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Abstract—This paper presents a methodology for the eval-
uation of a path planning algorithm based on a learning
approach. Here this evaluation procedure is applied for the
problem of optimizing the navigation of a mobile robot in a
known environment. A metric map composed of landmarks
representing natural elements is given to define the best trajectory
which permits to guarantee a localization performance during its
execution. The vehicle is equipped with a sensor which enables
it to obtain range and bearing measurements from landmarks.
These measurements are matched with the map to estimate its
position. As the mobile state and the measurements are stochastic,
the optimal planning scheme considered in this paper deals
with Posterior Cramér-Rao Bound as a performance measure.
Because of the nature of the cost function, classical optimization
algorithms like Dynamic Programming are irrelevant. Therefore,
we propose to achieve the optimization step with the Cross
Entropy algorithm for optimization to generate trajectories from
a suitable parameterized probability density functions family.
Nevertheless, although the convergence of this algorithm can
be assessed with the analysis of the stationarity of its intrinsic
parameters, we are not able to quantify the level of convergence
around the optimal value. As a consequence, an external inves-
tigation can be applied from an alternative stochastic procedure
followed by an analysis via extreme value theory.
Keywords: planning, Cross Entropy, estimation, extreme
value analysis.

I. INTRODUCTION

This paper is in the continuation of the work introduced
in [1] dealing with the optimal path planning problem for an
autonomous agent. The considered agent is a mobile robot
system navigating in an environment with a provided metric
map. During navigation, the accurate determination of its
position and orientation with respect to a fixed reference
frame are of great importance. This global localization is
very often performed with noisy measurements obtained from
exteroceptive sensors. Several robot localization approaches
were proposed in the literature, depending on the nature
of the sensors (vision, laser, GPS...) and also on the noise
models. Most of them treated the uncertainties as random
phenomena and employed Bayesian estimation [10]. Others
considered errors as unknown but bounded and derived the
localization task as a set-membership estimation issue [12]. In
our case, only Bayesian localization techniques are considered,
but the different results introduced below can be applied to
set-membership localization. The main aim is to compute the
posterior density of the current robot pose conditioned on the

accumulated measurements. Depending on the assumptions
on the robot dynamic and observation models, different al-
gorithms can be used. Very often, when the systems are linear
or nearly linear with errors described by Gaussian probability
density function, Kalman filtering (KF) or Extended Kalman
filtering (EKF) [10] are valuable tools. For situations with
severe nonlinearity and multi-modal density, more suitable
methods such as particle filtering [10] can be used. For our
application, the robot collects measurements of its surround
environment and compares them with its known map to
increase its predicted state.
In Bayesian filtering, the main criterion for analyzing the per-
formance of a given filter is the Posterior Cramér-Rao bound
(PCRB). In [1], we used a function of this criterion to find
optimal trajectories based on the Cross-Entropy algorithm for
combinatorial optimization. The developed framework seemed
to give good results of convergence on first scenarios. A
difficulty with the Cross Entropy approach is to determine
whether the algorithm really converged toward an optimal
solution. In this paper, we try to study the convergence of the
planning design using an auxiliary random procedure based on
Markov Decision Process and extreme value theory [15]. This
external procedure enables us to obtain an approximation of
the true density of the objective functions over the admissible
paths (or configuration) space. The goal of extreme value
theory is to approximate the tail of this density in order to
estimate the endpoint which is the relevant statistic in the
context of stochastic optimization.
The paper is organized as follows. In section II we introduce
the robot dynamic model. The next section deals with the
localization algorithm and the Posterior Cramér-Rao Bound.
We make also its derivation for our problem and define the
objective function for the planning task. The admissible path
space for the planning problem is detailed in section IV. Then
we present the path algorithm based on the Cross-entropy
algorithm before an introduction of the extreme value theory
for the evaluation. Finally, we illustrate the reasoning with an
example and conclude.

II. THE ROBOT DYNAMIC MODEL

In this section the dynamic model used for the robot
localization is introduced.



A. Motion model

The state of the mobile robot is composed of its 2D
Cartesian position (rx, ry) and its orientation θ with respect
to a fixed reference frame R0 (see figure 1). At time tk, the
state vector is

pk = [rx
k ry

k θk]T . (1)

The state evolution is governed by the following nonlinear
controlled dynamic system

pk+1 = f(pk, uk, ek) =


 rx

k + vkdk cos(θk + δk)
ry
k + vkdk sin(θk + δk)

θk + δk


+ ek

(2)
where uk = [vk δk]T is the control input composed of the
velocity and the angular variation of the mobile at time tk.
dk = tk+1 − tk is the laps time between two consecutive
times. The process vector noise ek is supposed independent
and describes the uncertainty in the dynamic model. Here,
ek is a Gaussian process with zero mean and Qk covariance
matrix (ek ∼ N (0, Qk)). Moreover, we suppose that the initial
position error is also Gaussian with covariance matrix Q0.
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Figure 1. sensor model. A visible (red) and non visible (green) landmark.

B. Map Description and observation model

The a priori description of the environment provided to
the robot is a metric map. It is composed of a set of spa-
tially l located landmarks (mi)1≤i≤l with respective position
(xi, yi) ∈ R2. This map M represents particular features in
the environment extracted during a previous mapping stage.
Therefore, this map may suffer from some uncertainties. In
order to operate with such a map, the robot needs to use feature
extraction algorithms, supposing that structures corresponding
to the landmarks are present in the environment. Obviously,
the extraction procedure varies according to the sensor used
to collect measurements. For example, when vision systems
are employed Harris or SIFT image operators can be used. At
time tk, due to the sensor local field of view, a few landmarks
can be observed. We do not consider data association and non

detection problem for the moment. Let nk be the number of
visible landmarks with indexes Iv(pk), the measurement is a
stacked vector yk :

yk = [yk
i1 yk

i2 · · · yk
ink

]T (3)

The observation model is given by

yk = hk(pk,M) + Wk (4)

where the 2 × j-th 2 × j + 1-th elements of hk(pk,M) are
respectively the components√

(rx
k − xij )2 + (ry

k − yij )2 (5)

arctan(
yij − ry

k

xij − rx
k

) − θk (6)

corresponding to the range and relative bearings of the
landmarks from the robot pose. Wk represents the stacked
vector of range and bearing observed noise components. Its
covariance matrix Rk of size (2nk × 2nk) is block diagonal
with the jth block equal to the covariance matrix Ck =
diag[σ2

r,ij
, σ2

β,ij
] of each individual measurement.

III. BAYESIAN ESTIMATION AND THE POSTERIOR

CRAMÉR-RAO BOUND

Bayesian estimation and in particular Bayes filters address
the problem of estimating the state of a dynamic system from
sensor measurements. The aim is to estimate the posterior
distribution over the state-space conditioned on these observa-
tions. The main assumption is the Markovian properties, that
is the current measurement are conditionally independent of
past ones knowing the state.

A. recursive robot Localization

For the mobile robot with dynamic system specified by
equations 2 and 4, Bayes filters try to construct the probability
density function (pdf.)

p(p1:k|y1:k, u1:k−1). (7)

This can be done recursively using Bayes rules considering
the two following expressions :

p(pk+1|y1:k+1, u1:k) =
∫

p(pk+1|pk, uk)p(pk|y1:k, u1:k−1)dpk (8)

p(pk|y1:k, u1:k−1) =
p(yk|pk)p(pk|y1:k−1, u1:k−2)

p(yk|y1:k−1)
(9)

Depending on the properties of the system dynamic the appro-
priate Bayes filter can be used to approximate these density.
For instance, the robust Monte Carlo Localization algorithm
[11] is a particle filter formulation adapted for mobile robots.

B. The Posterior Cramér-Rao Bound

The main objective of the planning task introduced in the
next section is to design paths with good localization per-
formance. So, fundamental limits of estimation performance
depending on the system configuration must be defined. The
Posterior Cramér-Rao Bound is such a measure.



1) Definition: The Posterior Cramér-Rao Bound is a lower
bound for the second order moment for unbiased estimator x̂
of a random vector x from random measurements y. It is based
on the derivatives of the logarithm of the joint probability
density function of both random processes. For the filtering
case, if p̂k is an estimate of pk derived from the measurements
y1:k given the control input sequence u1:k−1, the PCRB can
be calculated recursively, [5]

P−1
k+1 = D22

k − D21
k (P−1

k + D11
k )−1D12

k (10)

where

D11
k = E{−∆pk

pk
log (p(pk+1|pk))} , (11)

D12
k = E{−∆pk+1

pk
log (p(pk+1|pk))} , (12)

D21
k = [D12

k ]T , (13)

D22
k = E{−∆pk+1

pk+1
log (p(pk+1|pk)} + (14)

E{−�pk+1
pk+1

log (p(yk+1|pk+1) }. (15)

where Pk verified 1 :

Cov(pk − p̂k) = E
[
(pk − p̂k)(pk − p̂k)T

] � Pk (16)

The densities p (pk+1|pk) and p(yk+1|pk+1) are respectively
computed from the dynamic and observation models. Those
relations are valid under the assumptions that the mentioned
second-order derivatives, expectations and matrix inverses
exist.

2) Application to our system: Given the trajectory for state
vector the PCRB history can be calculated as below. For
the robot system defined by equations 2 and 4, we need to
perform simulations to approximate the PCRB because some
expected expressions in 11 are analytically unsolvable due
to the nonlinearities of the dynamic systems equations. More
precisely, we have

D11
k = Epk

{[∇pk
fT (pk)

]
Q−1

k

[∇pk
fT (pk)

]T}
,(17)

D12
k = −Epk

{[∇pk
fT (pk)

]}
Q−1

k , (18)

D22
k = Q−1

k + Jy
k+1, (19)

Jy
k = Epk

{
∑

j∈Iv(pk)

H(pk, j)T C−1
k H(pk, j)} . (20)

where

∇pk
fT (pk) =


1 0 −vk sin(θk + δk)dk

0 1 vk cos(θk + δk)dk

0 0 1


 (21)

and

H(pk, j) =


 (rx

k−xj)√
dj

k

(ry
k−yj)√

dj
k

0
(ry

k−yj)

dj
k

−(rx
k−xj)

dj
k

−1


 (22)

where dj
k = (rx

k −xj)2 +(ry
k −yj)2. Given the input sequence

u1:K−1 K > 1, The approximations can then be obtained from

1A � B means A-B is positive semi-definite

crude Monte Carlo simulation. Let
{
pi
1:K

}
1≤i≤N

be N noisy
realizations of the same trajectory, we get ∀k ∈ {1; · · · ; K}:

D11
k ≈ 1

N

∑
i

[∇pk
fT (pi

k)
]
Q−1

k

[∇pk
fT (pi

k)
]T

(23)

D12
k ≈ 1

N

∑
i

[∇pk
fT (pi

k)
]
Q−1

k (24)

Jy
k ≈ 1

N

∑
i

∑
Iv(pi

k)

H(pi
k, j)T C−1

k H(pi
k, j) (25)

The recursion 10 can be initialized with P0 = Q0.
3) Criterion for path planning: Once the PCRB history

P0:K = {P0, · · · , PK} computed, we can deduce a criterion
for the robot localization performance along the predefined
path. Different functionals can be used. In this work, we
considered the determinant of the PCRB matrix which is
linked with the volume of the “smaller” error ellipse that can
be reached. We denote φ(u1:K−1) this measure :

φ(u1:K−1) = −
K∑

k=1

wk det(BT Pk(u1:K−1)B) (26)

where wk are weighting factors and B the projection matrix
of the state on the position subspace.
It is important to note that the computation of this criterion
depends on all the past of the trajectories. Nevertheless, we
can cite the works in [7] where the authors try to get rid of
the simulation stage by making local approximations.

IV. THE PATH PLANNING FORMULATION

In this section, we introduced the framework used to tackle
the path planning problem. The admissible paths or configu-
ration space is introduced, followed by the implementation of
the Cross Entropy algorithm for the optimization.

A. Configuration space

We formalize the problem as a sequence of decisions prob-
lem [4]. We suppose that the path is a sequence of displace-
ments with constant velocity and constant heading. First of
all, a grid with Ns points is defined over the map M. For
each point (x(i, j), y(i, j)) on that grid, we can associate
one index s = g(i, j) ∈ S = {1, · · · , Ns}, ∀(i, j) ∈
{1, · · · , Nx} × {1, · · · , Ny} where g is an obvious mapping.
We can then introduce an auxiliary state s which represents the
position index in S = {1, · · · , Ns} of the associated point on
the grid. An admissible path is composed of sequence of points
of that grid. The mobile orientation is also supposed to be
restricted to eight directions which correspond to eight actions
or decisions a ∈ A = {1, · · · , Na} (with Na = 8). Therefore
from each point of the grid, there are at most 8 reachable
neighbors. The actions are clockwise numbered from 1 (”go up
and right”) to 8 (”go up”). So a given trajectory defined by p1:k

is equivalent to the associated sequence s1:k = {s1, · · · , sk}
and a1:k−1 = {a1, · · · , ak−1}. In that way, a graph structure
G(S,A) can be used to describe our problem, where the
vertices and edges are respectively the states s and the actions
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Figure 2. Grid over the map and actions in state 13.

a. let qi and qf (or more generally the set Xf ) be the starting
and goal positions (the goal set). They are supposed to be
on the grid otherwise the nearest positions on the grid are
used. Figure 2 shows one example with 25 states. We can
notice that in state 13 only 7 actions guarantee to stay in the
free space, action 5 is not admissible. Moreover constraints
on the heading control are also taken into account to prevent
from particular motion behavior such that “bang-bang” effect.
We defined an authorized transition matrix δ(., .) [2] which
indicates the admissible actions at time k with respect to those
selected at time k − 1. For example, for π

4 bounded heading
controls, such a matrix is given by the following expression :

δ(ak, ak−1) =




1 2 3 4 5 6 7 8
1 1 1 0 0 0 0 0 1
2 1 1 1 0 0 0 0 0
3 0 1 1 1 0 0 0 0
4 0 0 1 1 1 0 0 0
5 0 0 0 1 1 1 0 0
6 0 0 0 0 1 1 1 0
7 0 0 0 0 0 1 1 1
8 1 0 0 0 0 0 1 1




(27)

The admissible paths space is now detailed. It consists in
multileg paths starting in qi and ending in qf with orientation
constraints between two consecutive times. Given such a path,
the PCRB sequence and the performance criterion can be
computed as explained in section III. Over this configuration
space we are looking for the path with the best φ() value. To
make the optimization, classical techniques like Dynamic Pro-
gramming based on the Markov Decision Process framework
cannot be directly applied as our functional does not satisfy
the Matrix Dynamic Programming properties as derived in [3].
We investigate a learning based approach based on the Cross-
Entropy method [1] to solve the problem.

B. The cross-entropy algorithm

The Cross Entropy method (CE) initially used for estimating
the probability of rare events, was further adapted to solve

combinatorial optimization problem such that TSP [6]. We
quickly remind its main principle and its application to our
task but for more details the reader may refer to [1], [6].

1) Principles: Consider the following optimization prob-
lem:

φ(x∗) = γ∗ = max
x∈X

φ(x) (28)

The principle of the CE for optimization is to translate the
problem 28 into an associated stochastic problem and then
solved it adaptively as the simulation of a rare event. If γ∗ is
the optimum of φ and x random, Fγ∗ = {x ∈ X|φ(x) ≥ γ∗}
is generally a rare event. The main idea is to learn iteratively a
probability density function in a suitable parameterized family
π(., λ)|λ ∈ Λ in order to draw samples around the optimum.
The learning stage consists in solving an optimization problem
which goal is to minimize the Kullback-Leibler “pseudo-
distance” to improve the performance simulation in the tail
of the underlying density. Unlike the other local random
search algorithm such as simulated annealing which used the
assumption of local neighborhood hypothesis, the CE method
tries to solve the problem globally.
Given a selection rate ρ ∈ [0, 1[, a well-suited family of pdf
π(., λ)|λ ∈ Λ, the algorithm for the optimization proceeds as
follows :

1) Initialize λt = λ0

2) Generate a sample of size N (xt
i)1≤i≤N from π(., λt),

compute (φ(xt
i))1≤i≤N and order them from smallest to

biggest. Estimate γt as the (1 − ρ) sample percentile.
3) update λt with :

λt+1 = arg max
λ

1
N

N∑
i=1

I
[
φ(xt

i) ≥ γt

]
ln π(xt

i, λ)

(29)

4) repeat from step 2 until convergence.
5) assume convergence is reached at t = t∗, an optimal

value for φ can be done by drawing from π(., λt∗).
This is the main version of the CE algorithm, but in practice
the update stage (3) includes a smoothing procedure. If λ̃t+1

is the solution of the optimization problem 3 and 0 ≤ ν ≤ 1,

λt+1 = νλ̃t+1 + (1 − ν)λt (30)

2) Application to our task: To apply the CE to our planning
problem, we need to define a family of pdfs to generate
admissible trajectories. in [1], we considered a family of
probability matrix Psa = (psa) with s ∈ {1, ..., Ns} and
a ∈ {1, ..., Na}(in our case Na = 8).

Psa =




p11 p12 · · · p17 p18

...
...

...
...

...
pNs1 pNs2 · · · pNs7 pNs8


 (31)

with ∀s, Ps(.) is a discrete probability law such as :

Ps(a = i) = psi, i = {1, · · · , 8} : with
8∑

i=1

psi = 1



Some elements of this matrix can be always equal to zero
to take into account the map configuration (border, forbidden
area, obstacles...). We showed [1] that it can be used to gen-
erate admissible paths using an acception-rejection algorithm.
To limit the rejection rate due to the final point constraint, we
since modified the algorithm by adapted the objective function
considering a final cost. Indeed, Let τ an admissible trajectory
with length K a cost associated with the final state can easily
be introduced to penalize it when the final state sK is far from
the planning goal qf :

φf (τ, sK , qf ) =

{
−µf f(dist(qK , qf )) if sK ∈ E(qf )
−∞ else

(32)
where E(qf ) is a subset around qf , a constant µf > 0 and f is
a function which increases with the distance between the final
state sK of τ and qf . For instance, a quadratic function may
be used. From now on, the notation φ will be used instead of
φ + φf .
Given N {τj}N

j=1 samples of path with associated cost
{φ(τj)}N

j=1 at iteration t, the update stage for the elements
of Psa is given by the following expression [1]:

psa =

∑N
j=1 I [{φ(τj) ≤ γt}] · I [{τj ∈ χsa}]∑N
j=1 I [{φ(τj) ≤ γt}] · I [{τj ∈ χs}]

(33)

where {τj ∈ χs} means that the trajectory contains a visit to
state s and {τj ∈ χsa} means that the trajectory contains a
visit to state s where action a is chosen. For the first iteration,
∀s, Ps(.) is taken as a uniform probability density function.

V. EXTREME VALUE THEORY

The convergence of the CE algorithm only relies on the
stationarity of the observed quantile γ. In order to measure
the performance of the result found by the CE, we consider
an auxiliary random mechanism to analyze the distribution
of the cost function φ over the space of admissible paths. For
optimization, it is the tail of this distribution which is relevant.
We exploited extreme value theory (EVT) results to perform
such an analysis.

A. A short introduction

Let x1, x2, · · · , xN be a sample of a random variable X
drawn from an unknown continuous Cumulative Density Func-
tion (CDF) F having finite and unknown right endpoint ω(F ).
The EVT tries to model the behavior of the random process
mainly outside the range of these available observations in
the (right) tail of F [15]. In EVT there are two main ways of
making the extreme values analysis. The first one deals with
the modeling of the law of maxima of subsamples (“blocks”),
while the second one is concerned with the distribution of
data over of a specified threshold (“exceedances”). We make
a short introduction of the main materials of the last one.
Let u be a certain threshold and Fu the distribution of

exceedances, i.e. the values of x above u:

Fu(y) � Pr(X − u ≤ y|X > u), (34)

=
F (u + y) − F (u)

1 − F (u)
0 ≤ y ≤ ω(F ) − u

We are mainly interested in the estimation of Fu when u
become higher and higher. A great part of the main results
of the EVT is based on the following fundamental theorem
from Pickands

Theorem 1: For a large class of underlying distributions
F the exceeding distribution Fu, for u enough large, is well
approximated by

Fu(y) ≈ Gξ,σ(y), u → ω(F )

where Gξ,σ is the so-called Generalized Pareto Distribution
(GPD) defined as:

Gξ,σ(y) =

{
1 − (1 + ξ

σy)−
1
ξ if ξ �= 0

1 − e−y/σ if ξ = 0
(35)

At this point, this theorem indicates that, under some particular
conditions on F , the distribution of exceeding observations can
be approximated by a parametric model with two parameters.
Inference can then be made from this model to make an
analysis of the behavior of F around its maximum endpoint.
Hence the p-th quantile xp, more often called the Value-at-
Risk (V aRp) can be evaluated. It corresponds to the value of
x which is exceeded with probability p:

1 − p = F (xp) (36)

The smaller p is, the higher is xp. This result can be used in
stochastic optimization where we are interested in knowing
how far we are from the optimum value of our objective
function. Indeed, the stochastic optimization process can be
seen as a process to generate outcomes of the objective
function. By this way, it is an estimator of the optimal
value. The main problem is to assess the performance of this
random mechanism by describing empirical distribution of
the outcomes. Moreover, if the optimum cost is approached
as the number of simulations increases, the endpoint of this
distribution will be the optimum value. The main aim of the
extreme values analysis is to try to estimate this endpoint as
xp. The computation of this estimate, or better its confidence
interval is then of huge interest.
An analytical expression of xp [14] can be derived from
equations 34 and 35

xp = u +
σ

ξ

[(
N

Nu
p

)−ξ

− 1

]
(37)

where Nu is the number of observations above the threshold
u. The GPD parameters ζ � (ξ, σ) can be estimated from
Maximum Likelihood method. Let (xl)l∈L be the observations
above the threshold, we have to maximize the log-likelihood



function assuming independent observations:

L(ξ, σ) =

{
−Nu log σ − (1

ξ + 1)
∑

l log
[
1 + ξ

σ (xl − u)
]

−Nu log σ − 1
σ

∑
l (xl − u)

(38)
This nonlinear maximization can be made using classical
numerical optimization technique such as the Nelder-Mead
search algorithm. The result of the estimation can be analyzed
with graphical data exploration tools. For example, with a
QQ-plot, we can visually check whether the samples satisfy
the GPD distribution assumptions. Instead of making a simple
point estimation for parameter ζ, it may be better to get an
interval estimator. If we suppose that the estimate ζ̂ follows
(in limit) a normal distribution, the variance-covariance matrix
is given by the inverse of the Information matrix

V (ζ̂) � (I(ζ̂))−1 = (−H(ζ̂))−1

where H is the Hessian matrix of the log-likelihood func-
tional in L(ζ) (see equation (38)). Then, a 1 − α asymptotic
confidence interval for each component ζ̂i (i ∈ 1, 2) is given
by

CI(ζ̂i) =
[
ζ̂i − z1−α/2

√
V (ζ̂i), ζ̂i + z1−α/2

√
V (ζ̂i)

]
(39)

where z1−α/2 is the 1 − α quantile of the N (0, 1) normal
distribution.
One estimate of the p−th quantile can be deduced from (ξ̂, σ̂)
and equation (37)

x̂p
∆= g(ζ) = u +

σ̂

ξ̂

[(
N

Nu
p

)−ξ̂

− 1

]

A confidence interval can also be calculated for x̂p using the
“delta” method [8] xp is a function of ζ

CI(x̂p) =
[
x̂p − z1−α/2

√
dg, x̂p + z1−α/2

√
dg
]

(40)

where dg = ∇ζg(ζ̂)T V (ζ̂)∇ζg(ζ̂). Nevertheless, in practice
the log-likelihood functional is highly asymmetric and the
delta method is inappropriate, therefore it is worth to use
“profile likelihood” method [13], [14] to provide more ac-
curate confidence intervals. For parameters ξ and σ they can
be directly constructed from L(ξ, σ). For example, the 1 − α
confidence interval for ξ is given by values of ξ satisfying:

CI(ξ̂) =
{
ξ| − 2

[
max

σ
L(ξ, σ) − L(ξ̂, σ̂)

]
≤ χ2

1,α

}
where χ2

1,α is the 1 − α quantile of the χ2 distribution with
one degree of freedom. For x̂p the GPD density (equation (35))
must be reparameterized as a function of ξ and xp. To do that
equation (37) is used to express σ as a function of ξ and xp,
then the σ parameter is replaced in the GPD definition (see
equation (41))

Gξ,xp(y) =


1 −

(
1 +

h
( N

Nu
p)−ξ−1

i

xp−u y

)− 1
ξ

if ξ �= 0

1 − e
− y

xp−u if ξ = 0
(41)

This new expression of the log-likelihood function can be
deduced and exploited to compute a 1−α confidence interval
CI(x̂p)

∆= [x̂p − δx−
p , x̂p + δx+

p ] based on profile likelihood
for x̂p.
We can notice that the estimation of the parameters of the
extreme values distribution and of course of the estimate of
the high quantile depends on the choice of the threshold u.
There is no main rules to choose that parameter, but obviously
the number of data above u decreases when u grows up which
means that the estimation procedure becomes more and more
noisy. Graphical tools can also be used to determine suitable
thresholds values. In practice we determine the threshold value
by taking 2% of the sample size of observated data.

B. Application to optimization

Consider a random mechanism from which we can gen-
erate N samples of trajectories {τj}N

j=1 with associated cost
{φ(τj)}N

j=1. From this observed data, we can make an extreme
value analysis as explained above. We have to note that the
true density of φ(τ) is very complex and depends on many
parameters (the robot dynamic systems, the paths charac-
teristics, the sensor ability and the map properties (noise,
correlation...)). We remind that the planning problem cannot
be solved with classical Dynamic Programming techniques.
Nevertheless, such an approach can be useful to make the
generation of sample paths within a constrained Markov De-
cision process framework [2]. More precisely, one admissible
path τj can be obtained as follows:

1. allocate an auxiliary random cost series Υj =(
cj
s′s(a)

)
where cj

s′s(a) ∼ U[0,1], ∀(s, s′, a) ∈ S ×
S ×A where U[0,1] is the uniform density on [0, 1].

2. then compute the optimal path τj according to the
constrained dynamic programming algorithm [2].

3. and finally computing the approximated PCRB se-
quence along τj and get φ(τj).

With those samples the right tail of the distribution of φ(τ)
can be approximated with a GPD distribution. Then, high
quantile estimator xp with 1 − α related accurate confidence
intervals can be calculated. From these best trajectories, we
can determine:

• how far we are from the optimal solution and what would
be the difference of information gain between the best
observed trajectory and the optimal trajectory (for a given
risk level p)?

• How many simulations would be necessary to achieve
this given level of performance?

Indeed, we can approximate the average number of observed
n̂α

p trajectories which can be associated with the performance
x̂p are those which lie in the confidence interval:

n̂α
p

∆= Pr (x ∈ CIα(x̂p)) Nu (42)

=
(
Fu

(
x̂p + δx+

p

)− Fu

(
x̂p − δx−

p

))
Nu

At that point, we can now compare the result of the conver-
gence of the optimal solution given by the planning algorithm



based on the CE with the given level of performance x̂p for
risk level p. The solution of the planning will be considered
as satisfactory if it is better than x̂p + δx+

p .

VI. RESULTS

In this section we consider one scenario to illustrate our
procedure of evaluation. The map is defined on the set
[−4, 54]× [−4, 54] and the grid resolution is dx = dy = 4, so
the dimension of the discretized state space S is Ns = 225.
There are only four landmarks whose positions are given in
table I. Three of them are located in the left and up side of the
map and the last one is lower and on the right. For the mobile

m0 m1 m2 m3

x 7.2 7.8 22.8 43.1
y 20.4 35.2 42.8 25.8

Table I
THE LANDMARKS OF THE MAP

dynamic system and the observation model, the covariance
matrix of the noises model are

P0 = Qk =


1 0 0

0 1 0
0 0 0.5


, Ck =

(
1 0
0 0.5

)
∀k and ∀mj .

The variances on the robot orientation and on the bearings
measurements are expressed in degree here for clarity but have
to be converted in radian. The constant velocity at each step
is 4 m.s−1 and the robot can only apply {−π

4 , 0, π
4 } controls

between two consecutive times, then the δ matrix is the same
as in section IV. For the observation model, a landmark mj

is visible at time k if its relative distance and bearing verify:{
r− ≤ yk

r (j) ≤ r+

|yk
β(j)| ≤ θmax

where r− = 0.01 m., r+ = 12 m. (3 times the grid resolution)
and θmax = 90 deg..
For the planning, we consider trajectories with at most K = 30
elementary moves and the initial and final positions are
respectively qi = (6; 2; 45) and qf = (46; 46). The PCRB
estimate is approximated from Monte Carlo simulation with
Nmc = 800 noisy realizations of the trajectories. For the
extreme values analysis, we generate 40000 paths and evaluate
the cost function φ for each one. We considered 2% of the
sample to make inference and estimate the parameters (ξ̂, σ̂)
of the GPD distribution, that is to say the 800 best plans are
considered. Let {φj}, j ∈ {1, · · · , 40000} be the associated
costs of the paths. We first normalize to study the new random
variable

cj =
φj − m[φ]

σ[φ]

Figure 3 shows the best path drawn with the procedure based
on Dynamic Programming. The associated cost is cmax ≈
0.8815. The threshold corresponding to 2% is u = 0.8479. The
estimation of the quantile xp and its related confidence interval
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Figure 3. Best drawn trajectory from Dynamic Programming (40000
samples).

can be calculated. For p = 2.10−5, we found x̂p = 0.8804
and the 95% confidence interval given by the profile likeli-
hood and delta methods are respectively [0.879; 0.8829] and
[0.8758; 0.8849]. The values of 1 − Fu(x) are represented on
figure 4 with x̂p and the both confidence intervals. We can
notice that the confidence interval based on the “delta” method
is larger and is less accurate than the result based on the profile
likelihood. We then derived n̂α

p ≈ 2.0325 which is coherent
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Figure 4. Continuous curve of 1−G
ξ̂,σ̂ fitting the 800 extreme values (dots).

x̂p (red) with its 95% intervals of confidence based on Profile Likelihood
(green) and the “delta” method (blue).

with the number 2 of observed trajectories with costs in the
confidence interval (see figure 4).
The optimal planning using the CE algorithm is made on
the same experiment with 4000 trajectories samples at each
iteration of the algorithm. The selection rate was ρ = 0.1,
therefore the 400 best paths contributed to the update stage of
the Psa matrix. The smoothing parameter was ν = 0.4. Figure
5 shows the evolution of estimated quantile γ and cmax the
best samples at each iteration for the performance function
c. The best cost obtained with the MDP approach is also



displayed. We can notice that the algorithm converges rapidly
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Figure 5. γ (red) and the maximum cost (green) curves during the
optimization. Best cost from first approach (blue).

to a solution. Indeed the γ(t) and cmax(t) become stable
around 20 steps of the CE Moreover, The CE seems make
possible the sampling of trajectories with better performance
than the best path found by the MDP approach and the
performance x̂p. We select as the optimal path, the best one
drawn during the last iteration of the CE It is represented in
figure (6). Its associated cost is 0.8903 while the upper bound
of the high estimated quantile for p = 2.10−5 is 0.8829.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we investigated a framework to evaluate the
optimal path planning for a mobile robot. The goal of the plan-
ning task is to find the path which provides good performance
of localization using a given landmarks map. This localization
performance is directly linked with a functional of the Poste-
rior Cramér-Rao bound. Classical optimization like Dynamic
programming was irrelevant due to the functional properties.
As a consequence, a learning based approach implying the
Cross-Entropy algorithm was used to solve the problem [1].
Some improvements of the first version were introduced in
the paper, in particular the adapted cost function to reduce
the acceptation-rejection rate. But the main contribution of
the current work is the evaluation procedure of this planning
algorithm using extreme value theory. This theory gives tools
to determine the performance of stochastic optimization via
the computation of estimated high quantile. One example was
presented to illustrate the reasoning. It confirms that extreme
values analysis can be a valuable auxiliary tool to make a
decision on the convergence of the path planning algorithm.
It is important to know that this framework can also be
used to perform comparison of several different path planning
algorithms. Future work will concentrate on the generalization
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Figure 6. Best path found by the cross entropy algorithm

of this approach for different localization techniques based on
unknown but bounded noise models. Indeed, the path planning
and the evaluation procedure are relatively independent from
the underlying localization methods.
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