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Abstract—This paper deals with the probabilistic data
association issue in the context of multiple target tracking.
In the continuation of the part I framework, we focus here
on scenarios where multiple false measurements may occur.
In particular, the influence of various critical parameters on
the multi-tracking efficiency, i.e. the probability of correct
association, is analyzed. Besides, we study the impact of the
tracking scenario, including a large number of misassocia-
tions.

I. I NTRODUCTION

In multiple target tracking, a fundamental problem is
to evaluate the performance of the association algorithms.
Generally speaking, track accuracy is considered without
considering the association problem. And yet, tracking and
association are completely linked. The association issue
is really determining. A remarkable exception is the work
of K.C. Chang, C.Y. Chong and S. Mori [2]. However,
this work is essentially oriented toward a modelling of
misassociations via the effect of permutations.

The work presented here is a natural extension of the
first part [1]. In part I, we analyse the problem of multiscan
association and focus on the effect of the ”contamina-
tion” of a target track due to extraneous measurement.
The probability of correct association is used as a key
performance measure. While the context we considered in
Part I is a unique target and a unique false measurement,
we will now deal with multiple false measurments. It
keeps an analytical point of view to provide accurate
closed-form approximations of the probability of correct
association. The main contribution of this paper is to
show that analytical calculations are still possible. Multiple
extensions and applications render it quite attractive.

II. PROBLEM FORMULATION

The problem formulation is similar to the one described
in the first part, [1]. In this framework, a target is moving
with a rectilinear and uniform motion. Although the
hypotheses made in [1] are unchanged, we consider at
this stage the section III.D dedicated to multiple false
measurements.

Actually, we focus in this part on the situation
where multiple false measurements occur. Our aim
is again to determine the probability of deciding the
right association. Previously, we showed in [1] that

the calculation of the probability of correct association
(P (∆f,c ≥ 0) can be extended to the general case.
However, we encountered severe difficulties in the
derivation of convenient approximations. Consequently,
the feasible approaches developed in the current part will
rely on the same principles but will certainly require
fundamental simplifications.

Roughly, the problems we have to consider here can
be split in two parts. In the first part, we focus on a
given time period at whichmultiple false measurements
can occur. The problem is then to associate the right
measurement with the (estimated) track. In the second
part, multiple false measurements can occur at various
time periods. However, we assume that there is at most
one false measurement for each time period. Of course,
notice that multiple extensions mixing these two false
association modelling can be considered.

III. T HE FIRST PROBLEM: SIMULTANEOUS FALSE

MEASUREMENTS

A. Problem Scenario

A target is moving on the2-D plane (rectilinear and
uniform motion). Here, we assume that multiple false
measurements occur simultaneously at time periodt. The
number of false measurements at timet is Poisson dis-
tributed, depending on known parameters, such as the
clutter density (µ) and the size of the validation gate (G).
Moreover, it is assumed that each false measurement is
uniformly distributed inG (see fig.1).
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Figure 1. The multiple false measurements (att) scenario

B. Problem Calculations

Similarly to part I, the association decision process is
based on the evaluation of the association costCk for



each associationk. Let denoteca the unknown correct
association that the decision process tries to determine.
The probability of correct associationP (ca) is then the
probability that the correct association cost is smaller
than the costs of all the other associations, i.e.:

P (ca) = P

(

Cca = min
k

{Ck}
)

. (1)

As the false measurements are independent, we have:

P (ca) =
∏

k

P (Cca ≤ Ck) ,

=
∏

k

P (∆f,c(k) ≥ 0) .

(2)

Let us recall the following final result of [1]:

P (∆f,c(k) ≥ 0) = 1 + (a+ bλ+ cλ2)e−λ2/2 ,

with:
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and:

αN = N(1−N)
(N+1)(N+2) ,

βN = 4N3+226N2−66N+4
(N+1)2(N+2)2 .

The γi’s are just scale parameters for the approximation
of a gaussian distribution.
Assuming that theλk are strictly different and given that
there areK false measurements in the validation gateG,
we obtain:

P (CA | K) =
KY

k=1

�
1 + (a + bλk + cλ

2

k)e
−λ2

k
/2

�
. (4)

Integrating w.r.t. theK values, we have:

P (CA) =

∞X
K=1

Z
GK

KY
k=1

h�
1 + (a + bλk + cλ

2

k)e
−λ2

k
/2

�
dΛ
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−µ µK
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This formula gives the probability of correct association
P (CA), in the presence of multiple false measurements. It
is naturally adapted to a clutter modelling via theµ (clutter
density) parameter and the validation gateG values. Let
us now enlarge this approach to a whole track. Henceforth,
we must consider the probability of never choosing a
false association. This is the aim of the next section.
On the other hand, a nice work would be to determine

the influence of the density of false alarms,µ. Generally
speaking, such a work is very difficult, due to the high
dimension of the integration domain, i.e.K. For very small
values ofK (broadly smaller than 10), it is possible to
determine the influence of the false alarm density. This
will be presented in the Simulation section.

IV. T HE SECOND PROBLEM: SCATTERED FALSE

MEASUREMENTS

A. Problem Scenario

In this section, we assume that false measurements oc-
cur at multiple time periods. Our objective is to investigate
the effect of these false measurements on the probability
of correct association. The scenario is depicted in fig. 2.
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Figure 2. The association scenario number 2.

In the scenario, the following assumption is made: there
is at most one false measurement at each time period. Let
us now consider the problem modelling and the associated
calculations.

B. The multiple false association framework

Let FAK = (lk)K
k=1 be the vector composed of the

indices lk of the (possible) false associations. Since the
incoming calculations are based on [1], we recall a few
results. First of all, let us introduce the functionalΨ(eK),
whereeK is the K size vector of errors:

Ψ(eK) =
(eK)TMeK − FAT

KM FAK

2
√

(eK − FAK)T Φ(eK − FAK)
, (5)

which is going to play a leading part in the analysis of
the probability of correct association.

A closed-form expression of the numerator is:

e
T
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(6)



Similarly, for the denominatorDΨK
of Ψ(eK), we have:

DΨK
= 2
qPK

k=1

PK
k′=1

θ(lk, lk′) 〈elk − fak, elk′
− fak′〉 ,

with:
(N + 1)2(N + 2)2 θ(lk, lk′) =

[Q∗
1(FAK , N) + (lk + lk′) Q∗

2(FAK , N) + lklk′ Q∗
3(FAK , N)]

−
�
αN (lk, lk′) + αN (lk, lk′)

�
(N + 1)2(N + 2)2.

(7)
The polynomialsQ∗

1, Q∗
2 andQ∗

3 stand as follows:

Q∗
1(FAK , N) =

PN
l=0,l/∈FAK

(4N + 2 − 6l)2 ,

Q∗
2(FAK , N) = − 6

δ

hPN
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N

)
i
; ,

Q∗
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N

)2
i

.

Finally, we obtain the following closed-form ofΨ(eK):

Ψ(eK) =

KX
k=1

KX
k′=1

αN (k, k
′)
�
〈elk , el′

k
〉 − 〈fak, fak′〉

�
2

vuut KX
k=1

KX
k′=1

θ(lk, lk′) 〈elk − fak, elk′
− fak′〉

. (8)

In order to investigate the difficulties we have to face,
let us restrict to the case oftwo false associations. Then,
we have to consider a functionalψ, with 1 :

ψ = n/d with:
n = ‖e1‖2

+ ‖e2‖2 − 2 λ2 , d2 = ‖e1 − fa‖2 − ‖e2 − fa‖2
.

(9)
We are interested in the(e1, e2) domain for such that
ψ ≤ ε (ε≪ 1). The trouble is thatn can be small without
the elementary terms(‖e1‖2 − λ2) and (‖e2‖2 − λ2)
being small too. So, we have to ”conditionate”, e.g. with
respect toe2.

Obviously, forK = 1, the approach from Part I [1]
is relevant. It provides accurate and simple closed-form
approximations of theP (CA) probability. Yet, forK = 2,
the approach becomes hardly feasible. For larger values
of K, it involves to turn towards aradically different
approach based on normal density approximations. A key
feature of normal densities is that they are exhaustively
represented by their two first moments. Further, we will
explain how these moments can be easily calculated.

In order to give the general scheme, let us repeat the
general (linear regression) result from [1]:

L (∆FAK
| ε̃K = eK) = N

264FA
T
KMFAK − (eK)TMeK| {z }

m1

, 4(eK − FAK)T Φ(eK − FAK)| {z }
v1

375 .

(10)
Assuming that the mean (m1) and the variance (v1) of

∆FAK
are both random but with determined law, it is

possible to deduce the expression of the posterior law of

1‖fa1‖
2

= ‖fa2‖
2

= λ2

the ∆FAK
random variable. More precisely, assume that

they follow the lawsL1 andL2:

m1 ∼ L1(θ1) and v1 ∼ L2(θ2) ,

with θ1 and θ2 being deterministic parameters. Further-
more, suppose that the density functions forL1 and L2

are respectivelyg1 with supportS1 and g2 with support
S2. Then,h(∆FAK

), the posterior density of∆FAK
, can

be expressed simply as:

h(∆FAK
) =

∫

S1

∫

S2
f(∆ | m1, v1)g2(v1)g1(m1)dv1dm1

(11)
At the moment, the strong point is is that, even if we do
not have yet the right expression of the posterior density,
we are able to consider the double integration. So, the
problem we have to address now can be summed up by the
following question: are there convenient approximations
for these two densities whatever the number of false
associations? The answer is developed in next section.

V. A PPROXIMATIONS

A. General Case

First, let us start up with the approximation of the
meanm1 law by a normal distribution. For a high number
of random variables, the Central Limit theorem allows us
to make this approximation. Thus, it is possible to assume
thatm1 ∼ N (m0, σ

2
0). Notice that the distribution ofv1

will be discussedfurther .

As ∆FAK
andm1 are normally distributed, the posterior

density of ∆FAK
can be formulated more precisely (see

Appendix A for the proof):

h(∆FAK
) =

∫

S1

∫

S2
f(∆ | m1, v1)g2(v1)g1(m1)dv1dm1

=
∫

S2
fN (m0,σ2

0+v1)(∆FAK
)g2(v1)dv1

(12)
Thus, we have:

P (∆FAK
≥ 0) =

∫

S2
erfc( m0√

σ2

0
+v1

)g2(v1)dv1 .

(13)
This expression is quite simple. The main difference
with the previous one of Part I [1] is that the complexity
is now reduced. Indeed, assuming that the number of
misassociations is equal to K, we just have to simulate a
one-dimensional Markov chain, versus aK-dimensional
one. Moreover, in this setup, the precision of the
approximation increases withK, thanks to the Central
Limit theorem.

From now on, the goal is to expressh(∆FAK
) (see

eq. 12).So, we have to perform integration w.r.t. the
variancev1. To that aim, we have to choose a law for the
variancev1. We shall consider two solutions. The first one
consists in using the Central Limit theorem, as previously,



and in modellingv1 via a gaussian distribution2. The
second solution is to calculate the right law ofv1, that is
expected to be a kind of Chi-2.

Notwithstanding, whatever the chosen solution, the
brute force of calculation applied to the integral (see eq.
12) is unfeasible. That is why -quite similarly to the first
part- we consider again an approximation of this density
by a sum of indicator functions.

B. Chi-2 and Gaussian v1 modellings and their implica-
tions

Considering the expression ofv1, we notice (see eqs.
7,10 ) that it is a weighted sum of elementary quadratic
forms of normal vectors (‖elk − fak‖2), with weights
ΦK(lk). Each elementary quadratic form is Chi-square
distributed. However, when the weights are different, a
tractable distribution of the weighted sum is not available
(see [9]). So, a first simplification is required; it consists
in supposing that the weights are approximately equal3.
In this setup, we consider thatv1 is Chi-square distributed
with 2K degrees of freedom. Then, we obtain:

P (∆FAK
≥ 0) =

∫

R+

erfc(
m0

√

σ2
0

+ v1

)fχ2(2K)(v1)dv1

= 1
2KΓ(K)

∫

R+
erfc( m0√

σ2

0
+v1

)vK−1

1
e−v1/2dv1

(14)

We turn now toward the second solution, i.e. the normal
approximation ofv1. That yields to:

P (∆FAK
≥ 0) =

∫

R+

erfc(
m0

√

σ2
0

+ v1

)fN (v0,s2

0
)(v1)dv1 ,

= 1
s0

√
2π

∫

R

erfc(
m0

√

σ2
0

+ v1

)e
− (v1−v0)

2

2s2
0 dv1 ,

(15)

2The limitation of this approach is that the variance then has anone
null probability to be negative!

3A reasonable assumption in the current case with its associated
hypotheses.

where the parametersm0, σ2
0 , v0 ands20 are given by:
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m0 = EXY

K
∑

k=1

K
∑

k′=1

αN (k, k′)(xk.xk′ + yk.yk′ ,

−λk.λk′) ,

σ2
0 = VXY

K
∑

k=1

K
∑

k′=1

αN (k, k′)(xk.xk′ + yk.yk′ ,

−λk.λk′) ,

v0 = 4EXY

K
∑

k=1

K
∑

k′=1

θ(k, k′)((xk − λk).(xk′ − λk′) ,

+yk.yk′) ,

s20 = 16VXY

K
∑

k=1

K
∑

k′=1

θ(k, k′)((xk − λk).(xk′ − λk′) ,

+yk.yk′) .
(16)

Calculating the expectations of eq. 16, we obtain (see
Appendix B):
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m0 = 2

K
∑

k=1

αN (k, k) − λ2
K

∑

k=1

K
∑

k′=1

αN (k, k′) ,

σ2
0 = 4

K
∑

k=1

α2
N (k, k) − 2

K
∑

k=1

K
∑

k′=1

α2
N (k, k′) ,

v0 = 4

K
∑

k=1

θ(k, k′)(2 + λ2
k) + 4

K
∑

k=1

K
∑

k′=1

θ(k, k′)λkλk′ ,

s20 = 64

K
∑

k=1

θ2(k, k)(1 + λ2
k) + 32

K
∑

k=1

K
∑

k′=1

θ2(k, k′) .

(17)
However, though the above approximations (see eqs 15,
16) are quite simple, they are not sufficiently explicit. In
particular, it is still necessary to perform integration w.r.t.
v1. Next section is dedicated to the simplification of this
integration.

C. Approximating v1 via a sum of indicator functions

Again, we turn toward the method developed in part
I[1], i.e. the approximation ofv1 via a sum of indicator
functions. We obtain then:

P (∆FAK
≥ 0) =

n
∑

i=1

γi erfc(
m0

√

σ2
0

+ v1i

) 1i∈Ii

(18)
Now, we just have to find values of weightsγi and inter-
valsIi. Refer to [1] where this problem and the associated



solution are detailed. In next Simulations section, all the
results of the approximations are displayed.

VI. SIMULATIONS

First, we have to examine the validity of the normal
approximations ofm1 andv1. For a value ofK as small
as 2, this is presented in fig. 3. It corresponds to aχ2

approximation ofv1 and two false measurements. The
result is quite good, even for a very small ofK. Notice
that we would get a highly better result if the number of
false measurements was greater.
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Figure 3. Approximation of the Probability of correct association in
multiple successive false alarm case.

The figure 4 displays the difference between four and
eight false measurements. That difference looks to be a bit
more than a simple translation. The growing stage is not
the same, and will be bigger and bigger with increasing
number of false alarm as we previously explained. In the
case of a very big number of false alarm, we will have
a probability that would be equal to 0 or 1, depending
on the distanceλ. Theoretically, for a small value ofλ,
an infinite number of false associations leads necessarily
to a minimum of one error. And that’s what we observe.
And the main result is that having eight false alarms, at
a constant distance of3 is equivalent to a double false
measurement scenario, with distance2.5 and only one
false alarm, with a distance of1.8.

Next, let us consider now that the multiple false mea-
surements can appear at the same time. In such a scenario,
we would like to know the effect of the dimensioning
parameters on the probability of corrct association. In fig-
ure 5, the probability of correct association is represented
versus the number of false alarms. TheP (CA) is 0.18 for
one false measurement, but it becomes quite smaller when
K increases.

In the next stage, the probability of correct association
is evaluated for the complete tracking scenario, with its
clutter density. Not surprisingly, figure 6 shows that the
probability of correct association decreases while the
clutter density increases. But, what is more surprising
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Figure 4. Probability of correct association in multiple successive false
alarm case.
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Figure 5. Probability of correct association in multiple simultaneous
false alarm case.

is the very low value of the probability of correct
association. The reason is that the volume of observation
of the target is tiny, involving many false alarms for
these values of clutter density. Many false measurements
are observed close to the target, leading to an important
probability of false association.

There is a last scenario we would like to study. Assume
that two targets have crossing trajectories. The scenario
is presented by figure 7. We want to know the probability
of correct association, knowing the angleθ. This is what
is presented in figure 8.

The first point after that computation is to observe the
two probabilities. A simple conclusion is that if the number
of false measurements increases, but the angle stays the
same, the probability decreases. So, to keep the same
probability of correct association, you should have, in this
case, 5 more degrees if you want to allow 4 more false
measurements.
There is something quite important about this simulation.
As you can observe on the figure 7, there are no detections
when the two targets are crossing. If we had some, then
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Figure 7. Two crossing targets

the two measurements at the crossing scan would have
been the same. And we would have only one measure
and then following, only one target remained. And the
probability of correct association would have been highly
better (Taking one measure or the other as no kind of
importance for the tracking of the target). Then, there
would haveK − 1 false measurements, and they would
be a little bit far from the right ones. That’s why correct
association probability would have been higher. And why
we took the other scenario, the pessimistic one.

There are also many extensions to these results, some
of whom are discussed in the conclusion.

VII. C ONCLUSION

In the article, the influence of multiple false
measurements is studied. Among the multitude of
scenarios that can take place, there are two major
categories, which depends on whether the false
measurements appear at the same time or successively.
Both of them have been treated in the article. Furthermore,
a third scenario has been taken into account. It consists
in many false associations that occur at each scan. As
a matter of fact, it is just a combination of the two
previously mentioned categories.

Focusing on the probability of correct association, our
work leads to simplified expressions. Moreover, by a great
effort of relevant approximations, we provide easy ways
to compute them. As a result, it is possible to analyze
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Figure 8. Probability of correct association varying with the angleθ

the influence of important parameters, such as the clutter
density, the number of false alarms or the angle between
two trajectories. The last result, concerning two crossing
targets, is very promising since it can be applied directly
to a real situation. For example, assume that a radar has
locked onto a moving target and is currently tracking it.
Suppose that the target suddenly ejects a decoy. What is
the probability that the radar goes on tracking correctly
the target, i.e. it keeps getting the right association? How
does it depend on the angle of the two trajectories? These
are examples of further works that this article allows.

VIII. A PPENDIX A

The aim of this Appendix is to proove that the density
of a normal random variable, whose mean is normally
distributed (while its variance is constant), is itself a
normal random variable and to determine its parameters.
Assume that the random variablex has the following
(conditional) distribution:

X | m ∼ N (m,σ2) , (19)

with m ∼ N (θ, s2). Then, integrating overm, we have:

h(x) =

∫

R

f(x | m)g(m) dm ,

=

∫

R

1

2πσs
e
−
(

x−m√
2σ2

)2
−
(

m−θ√
2s2

)2

dm

(20)



Denting now asN(x,m, θ) the variable part of the inte-
grand, we have:

N(x,m, θ)
δ
= (x−m)2

σ2 + (m−θ)2

s2 ,

= 1
(σs)2

[

s2x2 − 2s2xm+ s2m2 + σ2m2

−2σ2mθ + σ2θ2
]

,

= 1
(σs)2

[

m2(s2 + σ2) − 2m(s2x+ σ2θ)

+x2s2 + σ2θ2
]

,

= s2+σ2

(σs)2

[

m2 − 2m s2x+σ2θ
s2+σ2 + x2 s2

s2+σ2

+θ2 σ2

s2+σ2

]

,

= s2+σ2

(σs)2

[

(

m− s2x+σ2θ
s2+σ2

)2
+ x2 s2

s2+σ2

+θ2 σ2

s2+σ2 − (s2x+σ2θ)2

(s2+σ2)2

]

.

(21)
It is worth now to isolate the terms involving them
parameter. More precisely, we have:

h(x) =
1

2πσs

Z
R

exp

"
−

�
1

2σ2
+

1

2s2

� 
m −

x
σ2 + θ

s2

1

σ2 + 1

σ2

!#
T2(x, θ) .

(22)
To perform the above calculation, it is sufficient to

consider the following change of variable:

t =



m−
x
σ2 + θ

s2

1
σ2+ 1

σ2





(

1

σ2
+

1

s2

)1/2

.

Then, we have just to factorize conveniently theT2(x, θ),
so as to render apparent the square:

T2(x, θ) = s2+σ2

(σs)2

[

x2 s2

s2+σ2 + θ2 σ2

s2+σ2 − (s2x+σ2θ)2

(s2+σ2)2

]

,

= x2

σ2 + θ2

s2 − 1
σ2+s2

(

s2

σ2x
2 + 2θx+ σ2

s2 θ
2
)

,

= x2(σ2+s2)
σ2(σ2+s2) + θ2(σ2+s2)

s2(σ2+s2) − s2x2

(σ2+s2)σ2

− σ2θ2

s2(σ2+s2) − 2θx
(σ2+s2)

)

,

= x2

σ2+s2 + θ2

σ2+s2 − 2θx
σ2+s2 ,

= (x−θ)2

σ2+s2 .
(23)

The result is that we really have a gaussian density, with
meanθ, and variance(σ2 + s2), i.e. :

h(x) =
1

2π(s2 + σ2)
exp

[

− 1

2(s2 + σ2)
(x− θ)

2

]

.

(24)

IX. A PPENDIX B

The aim of this appendix is the calculation of the values
of m0, σ2

0 , v0 ands20. Calculations are a bit long, we then
just express here the main stages to perform the results,
doing this towardm01, σ2

01,v01 and s201, that are parts of

the right ones. First, we have:

m01 = EXY

[

K
∑

k=1

αN (k, k)(x2
k + y2

k − λ2
k)

]

,

=

K
∑

k=1

αN (k, k) EXY

[

(x2
k + y2

k − λ2
k)

]

,

=

K
∑

k=1

αN (k, k)
(

EX

[

x2
k

]

+ EY

[

y2
k

]

− λ2
k

)

,

=
K

∑

k=1

αN (k, k)(2 − λ2
k) .

(25)
Expliciting σ2

0 is not much more difficult, just notice that
X2 andY 2 are independant, and then the variance of the
sum is equal to the sum of the variance:

σ2
01 = VXY

[

K
∑

k=1

αN (k, k)(x2
k + y2

k − λ2
k)

]

,

=

K
∑

k=1

α2
N (k, k)VXY

[

(x2
k + y2

k)
]

,

=

K
∑

k=1

α2
N (k, k) .

(26)

The calcultation ofv0 is quite similar to them0’s one, just
notice that the first order moment ofY is null:

v01 = EXY

[

4
K

∑

k=1

θ(k, k)(x2
k + (yk − λk)2)

]

,

= 4

K
∑

k=1

θ(k, k)EXY

[

(x2
k + (yk − λk)2)

]

,

= 4

K
∑

k=1

θ(k, k)EX

[

x2
k

]

+ EY

[

(yk − λk)2
]

,

= 4
K

∑

k=1

θ(k, k)
(

EX

[

x2
k

]

+ EY

[

y2
k − 2λkyk + λ2

k

])

,

=

K
∑

k=1

4θ(k, k)(2 + λ2
k) .

(27)



The last calculation is a bit more intricated:

s201 = VXY

[

4
K

∑

k=1

θ(k, k)(x2
k + (yk − λk)2)

]

,

= 16

K
∑

k=1

θ2(k, k)VXY

[

(x2
k + (yk − λk)2)

]

,

= 16

K
∑

k=1

θ2(k, k)
(

VX

[

x2
k

]

+ VY

[

(yk − λk)2
]

)

(28)
The (small) problem we have to solve is the calculation
of the second term. This is achieved via classical reults
about moments of a normal random variable:

VY

[

(yk − λk)2
]

= E
[

(yk − λk)4
]

− E
2
[

(xk − λk)2
]

= E
[

x4
k − 4x3

kλk + 6x2
kλ

2
k − 4xkλ

3
k + λ4

k

]

−(1 + λ2
k)2

= 3 + 6λ2
k + λ4

k − 1 − 2λ2
k − λ4

k

= 2 + 4λ2
k

(29)
And then, we have:

s201 = 64
∑K

k=1 θ
2(k, k)(1 + λ2

k) (30)
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