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Abstract—This paper is concerned with performance pre-
diction of multiple target tracking system. Effects of misasso-
ciation are considered in a simple (linear) framework so as to
provide closed-form expressions of the probability of correct
association. In this paper, we focus on the development of
explicit approximations of this probability for a unique fa lse
measurements. Rigorous calculations allow us to determine
the dimensioning parameters.

I. I NTRODUCTION

A fundamental problem in multi-target tracking is to
evaluate the performance of the association algorithms.
However, it is quite obvious that tracking and association
are completely entangled in multi-target tracking. In this
context, a key performance measure is the probability
of correct association. Generally, track accuracy has
been considered without consideration of the association
problem. A remarkable exception is the work of K.C.
Chang, C.Y. Chong and S. Mori [4], [6].

However, this work is essentially oriented toward
a modelling of misassociations via the effect of
permutations. Here, we focus on the effect of the
”contamination” of a target track due to extraneous
measurements. In fact, a ”contamination” results in a
change of estimates of the track parameters, which would
render misassociations more likely. It is certain that only
measurements situated in the immediate vicinity of the
target track would have a severe effect. This the case for
dense target environment or (e.g.) decoys.

Here, our analysis is devoted to multiscan association
analysis. For this part, the target motion is assumed
to be deterministic, while we are concerned with
batch performance. In this setup, a linear estimation
framework is a simple but efficient way to perform
caculations. This paper is organized as follows. In
Section2 the association scenario is presented. We have
then to calculate the association costs under the two
hypotheses (correct and false association). This is the
object of Section 3. The major result of this section is
the calculation of a closed-form of these association costs.

The true problem is now to derive from this result an
accurate closed-form approximation of the probability of
correct association. This is precisely the aim of Section
4, which plays the central role in this paper. The way

we derive this approximation is detailed. It is based
upon an approximation of the normal density by sums of
indicator functions and statistical considerations. The final
result is a very simple closed-form approximation, whose
accuracy is testimonied by Section 5 (simulation results).
Note, however, that this result is limited to a single false
association within the whole batch period. It will be shown
that the results of Section 3 allow us to consider the general
case study. This will be the aim of the companion paper
(i.e. Part 2).

II. PROBLEM FORMULATION

A target is moving with a rectilinear and uniform mo-
tion. Noisy measurements consisting of Cartesian positions
are represented by the points:

P̃1 = (x̃1, ỹ1) , P̃2 = (x̃2, ỹ2) , · · · , P̃N = (x̃N , ỹN ) , (1)

at time periodst1, t2,· · · ,tN , which are called ”scans”.
Under the correct association hypothesis, the position mea-
surements are the exact Cartesian positionsPi = (xi, yi),
corrupted by a sequence of independent and identically
normally distributed noises (denotedεxi , εyi), i.e.:

P̃i = (x̃i, ỹi) = (xi + εxi , yi + εyi) . (2)

When a target is (sufficiently) isolated from others, there
is no ambiguity about the measurement origin. It is not
true any more if it happens that a second target comes
to stand in the vicinity of the first target. In this case, it
becomes possible to make a mistake about the origin of
an observation by associating it to the wrong target, thus
corrupting target trajectory estimation. But the questionis
to give a more precise meaning to the term ”sufficiently
isolated”.
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Figure 1. The association scenario



Thus, the aim of this article is to give a closed-form
expression for the probability of correct association of
measurements to a target track, as a function of the number
of scans and the distance of the outlier observations. In
order to simplify the scenario, we consider that the outlier
measurementPf is located close to the true target position
Pl = (xl, yl) at time periodtl, with a distanceλ1. The
general problem setting and definitions are depicted in
fig. 1. Let us denoteδi = ti+1− ti, the inter-measurement
time, and:

v = (vx, vy)
T

,

the two components of the constant target velocity on the
Cartesian axis. In the deterministic case, the target trajec-
tory is then defined by the state vector(x1, y1, vx, vy).

III. PROBLEM ANALYSIS

Under the correct association (ca) hypothesis and de-
noting τi

∆
= δ1 + δ2 + · · ·+ δi, the position measurements

P̃i are represented by the following equation2:
0
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With these definitions and under the correct association hypoth-
esis, the measurement model simply stands as follows:

Z̃ca = X β + ε̃ca . (4)

A. The regression model [2]

Consider the following linear regression model:

Z̃ = X β + ε̃ , (5)

where Z̃ are the data,X are the regressors andβ is
the vector of parameters, to be estimated. Generally, the
estimation ofβ is made via the quadratic loss function:

L2(β) =
“
Z̃ − X β

”T

(Z − X β) = ‖Z̃ − X β‖2 . (6)

If the matrixX TX is non-singular, thenL2(β) is mini-
mum for the unique valuêβ of β such that:

β̂ = (X T X )−1X T Z̃ . (7)

From the estimation̂β of β, let Ẑ be the estimator of the
meanX β of the random vector̃Z defined by:

bZ = H Z ,
with:

H ∆
= X (X TX )−1 X T .

1For the sake of brevity, we assume that measurements are resolved
(see [5])

2I: identity matrix

The vector of the residualŝε
∆
= Z̃ − Ẑ is given by:

ε̂ = M Z̃ , (8)

with M = I − H , andI the identity matrix. It is easy
to check thatM is a projection matrix (i.eMT = M
and M2 = M). We also recall the following classical
identities, which will be used subsequently [1]:

M X = 0 , and:ε̂ = M ε̃ . (9)

B. Evaluation of the correct association probability
Assume that the outlier measurementPf,l = (xf , yf )

(the lowercasef stands for false association) is located at
the time-periodl (1 ≤ l ≤ N , see fig. 1):


xf = xl ,
yf = yl − λ .

The correct association (ca) is then defined by
the association of points

{
P̃1, · · · , P̃l, · · · , P̃N

}
,

whereas the wrong association (fa) is defined by{
P̃1, · · · ,Pf,l, · · · , PN

}
.

The vectors of residuals arêεca = Z̃ca − Ẑca under
the correct association hypothesis (ca) and ε̂fa = Z̃fa −
Ẑfa under the false asssociation hypothesis (fa). They are
deduced from a linear regression, leading to the following
definition of the costs of correct association (denotedCca)
and false association (denotedCfa) :

Cca = (Z̃ca − bZca)
T (Z̃ca − bZca) , (10)

= ε̃
T
ca M ε̃ca .

In the same way, we have also:

Cfa = ε̃
T
fa M ε̃fa . (11)

Let us define now∆f,c the difference between the correct
and wrong costs, i.e.:

∆f,c
∆
= Cfa − Cca . (12)

Then, the probability of correct association is defined by
the probability that∆f,c ≥ 0. The aim of this article is
to give closed-form expressions for this probability.

Let be ε̃com the vector of components, that vectorsε̃ca

and ε̃fa have in common, and definẽεl and fal as the
complementary vectors, so that:

ε̃ca = ε̃com + ε̃l , ε̃fa = ε̃com + fal . (13)

With these notations, the difference between the correct
and wrong costs∆f,c can be written:

∆f,c = fa
T
l M fal − (ε̃l)

TM(ε̃l) ,

−2 (ε̃l − fal)
TM(ε̃com) .

(14)

Since the components of the vectorε̃com are normally
distributed and supposed independent, this vector is
normal (̃εcom ∼ N (O, Σcom) ), and similarly for ε̃l

(ε̃l ∼ N (O, Σl) ).

Assuming that the vector̃εl is set to afixed valueel, the
law of the difference of costsL(∆f,c| ε̃l = el) is normal
with characteristics:



L (∆f,c| ε̃l = el) =

N
[
fa

T
l Mfal − (el)

TMel, 4(el − fal)
T Φ(el − fal)

]
,

(15)
where: Φ

∆
= MΣcomMT . Integrating this conditional

density w.r.t. the Gaussian vectorε̃l, yields:

P (∆f,c(l) ≥ 0) = Eε̃l

"
erfc

 
(el)

TMel − fa
T
l M fal

2
p

(el − fal)T Φ(el − fal)

!#

(16)

Considering eq. 16, it is not surprising that it is the
functionalΨ(el):

Ψ(el) =
(el)

TMel − fa
T
l M fal

2
p

(el − fal)T Φ(el − fal)
, (17)

which will play the fundamental role for analyzing the
probability of correct association. So, the aim of the next
subsection is to provide a simpler form ofΨ(el).

C. A closed-form for theΨ(el) functional
The first step consists in calculating a closed form for

theΨ(el) numerator. Considering the special forms3 of the
vectorsel and fal, only a closed form expression of the
Ml,l 2 × 2 block matrix is required. Routine calculations
yield:

Ml,l=
1

(N + 1)(N + 2)

"
1 − 2

`
2N + 1 − 6 l + 6 l2

N

´

(N + 1)(N + 2)

#
I2 ,

(18)
so that:

(el)
TMel − fa

T
l M fal =

"
1 −

2

„

2N+1−6l+ 6l2

N

«

(N+1)(N+2)

#
,

×
`
‖el‖2 − ‖fal‖2

´
.

(19)
In the second step, theΨ(el) denominator is considered.

First, it is worth recalling the form of theΦ matrix:

Φ = (I −H)Σcom(I −HT ) ,

= Σcom − ΣcomHT −HΣcom| {z }
Φ1

+HΣcomHT , (20)

and noticing that the2 × 2 block matrixΦ1(l, l) is zero.
Thus, we can restrict to the2 × 2 block matrix of the
HΣcomHT matrix. Straightforward calculations yield:

(N + 1)2(N + 2)2 HΣcomHT = X CΣcomCT X T ,
with:

C =

„
(4N + 2)I2 . . . (4N + 2 − 6(k − 1))I2 . . .

− 6
δ
I2 . . . − 6

δ
(1 − 2(k−1)

N
)I2 . . .

«

(21)
Routine calculations then yield a simple expression for

the 4 × 4 matrix CΣcomCT :

CΣcomCT = 1
(N+1)2(N+2)2

„
Q1(l, N)I2 Q2(l, N)I2

Q2(l, N)I2 Q3(l, N)I2

«
,

(22)
from which, we deduce finally:

Φl,l = 1
(N+1)2(N+2)2

ˆ
Q1(l, N) + 2l δQ2(l, N) + l2 δ2Q3(l, N)

˜
I2 ,

(23)

3These two vectors are made of zeros except forx and y l-th
components

where theQ1, Q2 andQ3 polynomials have the following
expression:
˛̨
˛̨
˛̨
˛̨
˛

Q1(l, N) = 4N3 − 50N2 + N(48l − 18) + l(24 − 36l) + 4 .

Q2(l, N) = − 6
δ

ˆ
N2 − 5N − 2 + 4l(1 + 1

N
− 3l

N
)
˜

Q3(l, N) = 36
δ2

ˆ
N
3
− 1 + 2

N
( 1
3

+ 2 l − 2 l
N2 )

˜
.

Gathering the numerator and denominator closed forms,
we have just obtained a closed form expression forΨl:

Ψ(el) =

»

(N+1)(N+2)−2(2N+1−6 l+ 6 l2

N
)

–

2[Q1(l,N)+2lδQ2(l,N)+l2δ2Q3(l,N)]

“
‖el‖2−‖fal‖2

‖el−fal‖

”
,

∝ N2

2 (N3−3lN2+3l2N)1/2

“
‖el‖2−‖fal‖2

‖el−fal‖

”
, N great,

(24)
Considering eq. 24 (last row), we can notice that the

variations ofΨ(el) as a function ofl as a function of
l are not very important. Actually, it is easily seen that

N2

2 (N3−3lN2+3l2N)1/2 is varying between
√

N
2 and

√
N
4 asl

varies between0 andN . Now, the erfc function is quite flat
for large values ofN , which means thatP (∆f,c(el) ≥ 0)
is almost independent of the value ofl.
This closed-form ofΨ(el) is instrumental for deriving a
closed-form approximation ofP (∆f,c ≥ 0).

D. Multiple false associations

The previous calculations can be rather easily extended
to multiple false associations. LetFAK = (lk)K

k=1, be
the vector made by indiceslk of the (possible) false
associations. A closed-form expression of the numerator
of eq. 17 is:

e
T
KMeK − FA

TMFA =

KX

k=1

KX

k′=1

0
@1{k=k′} − 2(2N + 1 − 3 lk′ − 3 lk +

6 l2k
N

)
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1
A

×
“
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”

=
KX

k=1

KX
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αN (k, k′)
“
〈elk , el′

k
〉 − 〈fak, fak′〉

”
.

(25)
Similarly, for the denominatorDΨK of ΨFAK

, we have:

DΨK = 2
qPK

k=1

PK
k′=1 θ(lk, lk′) 〈elk − falk , elk′ − falk′ 〉 ,

with:
(N + 1)2(N + 2)2 θ(lk, lk′) =

[Q∗
1(FAK , N) + (lk + lk′) Q∗

2(FAK , N) + lklk′ Q∗
3(FAK , N)]

−
`
αN (lk, lk′) + αN (lk, lk′)

´
(N + 1)2(N + 2)2.

(26)
The polynomsQ∗

1, Q∗
2 andQ∗

3 stand as follows:

Q∗
1(FAK , N) =

PN
l=0,l/∈FAK

(4N + 2 − 6l)2 ,

Q∗
2(FAK , N) = − 6

δ

hPN
l=0,l/∈FAK

(4N + 2 − 6l)(1 − 2 l
N

)
i

,

Q∗
3(FAK , N) = 36

δ2

hPN
l=0,l/∈FAK

(1 − 2 l
N

)2
i

.



Finally, we have obtained the following closed-form of
ΨFAK

:

ΨFAK =

KX

k=1

KX

k′=1

αN (k, k′)
“
〈elk , el′

k
〉 − 〈fak, fak′〉

”

2

vuut
KX

k=1

KX

k′=1

θ(lk, lk′) 〈elk − fak, elk′ − fak′〉

. (27)

Again, this expression is remarkably simple.

E. Diffusive Target
Up to now, the target modelling was deterministic (see

eq. 3). However, this assumption is not realistic, especially
if the duration of the scenario is great. Actually, denoting
Xk the 2-dimensional vector made of target position at
time periodk, and Vk its velocity vector. The following
modelling (discrete Orenstein-Uhlenbeck) is considered:


Xk = Xk−1 + Vk

Vk = Vk−1 + Ak
(28)

whereAk is a white noise with varianceσ2
a. The diffusive

target scenario is depicted in 2. However, notice that
opposite to (Kalman) filtering our aim is restricted to
the effect analysis of this target trajectory randomization
within the common regression framework.
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Figure 2. The scenario for a diffusive target

Integrating, an equivalent expression for the above
target model is:

Xk = X0 + kV0 +

kX

j=1

(k − j + 1) Aj ,

= X0 + k V0 + Wk .

(29)

We do have wk a gaussian noise with variance
k(k+1)(2k+1)

6 σ2
a. We can then follow the same way as for

the previous model, and thus we have a few modifications
for ΣCOM and thenΨ. Errors are now heteroscedastic,
and then the changes are:

dj = j(j+1)(2j+1)
6

,

Q̃1(l, N) =
PN

j=0,j 6=l d2
j (4N + 2 − 6j)2 ,

Q̃2(l, N) = − 6
δ

hPN
j=0,j 6=l d2

j (4N + 2 − 6j)(1 − 2j
N

)
i

,

Q̃3(l, N) = 36
δ2

hPN
j=0,j 6=l d2

j(1 − 2j
N

)2
i

,

˜eD(l, N, δ) = Extra-diag terms equivalent tõQ1(l, N)
(30)

The functionalΨ becomes:

Ψ =

»

(N+1)(N+2)−2(2N+1−6l+ 6l2

N
)

–

“
‖el‖2−‖fal‖2

”

2σa ‖el−fal‖·
sh

Q̃1(l,N)+2lδQ̃2(l,N)+l2δ2Q̃3(l,N)+ẽD(l,N,δ)

i

(31)
There is a fundamenatl difference between this expression
and the previous one. The greaterN is, the smallerΨ

begins. In fact,Ψ is equivalent to 1
σaN3 . And then, ifN is

great, the probability of correct association becomes close
to 0.5.

F. An extension to radar measurements

Up to now, we assumed that (Cartesian)εx and εy
measurement errors were independent. Actually, this is not
true for an important context like the radar one. Actually,
the aim of an active localization device is to estimate the
range (sayr) and bearing (sayθ) of a target. It is also quite
reasonable to assume that range and bearing measurements
are uncorrelated. However, even under this assumption,εx
andεy are correlated [3]. Thus the(2× 2) I matrix must
be replaced by theA matrix [3]:

A=

„
r2σ2

θ sin2(θ) + σ2
r cos2(θ) (σ2

r − r2σ2
θ) sin(θ) cos(θ)

(σ2
r − r2σ2

θ) sin(θ) cos(θ) r2σ2
θ cos2(θ) + σ2

r sin2(θ)

«

(32)
wherer and θ are the range and bearing of the target,

while σ2
r and σ2

θ are corresponding variances. Note, that
no bias is considered since it is assumed that a preliminary
debiaising step has been applied at the measurement level
[3]. Since theΣcom matrix plays a fundamental role in our
calculation, we have to modify it accordingly. The matrix
Σcom then becomes block-diagonal, i.e.:

Σcom = block-diag

„
A, · · · , A,

„
0 0
0 0

«
, A, · · · , A

«
.

(33)
Quite similarly to the uncorrelated measurements case,

we obtain:

CΣcomC =
1

(N + 1)2(N + 2)2

„
Q1(l, N)A Q2(l, N)A
Q2(l, N)A Q3(l, N)A

«
.

(34)
So, the only change is that‖el − fal‖2 is replaced by

(el − fal)
T
A(el − fal). The numerator is left unchanged

since it does not involveΣcom.

IV. CLOSED-FORM APPROXIMATIONS OF THE

PROBABILITY OF CORRECT ASSOCIATION

For the sake of simplicity, the error measurement com-
ponentsε̃x,l and ε̃y,l will be simply denoted asx and
y. We have now to deal with convenient approximations
of the association cost difference∆f,c

∆
= Cfa − Cca. We

restrict us to a single outlier measurement. At this point,
it is worth recalling that it isconditionallydistributed as
a normal density (see eq. 15):

N
[
fa

T
l Mfal − (el)

TMel, 4(el − fal)
T Φ(el − fal)

]

(35)
This section will be divided in three subsections corre-
sponding to the main steps of the development. We will
now turn toward the results of section III-C.

A. Approximating the normal density by a sum of indicator
functions

A first step will consist in approximating
L (∆f,c| ε̃l = el) by a sum of n indicator functions.
Thus considering a ”3σ” support of this approximation



centered on the meanm of this normal density, i.e.
[m − 3σ, m + 3σ] leads to:

L (∆f,c| ε̃l = el) ≃
n∑

i=1

γi

6 i
nden(x, y)

ϕi(x, y) ,

where:

ϕi(x, y)
∆
= 1∆f,c∈[bi

inf
(x,y) , bi

sup(x,y)] , el = (x, y)T .
(36)

This means that the supports of thesen indicator functions
vary from [−3 σ

n , 3 σ
n ], to [−3σ, 3σ], whose parameters are

defined by:

den(x, y) = 2

√
(el − fal)

T
Φ(el − fal) ,

= 2
√

βN [(x)2 + (y + λ)2 ] ,

bi
sup(x, y) = fa

TMfa − (el)
TM(el) +

3i

n
den ,

= αN (x2 + y2 − λ2) +
3i

n
den(x, y)

bi
inf(x, y) = fa

TMfa − (el)
TM(el) −

3i

n
den ,

= αN (x2 + y2 − λ2) − 3i

n
den(x, y) ,(37)

where the scalar parametersαN (l) andβN (l) are:

αN (l) = [
2(2N+1−6l+6 l2

N )

(N+1)(N+2) − 1] ,

βN (l) = Q1(l,N)+2lδQ2(l,N)+l2δ2Q3(l,N)
(N+1)2(N+2)2 .

For instance, forl = N , we have more simply (l = N ):

αN = N(1−N)
(N+1)(N+2) ≈ −1 ,

βN = 4N3+226N2−66N+4
(N+1)2(N+2)2 ≈ 4

N (N ≫ 1) .

The definition and meaning of theϕi functions are repre-
sented on fig. 3. With these definitions, we thus have the
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Figure 3. The approximation scheme: theϕi functions

following approximation:

P (∆f,c ≥ 0| ε̃l = el) =
nX

i=1

γi

"
bi
sup

2 3i
n

den
1bi

sup≥0 − bi
inf

2 3i
n

den
1bi

inf
≥0

#
=

nX

i=1

γi

2

“
1bi

sup(x,y)≥0 + 1bi
inf

(x,y)≥0

”

+ αN n

12
√

βN

(x2+y2−λ2)√
((x−λ)2+y2)

nX

i=1

γi

i

“
1bi

sup(x,y)≥0 − 1bi
inf

(x,y)≥0

”
.

The {γi} coefficients are obtained as the solution of an
optimization problem (see Appendix A). At least they must
satisfy to the following conditions:

n∑

i=1

γi = 1 ,

n∑

i=1

γi

6 i
nden

=
1

den
√

2π
e0 . (38)

We stress that these{γi} coefficients are considered as
fixed whatever the value of theel vector. So, integrating
over the possible values of theel vector, we obtain:

P (∆f,c ≥ 0) =

∫

R2

P (∆f,c ≥ 0| ε̃l = el) dx dy ,

=

n∑

i=1

γi

2
Ai +

αN√
βN

n

12

n∑

i=1

γi

i
Bi , (39)

where:

Ai =

Z

R2

N(0,1)(x, y)

»
1

f(x,y)≥− 6i
√

βN
n αN

+ 1
f(x,y)≥ 6i

√
βN

n αN

–
dxdy,

Bi =

Z

R2

N(0,1)(x, y)f(x, y)

»
1

f(x,y)≥− 6i
√

βN
n αN

− 1
f(x,y)≥ 6i

√
βN

n αN

–
dxdy ,

and:

f(x, y) = x2+y2−λ2√
x+(y+λ)2

.

(40)
For reasons which will clearly appear soon, it is worth to

rewrite theAi andBi integrals:

Bi =

Z

− 6i
√

βN
n αN

≤f(x,y)≤ 6i
√

βN
n αN

N(0,1)(x, y) f(x, y) dxdy ,

Ai =

Z

− 6i
√

βN
n αN

≤f(x,y)≤ 6i
√

βN
n αN

N(0,1)(x, y) dxdy; ,

+ 2

Z

f(x,y)≤−6i
√

βN
n αN

N(0,1)(x, y) dxdy .

(41)
So, now the problem we have to face is to calculate the

Bi integrals.

B. Approximating theBi integrals

It is clear that deriving a general closed-form expres-
sion for Bi (or Ai) is hopeless4. However, an accurate
closed-form approximation can be obtained thanks to the

4There does not exist a primitive function ofN(0,1)(x, y) f(x, y) and
the integral isimplicitely defined



following remark. When the scan numberN becomes
great, then the ratioρ =

√
βN

αN
is close to zero. Now the

numerator of thef function is zeroed on a circle (equation
x2 + y2 = λ2). This leads us to consider the following
parametrization of the(x, y)-plane.

∥∥ x = (−λ + ε) sin(θ) , y = (−λ + ε) cos(θ) . (42)

The functionf(x, y) is then changed in af(ε, θ) function
defined below (see Appendix B), which leads to the
following changes for the integral:

∣∣∣∣∣∣∣∣∣∣

f(ε, θ) = −ε(2λ−ε)√
4λ sin2(θ/2)(λ−ε)+ε2

moreover:

exp
(
−x2+y2

2

)
= exp

(
− (λ−ε)2

2

)
,

dxdy = |−λ + ε| dεdθ .

(43)

Now, since we are considering only the small values of the
f function (num.(f) = −ε(2λ−ε)), it is quite legitimate5

to restrict our analysis to small values ofε. More precisely,
we assumeε ≪ λ. Now, thesecondorder expansion of
the f(ε, θ) is:

f(ε, θ)
2
=

−ε

|sin(θ/2)| . (44)

Practically, this is rather important since the integration
domain which was previously implicitely defined is now
explicitely defined; i.e.:

{
−3i|sin(θ/2)|

√
βN

nαN
≤ ε ≤ 3i|sin(θ/2)|

√
βN

nαN
,

0 ≤ θ ≤ π .
(45)

The accuracy of this approximation illustrated by fig. 4. In
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Figure 4. The f(x, y) function and its approximation (real: dashed;
approximation: continuous)

5Actually, there are two roots to the equation num.f(ε) = 0, ε = 0
and ε = 2λ. However, both are represented by a unique transformation
(see eq. 43)

a second step, we consider a second order expansion of the
integrandF (ε, θ) (i.e. f(ε, θ)N (ε, θ) |J(ε, θ)|), yielding:

F (ε, θ)
2
= −λε

e−λ2/2

|sin(θ/2)| +
(1 − 2λ2)

2 |sin(θ/2)|e
−λ2/2 ε2 . (46)

Considering on the first hand the effect of changingε
into −ε for this 2-nd order expansion and the integration
domain on the second one, the effect of theε term is zero,
so that:

Bi = 1
2π

∫
θ

∫
ε

(1−2 λ2)
2|sin(θ/2)| e−

(λ)2

2 ε2dλdǫ

= (1−2λ2)
2π e−

(λ)2

2
β3

i

3

∫

θ

(sin(θ/2))
2
dθ ,

(47)

where βi = 3i
√

βN

nαN
. Thus, a very simple closed-form

approximation has been obtained:

αN√
βN

n

12

n∑

i

γi

i
Bi =

3(1 − 2λ2)e−λ2/2

32 n2

βN

α2
N

n∑

i

i2 γi .

(48)

C. Approximating theAi integrals

We have now to turn toward theAi. First, we remark
that:

1f(x,y)≤−βi
+ 1f(x,y)≤βi

=

1−βi≤f(x,y)≤βi
+ 2

(
1f(x,y)≤0 − 1−βi≤f(x,y)≤0

)
,

(49)
so that, we have:

Ai = 2

Z

R2

N (0, 1)(1f(x,y)≤0 − 1−βi≤f(x,y)≤0)dxdy

| {z }
Ai,1

,

+

Z

R2

N (0, 1)1−βi≤f(x,y)≤βi
dxdy

| {z }
Ai,2

.

We use the same change of variable (see eq. 43) as
previously. For theAi,1 integral the normal density is
integrated over the(ε, θ) domain [0, 2λ] × [0, 2π]; while
for the Ai,2 integral it is [0, βi |sin(θ/2)|] × [0, 2π]. We
thus have:

Ai,1 = 1
π

Z 2π

0

[e−(λ−ε)2/2]λ0 − [e−(λ−ε)2/2]2λ
λ dθ ,

+ 1
π

Z π

0

[e−(λ−ε)2/2]
βi|sin(θ/2)|
0 dθ ,

≃ 2 − e−λ2/2[2 + 2βi − (λ2−1)
4

β2
i ]

(50)

For theAi,2 integral, we proceed in the same way that
for Bi,i.e.:

Ai,2 = 1
2π

Z 2π

0

»
e−

(λ−βi|sin(θ/2)|)2

2 − e−
(λ+βi|sin(θ/2)|)2

2

–
dθ ,

≃ 2λe−λ2/2

π
βi .

(51)



Again, we have used the hypothesisβi ≪ 1 to obtain an
accurate expansion of theAi,2 integrandg(λ, β), i.e:

g(λ, β) = 2λβe−λ2/2 + o(β3) .

Gathering the above results, we have just obtained a closed
form approximation of theAi term:

Ai =
−2π + (2λ − 2π)βi + π

4
(λ2 − 1)β2

π
e−λ2/2 , (52)

D. The closed-form approximation ofP (∆f,c ≥ 0)

We are now in position to present the aim of this paper,
i.e. a closed-form approximation ofP (∆f,c ≥ 0):

P (∆f,c ≥ 0) = 1 + (a + b λ + c λ2)e−
λ2

2

with:
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a = −

0

B

@
1+

∑

i

γi

i

√
βN

αN

1
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A
+ 66π

32n2
βN
α2

N

∑

i

i2 γi

2π ,

b =

6
n

√
βN

αN

∑

i

i γi

2π ,

c = 15
16n2

βN

α2
N

∑

i

i2 γi .

(53)

This formula is quite simple and relevant. We can notice
also thatP (∆f,c ≥ 0) is independent of the kinematic
scenario parameters, since it involves only the ratioλ/σ
(denoted hereλ)., and the scan numberN (via αN andβN ).

E. The case of a randomλ
Up to now, it was assumed that the parameterλ was

deterministic. However, it is more realistic to model this
seducing measurement by a normal densityN (λ0, σ0). Let
∆̄f,c be the (extended) cost difference for thisλ modelling,
conditioning onλ, we then have:

P (∆̄f,c ≥ 0) = Eλ [P (∆f,c ≥ 0)|λ] ,
with:

P (∆f,c ≥ 0) = 1 + (a + bλ + cλ2)e−λ2/2 .

(54)

Performing straightforward calculations, we obtain:

P (∆̄f,c ≥ 0) = 1 + 1√
σ2
0+1

ˆ
a + bλ̄0 + c(λ̄2

0 + s2
0)
˜
e
− λ2

0
2(σ2

0+1) ,

where:

λ̄0 = 1
σ2
0+1

λ0 , s2
0 =

σ2
0

σ2
0+1

(55)

V. SIMULATION RESULTS

Once we get the main result (eq. 53) we have to test the
accuracy of our approximations. For doing that, we just
have to consider the variations of the two dimensioning
parameters (λ and N ). For the first one (λ), the number
of scans (N ) is a fixed value (N = 20 and N = 40).
Then, we compare the exact value ofP (∆f,c ≥ 0) and its

approximation as given by eq. 53, for increasing values
of theλ parameter. Note thatλ represents in fact the ratio
λ/σ where λ is the distance between the exact target
position and the position of the ”false” target, whileσ
is the observation noise standard deviation. The result is
displayed on fig. 5. We can see that our approximation

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Approximation for the probability of correct association, N=20(red), and N=40(blue)

Distance

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 a

ss
oc

ia
tio

n

Figure 5. The probability of correct association (dashed) and approxi-
mated (in red:N = 20, in blue N = 40), versusλ.

is quite good, in general, but is better as N increases.
This is not surprising, especially if we remind that our
approximations were based on the fact that the integration
boundsbi were small, meaning thatN was great. Thus,
it remains to analyze the effect of theN parameter. This
is shown in figure 6.
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Figure 6. The probability of correct association (exact: dashed) and
approximated (continuous) for various values ofλ: in blue λ = 1.5, in
red λ = 2., in greenλ = 2.5.

Results are restricted to fixed values ofλ, that is equal
to 1.5, 2 and 2.5 because they are the most interesting
values, representing the more common association prob-
lem. We can see that for a number of scan greater than
30, the approximation is very good. The difference is less
than0.05, which is quite satisfactory. Moreover, for greater



values ofN , exact values and approximations cannot be
distinguished.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Approximation for the probability of correct association in the random case
Sigma=1(−o−), S=3(−+−)

Mean of the Distance

P
ro

ba
bi

lit
y 

of
 c

or
re

ct
 a

ss
oc

ia
tio

n

Figure 7. The probability of correct association for a randomλ. Dashed:
deterministicλ, continuous: randomλ.

Finally, we present the results for a randomλ on fig.
7 (see subsection IV-E). The values ofP (∆̄f,c ≥ 0) are
plotted on they-axis, versus the mean value ofλ (λ0), for
two values of theσ0 parameters (1 and3). Not surprisingly,
the effect of this randomization is far to be negligible.

VI. CONCLUSION

Deriving accurate closed-form approximations of the
probability of correct association is of fundamental im-
portance for understanding the behavior of data associ-
ation algorithms. However, though numerous association
algorithms are available, performance analysis is rarely
considered from an analytical point of view. Actually, this
is not too surprising when we consider the difficulties we
have to face even in the simplistic framework of linear
regression.
So, the main contribution of this paper is to show that
such derivations are possible. This has been achieved via
elementary though rigourous derivations, developed in a
unique framework. Multiple extensions and applications
render it quite attractive.

VII. A PPENDIX A

This appendix deals with the calculation of the coeffi-
cientsγi for the least square criterion. Denotingϕi (i =

1, · · · , n) the functions defined byϕi
∆
= n

6i den
1[bi

inf
,bi

sup]
,

the coefficientsγi are the solutions of the following
optimization problem:

min
γi

‖g −
n∑

i=1

γiϕi‖2
2 , (56)

whereg is the normal density given by eq. 15, and‖−‖2

is theL2 norm. It is the known that theγi are the solutions

of the following linear system:
8
><
>:

γ1‖ϕ1‖2
2 + γ2〈ϕ2, ϕ1〉 + · · · + γn〈ϕn, ϕ1〉 = 〈g, ϕ1〉 ,

...
γ1〈ϕ1, ϕn〉 + γ2〈ϕ2, ϕn〉 + · · · + γn‖ϕn‖2

2 = 〈g, ϕn〉 .
(57)

The norms‖ϕi‖2
2, as well as the scalar products〈ϕi, ϕj〉

are straightforwardly calculated , yielding:

〈ϕi, ϕj〉 = n
6 inf(i,j)

1
den

.

and solving the linear system:
n∑

i

γi = 〈g,1[b1
inf

,b1sup]
〉

γi = i(i − 1)〈g, ϕi−1 − ϕi〉 − i(i + 1)〈g, ϕi − ϕi+1〉 .
(58)

VIII. A PPENDIX B

The aim of this appendix is to provide a ”geometric”
presentation of eq. 43. We have to consider the functional:

f(e) = ‖e‖2−‖Λ‖2

‖e−Λ‖ .

with the following parametrization:
e = (1 + ε) R̃Λ , ε ∈ R .

(59)

In eq. 59,R̃ is an isometry. We can restrict to positive
isometry, so that we can factorizẽR as:

R̃ = RT
ϕRθRϕ . (60)

Then, the numerator off(e) is simply (2ε + ε2)‖Λ‖2,
while for the denominator we have:

‖e − Λ‖2 = ‖(R̃ − Id)Λ‖2
,

+ ε〈(R̃ − Id), R̃Λ〉 + ε2 ‖Λ‖2 .

‖(R̃ − Id)Λ‖2
= ‖(Rθ/2 −R−θ/2)| {z }

Mθ/2

RϕΛ‖2 ,

= 4λ2(sin θ/2)2(sin ϕ)2 ,

〈(R̃ − Id), R̃Λ〉 = 〈Mθ/2(RϕΛ),Rθ/2(RϕΛ)〉 ,
= −4λ2(sin θ/2)2(sin ϕ)2 .

(61)
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