

exp(−ws′u′ϕ∗s′(Eu′)

(36)

and ϕ∗s(Eu) =

1

wsu




Φs −
∑

u′




∑

s′ 6=s
−ws′u′ϕs′(Eu′)

wsu′




∑

u′

1

wsu′

+
∑

s′ 6=s
−ws′u ϕs′(Eu)




(37)
The optimization of the global min-max problem requires to
find one solution in this set. We want to choose the solution
that minimize the difference between the quantities of resource
alloted to two units (see problem (38)):

min
ϕs

∑

s


 ∑

u|Eu∈Ez

∑

u′>u|Eu′∈Ez
(ϕs(Eu)− ϕs(Eu′))2


 (38)

s.t.:
{

∀s, ∀u, (37)
∀s, ∀u, ϕs(Eu) ≥ 0

This problem is solved by the algorithm of Uzawa.

V. TWO-TARGET DETECTION PROBLEM

In many real world problems, the sensors want to detect a
set of target. Here we describe a detection problem when there
are two targets to detect, say t1 an t2. We want to solve the
following problem:

min
m,ϕs

∑

z

∑

u|Eu∈Ez
max
t


αu,t

∏

s∈m−1(z)

exp(−wsu,tϕs(Eu))




(39)

s.t.:





∀z,
∑

u|Eu∈Ez
ϕs(Eu) = Φ

∀z, ∀Eu ∈ Ez, ϕs(Eu) ≥ 0
As usual, we have a hierarchical problem with two levels. In
order to solve it, we use the algorithm CEg an CEl introduced
in section III-B.3 and III-C.2.a for the information search
problem:
• for each allotment drawn by CEg

– for each zone
∗ find the best resource sharing for all the sensors

alloted to the zone, according to the detection
functional, using CEl

– value the contribution of the zone to the optimization
functional

• value the allotment
The only difference is that, for a zone Ez ,
the draws of CEl are selected according to:

∑
u|Eu∈Ez maxt

[
αu,t

∏
s∈m−1(z) exp(−wsu,tϕs(Eu))

]
.

In fact, for each unit of the zone we select the worst case,
according to the detection of the two targets, that is to say:
max {αu,t1

∏
s∈m−1(z) exp(−wsu,t1ϕs(Eu)), αu,t2

∏
s∈m−1(z)

exp(−wsu,t2ϕs(Eu))}.
VI. RESULTS

In this section, we will present main results on the same ex-
ample. In fact, this aims to point out differences of approaches.

a) Data: We describe a space of search, divided into
four search zones (see Fig. 1), each made of nine units. These
units can be of four kind (forest, lake, plain, mountain and
high mountain).

Fig. 1. The space of search.

The target is hidden in the space of search according to a
prior. In this example, we consider that the targets prefers to
hide in mountain, high mountain and forest (see Fig. 2).

Fig. 2. Prior on the location of the target.

This target is searched by two sensors. The first one has a
good visibility over lake, mountain, and plain (see Fig. 3);
while the second one has a good visibility over plain, forest
and mountain (see Fig. 4).

b) Results for the detection and information search prob-
lems: In the case where the optimization functional is a
detection functional (see section III-B), the optimal solution
(see Fig. 5) is obtained in 30 iterations, in among 2 seconds.
We can see that the sensors prefer to search in units where



Fig. 3. Visibility for the sensor 1.

Fig. 4. Visibility for the sensor 2.

the target has most chances to be.

Fig. 5. Detection functional

In the case where an information functional (see section III-
C) is employed, the optimal solution (see Fig. 6) is obtained
in 30 iterations for an execution time of among 1 minute.
This delay is due to the two levels of CE. The results of the
information optimization are different from the results of the
detection optimization. In fact the sensors will search a little
more in the units where the target has few chances to be. That
is especially the case for sensor 2 in zone 3: with the detection
optimization, no resource was allocated for the search in the
lake units.

Fig. 6. Information functional

c) Result for the detection search game: For this exam-
ple, we consider a detection search game (section IV) such that
the target has equal chances to be in each zone. The optimal
solution (see Fig. 7) is obtain in 162 iterations, for 2 seconds
of execution time. We can see that the prefers to hide where
sensors have the lower visibility.

Fig. 7. Search game

d) Results for the two-targets detection problem: We
consider the two-target detection problem (see section V) when
the prior of both targets is setted to the same prior (see Fig. 2),
and visibility of the sensors are the same, whatever the target
(see Fig. 3 and Fig. 4). Of course, we obtain the same results
that for the detection problem (see Fig. 5). The algorithm takes
26 iterations and among 10 minutes to find the optimal solution
(due to the two levels of CE).
Tests have been made with success for more complicated
instances of these search problems, with up to 20 searchs zones
and 10 sensors. However, due to graphical constraints, we can
not expose them here.

VII. CONCLUSION

We have introduced a federative method in order to optimize
a variety of search problems. This approach is based on the
use of the CE algorithm and on the hierarchical splitting of the
problems studied. We are able to find optimal or even good
solutions in reasonnable time consumption for big instances of
search problems. However, the use of two levels of CE may
imply high convergence time of algorithms. That is especially
the case for the two-targets optimization. Our future work will
aim to investigate further multi-targets search problems.
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