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Abstract—This paper deals with the probabilistic data the calculation of the probability of correct association
association. issu.e in the context of multiple target tracking. (P(Af,c > 0) can be extended to the general case.
In the continuation of the part | framework, we focus here However, we encountered severe difficulties in the
on scenarios where multiple false measurements may OCCUL. 4 vt f ient imati C "
In particular, the influence of various critical parameters on erva 'O_n Of convenien apprOXImQ lons. Lonsequen y
the multi-tracking efficiency, i.e. the probability of correct the feasible approaches developed in the current part will

association, is analyzed. Besides, we study the impact of therely on the same principles but will certainly require
tracking scenario, including a large number of misassocia- fundamental simplifications.
tions.

Roughly, the problems we have to consider here can
be split in two parts. In the first part, we focus on a

In multiple target tracking, a fundamental problem igjven time period at whicimultiple false measurements
to eValuate the performance Of the aSSOCiation algorith%n occur. The problem iS then to associate the nght
Generally speaking, track accuracy is considered witha#easurement with the (estimated) track. In the second
considering the association problem. And yet, tracking apgrt, multiple false measurements can occur at various
association are completely linked. The association issiige periods. However, we assume that there is at most
is really determining. A remarkable exception is the workne false measurement for each time period. Of course,
of K.C. Chang, C.Y. Chong and S. Mori [2]. Howeverpotice that multiple extensions mixing these two false

this work is essentially oriented toward a modelling o4ssociation modelling can be considered.
misassociations via the effect of permutations.

I. INTRODUCTION

The work presented here is a natural extension of the Ill. THE FIRST PROBLEM SIMULTANEOUS FALSE
first part [1]. In part |, we analyse the problem of multiscan MEASUREMENTS
association and focus on the effect of the "contamina: proplem Scenario
tion” of a target track due to extraneous measurement.
The probability of correct association is used as a key . ) .
performance measure. While the context we consideredl‘?ﬁIform motion). Here, we assume that multiple false

Part | is a unique target and a unique false measureméﬁﬁasurements oceur S|mu|taneously_ at_ tlme_peﬂo't':h_e

we will now deal with multiple false measurments. | Pmber of false .measurements at timés Poisson dis-
keeps an analytical point of view to provide accuratté'bmed’ de_pendmg on kn_own paramgters, such as the
closed-form approximations of the probability of correc‘fIlJtter de”%"tY 4) and the size of the validation gate’) :
association. The main contribution of this paper is t oreover, '_t IS assumed that v_aach false measurement is
show that analytical calculations are still possible. Nt uniformly distributed inG (see fig.1).
extensions and applications render it quite attractive.

Il. PROBLEM FORMULATION x\/ "
The problem formulation is similar to the one described i
in the first part, [1]. In this framework, a target is moving x \ I

with a rectilinear and uniform motion. Although the o
hypotheses made in [1] are unchanged, we consider at
this stage the section IlIl.D dedicated to multiple false

measurements. Figure 1. The multiple false measurementstjascenario

A target is moving on the-D plane (rectilinear and

Mesured Position

Actually, we focus in this part on the situation )
where multiple false measurements occur. Our aify Problem Calculations
is again to determine the probability of deciding the Similarly to part I, the association decision process is
right association. Previously, we showed in [1] thdbased on the evaluation of the association a@stfor



each associatiort. Let denoteca the unknown correct the influence of the density of false alarms, Generally

association that the decision process tries to determispeaking, such a work is very difficult, due to the high

The probability of correct associatioR(ca) is then the dimension of the integration domain, i&. For very small

probability that the correct association cost is smallealues of K (broadly smaller than 10), it is possible to

than the costs of all the other associations, i.e.: determine the influence of the false alarm density. This
will be presented in the Simulation section.

P(ca) = P (Cca = min{Ck}) . (1) IV. THE SECOND PROBLEM SCATTERED FALSE

k MEASUREMENTS

As the false measurements are independent, we have: }

A. Problem Scenario
P = P(Cea < Cy, . .
(ca) 1;[ (Cea < C) In this section, we assume that false measurements oc-

(2) curat multiple time periods. Our objective is to investgat
the effect of these false measurements on the probability

[1PAs. 0) . > o LI
of correct association. The scenario is depicted in fig. 2.

Let us recall the following final result of [1]: M 5

P(Ago(k) > 0) =14 (a+bA+eA2)e /2,
x 0 ——

with:
O False Alam
. Zl \/ﬂN 667( N 12 i X Mesured Positon
~ i ay 32,2 e :
a = - L = G , Figure 2. The association scenario number 2.
5 ava i 3 In the scenario, the following assumption is made: there
b o= i is at most one false measurement at each time period. Let
2 ’ us now consider the problem modelling and the associated
. calculations.
o = WY
and: B. The multiple false association framework
Let FAx = (Ix)X_, be the vector composed of the
_ __N(OU-N) I . o .
AN = (NFD)(N+2)° indicesl;, of the (possible) false associations. Since the
incoming calculations are based on [1], we recall a few
By = AN H226N?—66N+4 results. First of all, let us introduce the function&ley ),
(NF1)2(N+2)2

_ ~_whereeg is the K size vector of errors:
The ~,’s are just scale parameters for the approximation

of a gaussian distribution. e )T Mer — FAT M FA
Assuming that the\; are strictly different and given that V(eg) = (ex) K - K K (5)
there areK false measurements in the validation géate 2\/(ex — FAK)T®(ex — FAK)

we obtain:

< which is going to play a leading part in the analysis of
P(CA | K) = H (1 F(a+bh+ C)\i)e—xfp) @ the probability of correct association.

k=1

Integrating w.r.t. thek values, we have: A closed-form expression of the numerator is:

K

P(CA) Z 1 4 (a+ b+ cAde —*5/2) d/\] e e Mex — FAKT MFAK =
o k 1 K!

K K sz
This formula gives the probability of correct association Z Z (1{k K} — 22N +(]1V +31l)k(/le;)+ )>
P(CA), in the presence of multiple false measurements. It k=1+'=1

is naturally adapted to a clutter modelling via léclutter

density) parameter and the validation gétevalues. Let ((ezmez;) - <fak7fak'>)

us now enlarge this approach to a whole track. Henceforth, o

we must consider the probability of never choosing a ,

false association. This is the aim of the next section. :;MZIQN k, k (elk’e”> <fak’fak'>)

On the other hand, a nice work would be to determine (6)




Similarly, for the denominatoDy,. of ¥(ex ), we have:

Duy = 2\/30 Sk, 60k, ) (er, —far,er,, —far) |
with:
(N + 1)2(N +2)? 0y, 1) =

[QT(FAK, N) + (lx + li) Q3(FAK, N) + lulyr Q3(FAK, N)]
*(CMN(lk,lk/) + OLN(lk,lk/)) (N + 1)2(N + 2)2.

(7
The polynomialsQ);, @5 and Q3 stand as follows:

Qi(FAK,N) = Y ura (AN +2—61)°
Q3(FAR,N) = =5 [0 e, (AN +2 = 6D)(1 = 2] 5,
Q3(FAKk,N) = Z’*g [szio,zgpAK(l_%)Q] :

Finally, we obtain the following closed-form o (ex):

>
U(ex) = k=1k'=1

K
> 0k, ) (er, — far, e, — fa)

k=1k'=1

M=

an(k, k) ({1, @) = (faw, faw) )

o

®)

M=

2

In order to investigate the difficulties we have to fac
let us restrict to the case ofvo false associations. Then,

we have to consider a functional, with * :

Y =mn/d with:

e

the Aga,, random variable. More precisely, assume that
they follow the lawsC; and Ls:

my ~ [,1(91) and v~ Eg(eg) R

with 6, and 6, being deterministic parameters. Further-
more, suppose that the density functions fir and £,
are respectivelyy; with supportS; and g, with support
Sa. Then, h(Aga, ), the posterior density of\ra,., can
be expressed simply as:

hMAra) = [g, [s, F(A [ m1,01)g2(v1)g1(m1)dvidmy
(11)

At the moment, the strong point is is that, even if we do
not have yet the right expression of the posterior density,
we are able to consider the double integration. So, the
problem we have to address now can be summed up by the
following question: are there convenient approximations
for these two densities whatever the number of false
associations? The answer is developed in next section.

V. APPROXIMATIONS
A. General Case

First, let us start up with the approximation of the
rheanm; law by a normal distribution. For a high number
of random variables, the Central Limit theorem allows us
to make this approximation. Thus, it is possible to assume
that m; ~ AN(mg,o?). Notice that the distribution of,

n= e+ llexl> =222 ,d2 = [ler — fa]|® — [les _;aH?wiII be discussedurther .

We are interested in thée;,e;) domain for such that

As Aga,. andm; are normally distributed, the posterior

1 < e (¢ < 1). The trouble is that, can be small without density of Ara,, can be formulated more precisely (see

the elementary termg|le;||* — A?) and (|lez||* — A?)

being small too. So, we have to "conditionate”, e.g. with

respect toes.

Obviously, for K = 1, the approach from Part | [1]
is relevant. It provides accurate and simple closed-fo

approximations of thé?(CA) probability. Yet, forK = 2,

the approach becomes hardly feasible. For larger values

of K, it involves to turn towards aadically different

Appendix A for the proof):

MAra) = [o Jg, F(A|mi,v1)g2(v1)gi(ma)dvidm
= f5’2 fN(m0,08+v1)(AFAK )92(v1)dvl

(12)
Thus, we have:
rm
P(Ara, 20) = [g erfc(\/n;‘)T)g2(vl)dv1 :
(TO Vi
(13)

This expression is quite simple. The main difference

approach based on normal density approximations. A k@jth the previous one of Part | [1] is that the complexity
feature of normal densities is that they are exhaustivgly now reduced. Indeed, assuming that the number of
represented by their two first moments. Further, we Wilisassociations is equal to K, we just have to simulate a
explain how these moments can be easily calculated. one-gimensional Markov chain, versuskdimensional

ne. Moreover, in this setup, the precision of the
6proximation increases with, thanks to the Central
Limit theorem.

In order to give the general scheme, let us repeat tﬁ
general (linear regression) result from [1]:

L (AFAK|éK = eK) = N FA;F(MFAK — (eK)TMeKA(eK — FAK)T‘1>(6K — FAK)

-~ -~

mi v1

(10)
Assuming that the meamr(;) and the variancev{) of From now on, the goal is to expreds(Aga, ) (see
Afa, are both random but with determined law, it i®g. 12).So, we have to perform integration w.r.t. the
possible to deduce the expression of the posterior law \Gfriancev,. To that aim, we have to choose a law for the
variancev;. We shall consider two solutions. The first one

Yifay||? = |[faz]|? = A2 consists in using the Central Limit theorem, as previously,



and in modellingv; via a gaussian distributién The where the parameters,, o2, vy ands2 are given by:

second solution is to calculate the right law«gf that is
expected to be a kind of Chi-2.

Notwithstanding, whatever the chosen solution, th

brute force of calculation applied to the integral (see e
12) is unfeasible. That is why -quite similarly to the firs
part- we consider again an approximation of this densi
by a sum of indicator functions.

B. Chi-2 and Gaussian v; modellings and their implica-
tions

Considering the expression of, we notice (see egs.

7,10 ) that it is a weighted sum of elementary quadrat

forms of normal vectors |fe;, — fax||®), with weights

O (). Each elementary quadratic form is Chi-squar,

distributed. However, when the weights are different,
tractable distribution of the weighted sum is not availab

K K
mo = ExyY > an(kk)(@rzw +ysyw
k=1k'=1
e
. —Ak k)
y K K
(7(2) = nyZZOzN(k, k’)(xk.xk/ + Yr-Yr'
k=1k'=1
_)\k')\k’) )
K K
vo = ABxy Y Y 0k E)((zk — M) (xr — )
k=1k'=1
+Yr-Yir) 5
K K
CS% = ].GVXyZZH(k,k/)((ICk — )\k)(lk/ — >\k’) 5
k=1k'=1
e HYr-Yr) -
a (16)

l€alculating the expectations of eq. 16, we obtain (see

(see [9]). So, a first simplification is required; it consistappendix B):

in supposing that the weights are approximately edual
In this setup, we consider that is Chi-square distributed
with 2K degrees of freedom. Then, we obtain:

P(AFAK > 0)

Mo
erfc(———)f,2(2k) (v1)dvy
/R+ /0'8+V1 X?(2K)

Mo

\V Ug +v1

Wi—tew/2g

(14)

1
2RT(R) fnh erfe(

We turn now toward the second solution, i.e. the norm
approximation ofv;. That yields to:

Mo

— ™0 o (vi)dvs
\/m) N( o,so)( 1) 1

/ erfc(
Ry

1
erfc(
Sov2ﬂ/R

_ (v1—vp)?
2

Mo 2

2
O’O+V1

dVl

(15)

Je

2The limitation of this approach is that the variance then hasre
null probability to be negative!

3A reasonable assumption in the current case with its asedcia
hypotheses.

K K K
mo = 23 an(kk) =D an(k k),
k=1 k=1k'=1
K K K
o2 = 4> oR(k.k)—2> > aR(kK),
k=1 k=1k'=1
K K K
wo = A 0k K2+ M) 4D Y 0k E)AA
k=1 k=1k'=1
ol K K K
sto= 64) 0°(k,k)(1+ A7) +32> > 0*(kK).
k=1 k=1k'=1
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However, though the above approximations (see egs 15,
16) are quite simple, they are not sufficiently explicit. In
particular, it is still necessary to perform integratiom.ty.
v1. Next section is dedicated to the simplification of this
integration.

C. Approximating v; via a sum of indicator functions

)

Again, we turn toward the method developed in part
I[1], i.e. the approximation of; via a sum of indicator
functions. We obtain then:

Mo
i€|i

\% 0(2) +vy
(18)

Now, we just have to find values of weights and inter-
vals I;. Refer to [1] where this problem and the associated

P(Apag 20) = > erfe( )1
=1



Approximation for the probability of correct association in the multiple case

solution are detailed. In next Simulations section, all the 4 False Alams(Biue), 8 FA(Red)

results of the approximations are displayed. 0:

4
©
T

V1. SIMULATIONS

o
3

First, we have to examine the validity of the normal
approximations ofn; andv;. For a value ofK" as small
as 2, this is presented in fig. 3. It corresponds toya
approximation ofv; and two false measurements. The
result is quite good, even for a very small Af. Notice
that we would get a highly better result if the number of
false measurements was greater. oLy

o
o

Probability of correct association
o
Sl

Approximation for the probability of correct association in the multiple case Distance
Exact One(Red) vs Approximate One(Blue)

1

ool Figure 4. Probability of correct association in multiple cessive false
alarm case.
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Figure 3. Approximation of the Probability of correct assdicin in 002}
multiple successive false alarm case.
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Number of false measurements

The figure 4 displays the difference between four and
eignt false meqsurements. T.hat dlﬁerence.l(mks to b? aIpllture 5. Probability of correct association in multiple sitaneous
more than a simple translation. The growing stage iS Ngise alarm case.
the same, and will be bigger and bigger with increasing
number of false alarm as we previously explained. In the
case of a very big number of false alarm, we will havis the very low value of the probability of correct
a probability that would be equal to 0 or 1, dependingssociation. The reason is that the volume of observation
on the distance\. Theoretically, for a small value o, of the target is tiny, involving many false alarms for
an infinite number of false associations leads necessatigse values of clutter density. Many false measurements
to a minimum of one error. And that's what we observare observed close to the target, leading to an important
And the main result is that having eight false alarms, atobability of false association.

a constant distance df is equivalent to a double false

measurement scenario, with distan2é and only one  There is a last scenario we would like to study. Assume

false alarm, with a distance af8. that two targets have crossing trajectories. The scenario
is presented by figure 7. We want to know the probability

Next, let us consider now that the multiple false meaf correct association, knowing the andgleThis is what
surements can appear at the same time. In such a scen#ipresented in figure 8.
we would like to know the effect of the dimensioning
parameters on the probability of corrct association. In fig- The first point after that computation is to observe the
ure 5, the probability of correct association is representewo probabilities. A simple conclusion is that if the number
versus the number of false alarms. TRECA) is 0.18 for  of false measurements increases, but the angle stays the
one false measurement, but it becomes quite smaller wisame, the probability decreases. So, to keep the same
K increases. probability of correct association, you should have, i thi

In the next stage, the probability of correct associatiarase, 5 more degrees if you want to allow 4 more false
is evaluated for the complete tracking scenario, with itReasurements.
clutter density. Not surprisingly, figure 6 shows that th€here is something quite important about this simulation.
probability of correct association decreases while ths you can observe on the figure 7, there are no detections
clutter density increases. But, what is more surprisinghen the two targets are crossing. If we had some, then



Probability of correct association Probabilty of correct association when two targets are crossing (N=20)
depending of the Clutter Density K=5 (Blue), K=9 (Red)

o
[
1

-

091

o
o
@

08

o
o
@

07F

o
o
N1

06

o
o
>

051

o
o
=

041

Probability of correct association

o
o
(9]
Probability of correct association

o
o
@

031

o
o
]

021

o
o
2

i i i i i i i i o1l
1 2 3 4 5 6 7 8
Clutter Density

15 20
Angle (%)

Figure 6. Probability of correct association varying witke tclutter

density.
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the influence of important parameters, such as the clutter
o o O o o :
N N A\ \ \ density, the number of false alarms or the angle between
A two trajectories. The last result, concerning two crossing

targets, is very promising since it can be applied directly
to a real situation. For example, assume that a radar has
locked onto a moving target and is currently tracking it.
Suppose that the target suddenly ejects a decoy. What is
the probability that the radar goes on tracking correctly

the two measurements at the crossing scan would hd) t@rget, i.e. it keeps getting the right association? How
been the same. And we would have only one measffees it depend on the angle of the two trajectories? These
and then following, only one target remained. And th&€ examples of further works that this article allows.

probability of correct association would have been highly
better (Taking one measure or the other as no kind of
importance for the tracking of the target). Then, there
would have K — 1 false measurements, and they would VIIl. A PPENDIXA
be a little bit far from the right ones. That's why correct
association probability would have been higher. And why
we took the other scenario, the pessimistic one. . . . .
There are also many extensions to these results, sorrf]érhe aim of this Appen.dlx Is to proove that .the density
of whom are discussed in the conclusion. of a normal random variable, whose mean is normally
distributed (while its variance is constant), is itself a
VII. CONCLUSION normal random variable and to determine its parameters.
In the article, the influence of multiple falseAssume that the random variable has the following

measurements is studied. Among the multitude &$onditional) distribution:

scenarios that can take place, there are two major

categories, which depends on whether the false

measurements appear at the same time or successively. X |m~N(m,o%), (19)
Both of them have been treated in the article. Furthermore,

a third scenario has been taken into account. It consists

in many false associations that occur at each scan. with m ~ N (6, s?). Then, integrating ovem, we have:
a matter of fact, it is just a combination of the two

previously mentioned categories.

Figure 7. Two crossing targets

Focusing on the probability of correct association, our h() /Rf(x [ m)g(m) dm,
work leads to simplified expressions. Moreover, by a great , (20)
effort of relevant approximations, we provide easy ways 1 (em )2—(7"*9)26[
to compute them. As a result, it is possible to analyze /R

e
2mos



Denting now asN (x,m, §) the variable part of the inte- the right ones. First, we have:
grand, we have:

5 (z—m)? (m—6)? K
N(-r7m79) - o2 + 52 ) Moy = EXY ZQN(k k)((L'Q +y2 . )\2)
= —(Ui)g [8256‘2 — 2s%zm + s*m? + o*m? o ’ kD Ik Tk
—20%ml + 0292} ,
K
= ok M5 4 0?) — 2m(s*a + 0%0) = S an(h k) Exy [} + 52 - A2)]
+a2s? + 0262 k=1
_ S2+O'2|: 2 s’z+o20 2 s K
= 59)2 m< — 2m 2152 +x 21 52
@ T = = San(k,k) Ex [¢2] +Ey [12] - X2) .
+6 52‘102} ) k=1
_ s +<7 s at+029 2
- (0s)? |:(’ITL T T 2402 ) 2+02 K
P 2
2 Ty — etrf) } . = Y an(kk)2-}) .
_ _ (21 ht (25)
It is worth now to isolate the terms involving the: I 9 - . .
parameter. More precisely, we have: Expliciting o¢ is not much more difficult, just notice that

X2 andY? are independant, and then the variance of the

1 1 Lo sum is equal to the sum of the variance:
h(z) = / xp |- (55 + 55 B To(z,6) .
2nos Jg 202 2s2 H+% ’
2)
To perform the above calculation, it is sufficient to ) K ) ) )
consider the following change of variable: o1 = Vxy ZQNW k) @y + v, — Ao |
k=1
t = _ % + 6% i 4+ i i - 2 2 2
= 2+1 - o2 52 : = ZQN(kak)VXY [(xk +yk)] ) (26)
7o k=1
Then, we have just to factorize conveniently thgx, 6), K )
so as to render apparent the square: = Z an (k. k)
k=1
To(w,0) = 57 020 + 0250 — (s%+020>2} ’
2(2,9) (05) |7 s%4o* stto®  (*+0%) |7 The calcultation ofy, is quite similar to theny’s one, just
= L+% - (Ugw + 20z + 2 92) . notice that the first order moment &f is null:
2262 +s?) 02 (02 +52) 22
= 52(02+s?2) + 2(02+s2)  (02+s%)o?
5262 20z
s2(c2+52) (c2+s2) ) > K ) )
2 2
= 02+32 + 20_.,_52 - 033_22 ) vor = Exy 429(k,k)(xk + (e — )| s
_ @8’ k=1
- o2+s2
(23) K
The result is that we really have a gaussian density, with — 429(,{, k)Exy [(ﬂfi + (g — )\k)Q)] ’
meand, and variancdo? + s?), i.e. : 1
h(a) — 1 1 02 K ) )
N R R L = 4 Ok, K)Ex [7] + By [(s = 2)%] .
(24) k=1
K
IX. APPENDIXB = 4> 0(k, k) (Ex[27] + By [y — 2wy + A7)
k=1

The aim of this appendix is the calculation of the values %
of myg, 03, vo ands3. Calculations are a bit long, we then _ 249(1‘7 )2+ 22) .
just express here the main stages to perform the results, — ’ b
doing this towardmgy, o2,,v01 ands3;, that are parts of (27)
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