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Abstract—This paper is concerned with performance pre- we derive this approximation is detailed. It is based
diction of multiple target tracking system. Effects of misasso- ypon an approximation of the normal density by sums of
ciation are considered in a simple (linear) framework so asd  jdicator functions and statistical considerations. Thelfi

provide closed-form expressions of the probability of corect Iti imole cl d-f imati h
association. In this paper, we focus on the development of resultis a very simple closed-torm approximation, whose

explicit approximations of this probability for a unique false accuracy is testimonied by Section 5 (simulation results).
measurements. Rigorous calculations allow us to determine Note, however, that this result is limited to a single false
the dimensioning parameters. association within the whole batch period. It will be shown
that the results of Section 3 allow us to consider the general
case study. This will be the aim of the companion paper

A fundamental problem in multi-target tracking is tq(i.e. Part 2).
evaluate the performance of the association algorithms.
However, it is quite obvious that tracking and association

are completely entangled in multi-target tracking. In this A target is moving with a rectilinear and uniform mo-

context, a key performance measure is the probabil n. Noisy measurements consisting of Cartesian position

- e represented by the points:
of correct association. Generally, track accuracy has P y P

|. INTRODUCTION

Il. PROBLEM FORMULATION

been considered without consideration of the association?, = (i, 41) , P. = (&2,42),---, Pn = (En,9n5) , (1)
problem. A remarkable exception is the work of K.C. ) )
Chang, C.Y. Chong and S. Mori [4], [6]. at time periodsty, to, - - ,tn, Which are called $cans.

Under the correct association hypothesis, the position mea
) ) ) ) surements are the exact Cartesian positiBps: (z;, yi),
However, this work is essentially oriented towardorrupted by a sequence of independent and identically
a modelling of misassociations via the effect ofiormally distributed noises (denoteg,, <,,), i.e.:

permutations. Here, we focus on the effect of the .
"contamination” of a target track due to extraneous Py = (T3, §i) = (i + €ay, yi +2,) - @)
measurements. In fact, a "contamination” results in . - .
) ! hen a target isufficiently isolated from others, there
change of estimates of the track parameters, which wou o - .
X - ) . . S no ambiguity about the measurement origin. It is not
render misassociations more likely. It is certain that on e
) . . . - ue any more if it happens that a second target comes
measurements situated in the immediate vicinity of the . S X . X
. 0 stand in the vicinity of the first target. In this case, it
target track would have a severe effect. This the case

. Secomes possible to make a mistake about the origin of
dense target environment or (e.g.) decoys.

an observation by associating it to the wrong target, thus

carrupting target trajectory estimation. But the quest®n

Here, our analysis is devoted to multiscan associati?n ) ) . L
) ) S 0, give a more precise meaning to the term "sufficiently
analysis. For this part, the target motion is assumed

L . . isolated”.
to be deterministic, while we are concerned with
batch performance. In this setup, a linear estimation
framework is a simple but efficient way to perform -. s

caculations. This paper is organized as follows. In..* "~

Section2 the association scenario is presented. We have , . = f“ ik
then to calculate the association costs under the two ™ A
hypotheses (correct and false association). This is the 5 *
object of Section 3. The major result of this section is [

the calculation of a closed-form of these association costs

The true problem is now to derive from this result an
accurate closed-form approximation of the probability of P oo
correct association. This is precisely the aim of Section
4, which plays the central role in this paper. The way Figure 1. The association scenario



Thus, the aim of this article is to give a closed-formThe vector of the residuas 2 Z — 7 is given by:
expression for the probability of correct association of f— M7 ®)
measurements to a target track, as a function of the number ’

of scans and the distance of the outlier observations. With M =1 —"H , andI the identity matrix. It is easy

P ; ; 1o check thatM is a projection matrix (i.eM” = M
order to simplify the scenario, we consider that the outln%aﬁ)nd M2 = M). We also recall the following classical

measuremenk is located close to the true target positiofyantities. which will be used subsequently [1]:
P, = (z,) at time periodt;, with a distance\!. The

general problem setting and definitions are depicted in MX =0, and:é = M¢. 9
fig. 1. Let us denoté; = t;1 — t;, the inter-measurement
time, and: ) o -
- T B. Evaluation of the correct association probability
v = (vg,0y)"

Assume that the outlier measuremént; = (zy,yy)
the two components of the constant target velocity on tiée lowercasef stands for false association) is located at

Cartesian axis. In the deterministic case, the targetdrajéne time-period (1 <! < N, see fig. 1):

tory is then defined by the state vectar, y1, vz, vy). { Ty = xp,
I1l. PROBLEM ANALYSIS o= ome A
Under the correct associationa) hypothesis and de- The corrch assomanorl cd) 1S ther1 deflne~d by
the association of pointsq Py, -+, Py .-+, Pnop,

: A e
noting ; = 41 + d2 + - - - + d;, the position measurements . , ,
P, are represented by the following equafion whereas the wrong associatiorfa)( is defined by

- {pla"'7Pf,la"'7PN}
1 Exq
h I 02 - €1 The vectors of residuals ag&, = Zc, — Ze, under
72 L 7l yi ‘2”2 the correct association hypothesis)(and ér, = Zp, —
v = . ve | T vz (3)  Z under the false asssociation hypothe&i3. (They are
: : : v : deduced from a linear regression, leading to the following
FN Ir TnN-1l2 y Eon definition of the costs of correct association (dendaigd
_/_/ x . A .
N e B Eyn and false association (denotég) :
Za Co = (Zea—Zea)" (Zea— Zea) (10)
_ ZT aqz
With these definitions and under the correct associatiorotyp = faMéa.
esis, the measurement model simply stands as follows: In the same way, we have also:
an =X ﬁ + éca . (4) Cfa = éfz M éfa . (11)

Let us define nowA . the difference between the correct
and wrong costs, i.e.:

A. The regression model [2]

. . . . Af,c é Cfa - Cca . (12)
Consider the following linear regression model: 3 o _
Then, the probability of correct association is defined by

Z=Xxp+e, () the probability thatA ;. > 0. The aim of this article is

where Z are the dataX’ are the regressors and is to give closed-form expressions for this probability
the vector of parameters, to be estimated. Generally, the-€t P€€com the vector of components, that vectats

estimation of3 is made via the quadratic loss function; and &. have in common, and defing and fa; as the

complementary vectors, so that:

~ T ~
£2(ﬁ) = (Z - X ﬁ) (Z - X B) = ||Z - X B”2 . (6) é<:a1 = é<:om +él 3 éfa = écom +fal . (13)
If the matrix X7 X is non-singular, therC(3) is mini- With these notations, the difference between the correct
mum for the unique valu@ of 8 such that: and wrong costg\ . can be written:
B=xTx)'xT 7. @) Ase. = faf Mfa, — (&) M(&), (14)
~ T ~
From the estimatiom of 3, let Z be the estimator of the —2 (& —far) M(Eeom) -
meanX 3 of the random vectof defined by: Since the components of the vec&y,, are normally
~ distributed and supposed independent, this vector is
Z o= HZ, normal €com ~ N (O,Xwm) ), and similarly for g
with: E ~N(0,5))
H é X(XTX)*l XT ) l 5 .

1For the sake of brevity, we assume that measurements areagso Assummg_ that the vectar, is setto Eﬂxed Va!ueel’ the
(see [5]) law of the difference of cost&(Ay .| & = e;) is normal
2] identity matrix with characteristics:



where the);, Q)2 and@3 polynomials have the following

L(Afcl&r=e)= expression:
N |fa] Mfa; — (e))" Mey, 4(e; — fay)T®(e; — fal)} . [Qi(LN) = 4N® — 50N + N(481 — 18) + (24 — 361) + 4 .
(15) ILN) = —8[N?2 —5N -2 31
) - 3 - + 4l 1 + ~ N
where: @ 2 ME M7, Integrating this conditional QL) L ( ~)]
density w.r.t. the Gaussian vectdy, yields: Qs(L,N) = B [E—1+2(3+21-2b)] .

P(As.(1) > 0) = Es, |erfc (er)" Me; — fai M fa; Gathering the numerator and denominator closed forms,
frelt) = €l 2,/(e1 — fa)T®(e; — far) we have just obtained a closed form expressiondfar
(16 2
v [ovtvevaseni-s 8] e
Considering eq. 16, it is not surprising that it is the () = 2[Q1 (L, N)+216Q2 (1, N) +1262Q5 (1,N)] ( flec=faul ) ’
functional ¥ (e;):

N2 lley 12 —1Ifa; 1
o< 3 > e \1/2 ( I ZHL 7f|a |l|| , IV great,
2 (N3-3IN2+3I2N) 1=ty

T T
(er)" Me; — faj M fa; 17) (24)

2 —fa))Td(e; — fa;) |
us e 2 ConS|der|ng eq. 24 (last row) we can notlce that the
probability of correct association. So, the aim of the nextare not very important. Actually, it is easily seen that

\I’(el) =

subsection is to provide a simpler form @f(e;). : (N373l]<Iv22+3l2N)1/2 is varying bet\Neen\QC and \4f asl
C. A closed-form for tha(e;) functional varies betweefi and N. Now, the erfc function is quite flat

The first step consists in calculating a closed form fdPr large values ofV, which means thaP (A c(e:) > 0)
the ¥ (e;) numerator. Considering the special fofm$the is almost independent of the value lof
vectorse; andfa;, only a closed form expression of theThis closed-form of¥(e;) is instrumental for deriving a
Mllé 2 x 2 block matrix is required. Routine calculations|osed-form approximation oP(Aj. > 0).
yie

D. Multiple false associations

M ! 2N 41614 5)) The previous calculati be rather easily extended
1= 2, e previous calculations can be rather eaS| y ex en e
(N+1)(N+2) (N+ 1N +2) (18) to multiple false associations. LetAx =
so that: the vector made by indiceg, of the (pos&b’ie) false
' associations. A closed-form expression of the numerator
. - 2(2N+1—6l+%> of eq. 17 is:
(e))" Me; —fay Mfay = |1 - x|

ek Mex — FAT MFA =
X (ledll® = lIfau]|?)
(19)

K K 617
In the second step, th&(e;) denominator is considered. %™ Z 1(hmiry — 22N +1 -3l — 3l + &)
First, it is worth recalling the form of thé@ matrix: == (N +1)(N +2)

@ == (I - H)Ecom(l - HT) bl
— Seom — SemHT = HEom +HSemHT , (20) (Cerney) = . faur))

®q

K K
and noticing that the x 2 block matrix®, (1) is zero. = Z (k, K’ ((elmel’ )= <fak7fak’>) :
Thus, we can restrict to the x 2 block matrix of the k=1k'=1
HYcom™ T matrix. Straightforward calculations yield:

(N + 1)2(N + 2)2 HzcomHT = Xczcoch XT )

(25)
Similarly, for the denominatoDy . of Wga,, we have:

with: Dy, = 2\/2211 S 0k, ) (er, —fay, e, —fai,)
C:<(4N+2)12 (4N+2—26(]f:1—1))[2 ) with:
-y o =S -2y (N + 1)2(N +2)20(l, i) =

..(21)
Routine calculations then yield a simple expression fo[Q; (FAx, N) + (I + lj/) Q3(FAk, N) + lilw Q3(FAk, N)|
the 4 x 4 matrix CXomC:

CTeomCT = 1 ( Qi(l,N)I>  Q2(l,N)I> ) ot el ) DAY (26)
o WFD?INE2” \ Q2 N)I2 Qs(l, N)I2 (272) The polynomsQ?, Q5 andQ; stand as follows:
from which, we deduce finally: Qi(FAk,N) = ZLLI&FAK (4N + 2 — 61)2

Py = m [Q1(1, N) +20 6Q2(1,N) + 1> 6°Qs(I,N)] Iz,
(23)  Q3(FAk,N)

_g [ZIJ\LO,ZQFAK(ZIN +2-60)(1 - %)] )

3These two vectors are made of zeros except doand y I-th y
components Q3(FAk, N)

8 [ZNogm (1 - 307 -



Finally, we have obtained the following closed-form obegins. In fact¥ is equivalent to%lv. And then, if N is

W great, the probability of correct association becomeseclos
K K to 0.5.
S an(k k) ((elk,el;c> - (fak,fak/))
Upp, = ——H=1 . (279 F An extension to radar measurements
L& Up to now, we assumed that (Cartesian) and ¢
, - — fap ' . Ey.
2,2 / Ok, i) (ev, — fax, er,, —faw) measurement errors were independent. Actually, this'is not
F=1RI=1 true for an important context like the radar one. Actually,
Again, this expression is remarkably simple. the aim of an active localization device is to estimate the
o range (say’) and bearing (sa§) of a target. It is also quite
E. Diffusive Target reasonable to assume that range and bearing measurements

Up to now, the target modelling was deterministic (sed/€ uncorrelated. However, even under this assumption,
eq. 3). However, this assumption is not realistic, esplgciafnde, are correlated [3]. Thus th@ x 2) I matrix must
if the duration of the scenario is great. Actually, denotinge replaced by thel matrix [3]:

X}, the 2-dimensional vector made of target position at 9 9 . o 5 o s o o .
time periodk, andV;, its velocity vector. The following A:<T 7; sin (2) + o7 cos”(0) (gr2_ r gg)sm(g) (}03(9))
modelling (discrete Orenstein-Uhlenbeck) is considered: \ (o7 —r703)sin(6) cos(#)  r°og cos™(0) + o7 sin”(6)

Xy = Xp1+ Vi
Ve = Vio1+4 Ag

wherer and § are the range and bearing of the target,
while o2 and ag are corresponding variances. Note, that
_ ) _ ) _ e no bias is considered since it is assumed that a preliminary
where Ay is a white noise with variance;. The diffusive debiaising step has been applied at the measurement level

target scenario is depicted in 2. However, notice thgg]. Since theX.,, matrix plays a fundamental role in our
opposite to (Kalman) filtering our aim is restricted talculation, we have to modify it accordingly. The matrix
the effect analysis of this target trajectory randomizatio~com then becomes block-diagonal, i.e.:

within the common regression framework. 0 0
Z:C‘Jm:bl()Ck_diag<‘A7"' 7A7< 0 0 )7A7"' 7A) .

measurement noise (33

Quite similarly to the uncorrelated measurements case,
we obtain:

- 1 QLA Qa(l, M)A
CeonC = NN T 22 <Q;(Z,N)A Qs N)A 234‘)

So, the only change is thafe; — fa;||* is replaced by
(e; — fal)TA(el — fa;). The numerator is left unchanged

(28)

target diffusion

Figure 2. The scenario for a diffusive target

Integrating, an equivalent expression for the abowce it does not iNvolv&.com.
target model is:
& IV. CLOSED-FORM APPROXIMATIONS OF THE

Xy = Xo+kVo+ (k—j+1)4;, (29) PROBABILITY OF CORRECT ASSOCIATION

j=1 . ..
= Xo+kVp +ka . For the sake of simplicity, the error measurement com-

We do have w, a gaussian noise with variancd?©nentséz, and &, will be simply denoted as and
k © . . . .
. We have now to deal with convenient approximations
k(k+1)@k+1) 52 \We can then follow the same way as fof bp

6 . [ g .. . A
the previous model, and thus we have a few modificatioRS the association cost differencg; . = Cr. — Cca- We
for Xcoa and thenW. Errors are now heteroscedasticrestrict us to a single outlier measurement. At this point,

and then the changes are: it is worth recalling that it isconditionally distributed as
d = dUEDEH) a normal density (see eq. 15):
QiLN) = Tl d(4N +2-6))%,
~ Te . ; N {faTMfal — (e TMel,4 e; — fa Te e; — fa
QN) = [T BN 261 - )], e (e Men e =t e =Rl
A : N j . . . .. . .
QLN = [Zj:O,j;él d;(1 - %)2} - This section will be divided in three subsections corre-
eD(l,N,§) = Extra-diag terms equivalent Q. (, N) sponding to the main steps of the development. We will
. (30)  now turn toward the results of section I1I-C.
The functional¥ becomes:
v - [<N+1)<N+2)72<2N+176l+%)] (lleLHszfa.HZ) A. Approximating the normal density by a sum of indicator
- [ . ~ ~ functions
204 |le;—fay]|- Ql(I,N)+2I6Q2(I,N)+I262Q3(I,N)+eD(I,N,6)}
(31) A first step will consist in approximating

There is a fundamenatl difference between this expressibiiA; .| & = e;) by a sum of n indicator functions.
and the previous one. The great®r is, the smallerd Thus considering a3o” support of this approximation



centered on the meam of this normal density, i.e. following approximation:

[m — 30, m + 30] leads to: (Af > 0|8 =) =

i )

Zv by bor 4|

i >0 — ; bt >0 —
Szden blp=> %den inf =

L(Agcl&r=e) Z ei(z,y)

den (x,y)

where: " v
_ A _ B T Z% (1bz‘up<z,y>zo + 1b§nf<x,y)zo)
pi(z,y) = 1Af,ce[b;nf(m,y) b (zy)] 0 €= (z,y)" . i=1
(36) N
This means that the supports of thesmdicator functions | _axy n  _@2+y2-2?) Zﬂ ( b (o0 — Ly >O>
vary from[—3 2,3 2], to [-30, 30], whose parameters are '2VAy V(-7 +y?) Y i)
defined by:

The {~;} coefficients are obtained as the solution of an
optimization problem (see Appendix A). At least they must
den(z,y) = 2\/(el — fal)Tfl)(el —fa;), satisfy to the following conditions:

= 2By (@2 + (s + M2 ], Sy =1

b;up(xay) = faTMfa — (el)TM(el) =+ _l den , n - 1
5 “Tden 7\/_60 : (38)
= an(@®+y* =A%)+ p den(z,y) —; Dyaen denv/2m
We stress that thesgy;} coefficients are considered as
b(ry) = falMfa— (e)T M(e) — 3i den . fixed whatever the value of the; vector. So, integrating

over the possible values of the vector, we obtain:

3%
— 2 2 42y _ 9t
= N(CU +y A ) n den(ﬂﬁay) 7(37) P(Af,c > 0) = / P(Af,c > O|él — el) dxdy,
R2
where the scalar parameters (1) and Gy (1) are: i AN N =i
= A — B; y 39
2 Z t U B (9
an(l) = [2(2N+1—6l+6%) Y =1
N = TN (N+2) ' where:
LN)+218Q2 (I, N)+1252Qs (I,N
O () = H(fo)( (N)++2)2 LA A 7/ N (@) [1f(ac MESLVEI M n{;] drdy,

For instance, foi = N, we have more simplyl (= N): _
B; = /Mo y(@,y) f(z,y) lf(zyy)ziﬁim - 1f(z > SR dzdy ,

_ _NO-N) 4 and: o o
AN = WD YT o g) = 2t
T,Y) = —m——— .
Vet (y+r)2
By = ANP4226N°_66N+4 o, 4 (N> 1). (40)
(N+DZ(N+2)2 TN For reasons which will clearly appear soon, it is worth to

o ] ] rewrite the A; and B; integrals:
The definition and meaning of the; functions are repre-
sented on fig. 3. With these definitions, we thus have the;.
& - [ 75 <yt Mo (E9) (o) oy,

noN

an(+y? —2?)

=
|

N , dxdy;,
/—Giﬁfv_N<f<z,y><—G%‘fV_N onle) dudy

+ 2 P, Ny (z,y) dedy .
(41)
So, now the problem we have to face is to calculate the
B; integrals.

B. Approximating theB; integrals

It is clear that deriving a general closed-form expres-
sion for B; (or A;) is hopeless However, an accurate
closed-form approximation can be obtained thanks to the

Figure 3. The approximation scheme: thg functions
4There does not exist a primitive function M(o,1) (z,y) f(x,y) and
the integral isimplicitely defined



following remark. When the scan numbé&f becomes a second step, we consider a second order expansion of the
great, then the ratip = \%V is close to zero. Now the integrandF(e, 0) (i.e. f(c,0)N (¢, 0) |J (e, 0)|), yielding:
numerator of thef function is zeroed on a circle (equation N2 )
a? +y? = A?). This leads us to consider the following p(- g) 2 ). _° (1 =2X) sz
parametrization of théz, y)-plane. |sin(6/2)] = 2|sin(6/2)|
Considering on the first hand the effect of changing

into —e for this 2-nd order expansion and the integration
domain on the second one, the effect of ¢term is zero,

- (46)

| 2= (=A+e) sin(d) ,y = (—A+¢) cos(d) . (42)

The functionf(z, y) is then changed in #(e, 6) function

defined below (see Appendix B), which leads to the© that:
following changes for the integral: (1=2)%) _wz
g g g B = 271' fG fa 2sin(0/2)] 9/2)| 2 ed\de
—e(2X—¢) (47)
160 = e - a2y -G / (sin(0/2))* df
moreover: (43) 2 3 /o
exp (— ””2'”/2) = exp (——(Afs)z) 3i F
2 2 ’ where ; WOy - Thus, a very simple closed-form
drdy = |-\ +¢| dedf . apprOX|mat|on has been obtained
Now, since we are considering only the small values of the
f function (num(f) = —e(2A—¢)), itis quite legitimate ON_ MY 3(1=2XA2)e /2 gy &
to restrict our analysis to small values=ofMore precisely, /3 122 32 12 _22
we assume < A. Now, thesecondorder expansion of (48)
the f (e, 0) is:

2 —€ C. Approximating thed; integrals
f(e,0) = W : (44) )
sin(6/2) We have now to turn toward thd,. First, we remark

Practically, this is rather important since the integnatiothat:
domain which was previously implicitely defined is now

explicitely defined; i.e.: Liey<—p + Li@a<s =

—3i|sin(0/2)|vVBN <e< 3ilsin(0/2)|VBx 1 i<ty +2 (1f(z »<0 — 1 gi<f(a, y)<03 )

nay € nay ’ (45) (49)

0<6<mr. so that, we have:

The accuracy of this approximation illustrated by fig. 4. InA; = 2 [ N(0,1)(1f(,y)<0 — 1-p,<f(a,y)<0)dzdy ,
R2
Approximation for the integration of f Aj 1
. Real area (Dashed), and approximated area (Continuous)
+ [ NOD g, <f@y)<p dody -

R2

Aj2

We use the same change of variable (see eq. 43) as
previously. For theA;; integral the normal density is
integrated over théz, #) domain[0,2)\] x [0, 2x]; while

for the A4, » integral it is [0, 5; |sin(6/2)]] x [0, 27]. We

thus have:
L [T o2 e —(A—e)?/2122
Ai,1 = ;/ [6 ]0 - [e ]A de?
0

i 2 ;|sin

+%/ [~ O /2)Bilsin(0/2)l gg (50)
0

- ~ 2 e N2 408 - XL

For the A; 5 integral, we proceed in the same way that

Figure 4. The f(z,y) function and its approximation (real: dashed; for Bi,i.€.:
approximation: continuous)

Aig = 5 —e 2 ag ,

2 { _ (A =Bilsin(9/2)))? (A+8;sin(0/2))?
e 2

SActually, there are two roots to the equation ngifa) = 0, € = 0

ande = 2)\. However, both are represented by a unique transformation ~ 22 3.

(see eq. 43) T (51)



Again, we have used the hypothegis< 1 to obtain an approximation as given by eq. 53, for increasing values

accurate expansion of thé; » integrandg(\, 3), i.e:

g\ B) = 2872 4+ o(6) .

of the A parameter. Note that represents in fact the ratio
A/o where X is the distance between the exact target
position and the position of the "false” target, white

Gathering the above results, we have just obtained a closgdhe observation noise standard deviation. The result is

form approximation of thed; term:

displayed on fig. 5. We can see that our approximation

=2+ (2A —2m)Bi + T(A2 - 1)3* _
A, = ( )ﬂ 4( )56A2/27 (52) . ) I
T . ppm)‘ﬂmaﬂanforlhep:(::jlgj'cenecta/ssuc?uon,N—‘ZDred.and N—A? blue)
D. The closed-form approximation &f(A¢ . > 0) os
We are now in position to present the aim of this paper,
i.e. a closed-form approximation d¥(Ay . > 0):
2
P(Ape>0)=1+4(a+bA+cA2)e >
with:
Yi BN < B .2 .
i ko m
_ _ 7 3 :
a = 2 ) ° ! z pistanc ‘ ° °
SN N iy (53)
7 Figure 5. The probability of correct association (dashed) and approx
b = 2 ) mated (in red:N = 20, in blue N = 40), versusA\.
c = £ B—NZz’Q ; is quite good, in general, but is better as N increases
16n2 a?v Vi - q : g ’ g ’ ) ! . .
i This is not surprising, especially if we remind that our

This formula is quite simple and relevant. We can notic&Proximations were based on the fact that the integration
also thatP(A;, > 0) is independent of the kinematicboundsb; were small, meaning tha¥V was great. Thus,

scenario parameters, since it involves only the ratie
(denoted herg)., and the scan numbé¥ (via ay andSy).

E. The case of a randorh

Up to now, it was assumed that the parametewas
deterministic. However, it is more realistic to model this
seducing measurement by a normal den&fif)g, o). Let

Ay . be the (extended) cost difference for thisnodelling,

conditioning on), we then have:

P(Aje>0) = Ex[P(Apc>0)[A],
with: , (54)
P(Afe>0) = 1+ (a+bA+erP)e /2.

Performing straightforward calculations, we obtain:

A2

P(Aje>0)=1 L bho + c(A} +s3)] e 23D
( fie =2 )— "F\/ﬁ[a-‘r 0+C(0+80)]€ 0 ,
where:
Ao = =\ s2 = o
0= 524170 ’ 0= 5241
(55)

V. SIMULATION RESULTS

it remains to analyze the effect of thé parameter. This
is shown in figure 6.

Approximation for the probability of correct association
Distance=1.5(blue), D=2(red) and D=2.5(green)
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Figure 6. The probability of correct association (exact: dashed) and
approximated (continuous) for various values)ofin blue A = 1.5, in
red A = 2., in green\ = 2.5.

Once we get the main result (eq. 53) we have to test theResults are restricted to fixed values)gfthat is equal
accuracy of our approximations. For doing that, we jusb 1.5, 2 and 2.5 because they are the most interesting
have to consider the variations of the two dimensioninglues, representing the more common association prob-
parameters X and N). For the first one X), the number lem. We can see that for a number of scan greater than

of scans {V) is a fixed value § = 20 and N = 40).

30, the approximation is very good. The difference is less

Then, we compare the exact value®fA; . > 0) and its than0.05, which is quite satisfactory. Moreover, for greater



values of N, exact values and approximations cannot b# the following linear system:

distinguished.
9 yllprllZ + 72{p2, 1) + -+ Amlom,01) = (g,01)
- Apprux\manun!mlhepmsblga:l\a\ti/]c(ﬂi;:vesci ciation in the random case . 9
Y1{@1,n) +72(P2, 0n) + - Fwmllenlly = <97s0&_27-)

The normqmng, as well as the scalar produgts;, ¢;)
are straightforwardly calculated , yielding:
— 1
<‘Pi790j> =5 in?(i.,j) den -
and solving the linear system:

, D =91 0)
i vi = i(i — 1)(g, pi—1 — i) —i(i + 1)(g, 0i — vit1) -
2 (58)
‘ ; ; ‘ ‘ ‘ VIIl. A PPENDIXB

The aim of this appendix is to provide a "geometric”
presentation of eq. 43. We have to consider the functional:

orrect associ

Probability of c
°
S

Figure 7. The probability of correct association for a randoxnDashed:

deterministic\, continuous: random. fle) = \\e‘\‘\Z:IIL/ﬁ\\z )
_ . with the following parametrization:  (59)
Finally, we present the results for a randowmon fig. e=(l+¢) RBA. ccR.

7 (see subsection IV-E). The values BfA; . > 0) are L _ _ N
plotted on they-axis, versus the mean value ®f()\q), for _In eg. 59,R is an isometry. W_e~can restrict to positive
two values of ther, parametersi(and3). Not surprisingly, isometry, so that we can factorize as:

the effect of this randomization is far to be negligible. B — RZJRe& . (60)
VI. CONCLUSION Then, the numerator of (e) is simply (2¢ + £2)||A||?,
while for the denominator we have:

Deriving accurate closed-form approximations of the AR B 7 1AL
probability of correct association is of fundamental im- le I ; Hg(fz I(i) gi/i) +e? Al
portance for understanding the behavior of data associ- S\ c ’
ation algorithms. However, though numerous association”(fz_ AP = 1Rz — R_g/2) RoAl?,
algorithms are available, performance analysis is rarely N 61)
considered from an analytical point of view. Actually, this ) Moz 0
is not too surprising when we consider the difficulties we = 4X(sin6/2)"(sing)",
have to face even in the simplistic framework of linear (R—1d),RA) = (Moa(RoA), Rasa(RoA)) ,
regression. o _ . — aN*(sin6/2)%(sin 0)? .
So, the main contribution of this paper is to show that
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