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Abstract: Analytical resolution of search theory problems, as formalized by B.O. Koopman, may be applied with some model
extension to various resource management issues. However, a fundamental prerequisite is the knowledge of the prior target density.
Though this assumption has the definite advantage of simplicity, its drawback is clearly that target reactivity is not taken into account.
As a preliminary step towards reactive target study stands the problem of resource planning under a min–max game context. This
paper is related to Nakai’s work about the game planning of resources for the detection of a stationary target. However, this initial
problem is extended by adding new and more general constraints, allowing a more realistic modeling of the target and searcher
behaviors. © 2007 Wiley Periodicals, Inc. Naval Research Logistics 54: 589–601, 2007
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NOTATIONS

ϕ(x): Search effort
φo: Total amount of search effort

α(x): Probabilistic target distribution
Ao: Probability of the target to be in the search area

px(ϕ(x)): Conditional nondetection probability

1. INTRODUCTION

The initial framework of Search Theory [1,8,14,16], intro-
duced by B.O. Koopman and his colleagues, sets the general
problem of the detection of a target in a space, in view of
optimizing the use of the detection resources. A thorough
extension of the prior formalism has been made by Brown
towards the detection at several periods of search [2, 17].
This simple but meaningful formalism has also been applied
to various resource management involving data fusion issues
[3]. But, for all these problems, a probabilistic prior on the
target was required. In addition, in case of moving target
problems, a Markovian hypothesis is necessary for algorith-
mic reasons. While this formalism is sufficient for almost
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“passive” targets, it may be dubious and even useless when a
target has a complex (and realistic) move. In a military con-
text especially, the behavior of the “interesting” targets is not
neutral and cannot be modeled by a simple probabilistic prior.
A conceivable way for improving the prior about the target
in a manner that involves more properly the complexity or
the reactive behavior of the target, is to consider a min-max
game version of the Koopman optimization problems. Nakai
presented and solved in [9] a game version of the resource
planning for the detection of a stationary target. In this work
the constraints on game were given by the available location
of the target on the one hand and the amount of detection
resources on the other. Thus, the constraints were defined at
the pure strategy level. The purpose of this paper is to present
an extension of Nakai’s game by addition of new constraints
defined on the set of available mixed strategies. In other
words, constraints are now defined at the mixed strategy level.
Before explaining properly the extended problem, we intend
to give in this introduction a short description of Nakai’s
game.

Definitions. The searcher wants to detect a target located in
a search space E. To perform this detection, the searcher has
available a total amount of (detection) resources φo. These
resources may be put on each cell x of the search space E.
Detection on cell x is a known function of the search effort
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put on x. For x ∈ E, the variable ϕ(x) denotes the local
amount of resources placed on cell x. A constraint naturally
holds for the global amount of resources in use:

∑
x∈E

ϕ(x) ≤ φo.

Since the detection is maximized when the whole resources
are used, the previous constraint may be replaced by an
equality one: ∑

x∈E

ϕ(x) = φo. (1)

The set of valid sharing functions ϕ is thus defined by

R(φ) =
{

ϕ ∈ IR+E
/∑

x∈E

ϕ(x) = φo

}
.

When the local resource ϕ(x) is put on cell x and the
target is located on x, the conditional probability of non-
detection is given by the value of px(ϕ(x)). This prob-
ability may depend upon x, since visibility and resource
efficiency vary practically with the concerned cell. For x

fixed, it is usually assumed that px(0) = 1 (no search
implies no detection) and px decreases with the effort used,
i.e. p′

x < 0. It is also hypothesized that the detection fol-
lows the rule of decreasing return, so that p′

x increases
strictly with ϕ. On the other hand, the target have the choice
between several available locations, described by the sub-
set T ⊂ E. Then, a game occurs between the searcher and
the target. The searcher attempts to minimize the proba-
bility of nondetection by optimizing the search resource
sharing ϕ, while the target’s aim is to maximize the prob-
ability of nondetection by choosing his location. The eval-
uation of the game is given by px(ϕ(x)), for a pure tar-
get strategy x and a pure searcher strategy ϕ. A mixed
strategy for the target is given by a density probability
α on the target location, with property α(E \ T) = 0. We
denote

P(T) =
{

α ∈ IR+E/
α(E \ T) = 0 and

∑
x∈E

α(x) = 1

}
,

the set of such probabilities. For a strategy pair (α, ϕ),
the evaluation of the (minimization) game is then given
by the averaged value (denoted Pnd) of the probability of
nondetection.

Pnd(α, ϕ) =
∑
x∈E

α(x)px(ϕ(x)).

This game was solved by Nakai [9]. Since p is con-
vex, it appears that the game is convex. Thus, there is a

mixed optimal strategy for the target and a pure optimal
strategy for the searcher. A saddle point strategy (αo, ϕo) is
defined by


αo = arg max

α∈P(T)

∑
x∈E

α(x)px(ϕo(x)),

ϕo = arg min
ϕ∈R(φo)

∑
x∈E

αo(x)px(ϕ(x)).

Two optimality conditions are obtained, by differentiation
around the optimal strategies:

∃η < 0,




αo(x) p′
x(ϕo(x)) = η, when αo(x) >

η

p′
x(0)

ϕo(x) = 0, else
(2)

and

∃λ ≥ 0, αo(x) > 0 =⇒ px(ϕo(x)) = λ. (3)

In Eq. (2) is recognized the classical optimality equation of
de Guenin [4]. By use of these equations, a mathematical
solution of the problem is built. The first step is to verify the
obviously intuitive result:

PROPOSITION 1: Let T be the space of possible target
locations; then the following equivalence holds true:

x ∈ T ⇐⇒ αo(x) > 0 ⇐⇒ ϕo(x) > 0. (4)

PROOF OF PROPOSITION 1: If there is a cell, saya ∈ T,
such that ϕo(a) = 0, then pa(ϕo(a)) = 1 and the pure target
strategy a yields the maximal evaluation, 1, for the game.
This contradicts the hypothesis that ϕo is a min-max strategy.
It results that x ∈ T =⇒ ϕo(x) > 0.

Assume now ϕo(x) > 0. From Eq. (2), then holds αo(x) >
η

p′
x (0)

. Thus, ϕo(x) > 0 =⇒ αo(x) > 0.
The implication αo(x) > 0 =⇒ x ∈ T is obvious from

the definition of P(T).
Notice particularly that this proof requires the values px(0)

be equal to 1. But the property still holds when px(0) is
independent of x. �

Now, the combination of Eq. (1) and (3) yields∑
x∈T

p−1
x (λ) = φo. Defining the function P by

P
−1(λ) =

∑
x∈T

p−1
x (λ),

it follows that λ = P(φo). Finally, the Eqs. (2) and (3) sim-
plify and reduce to ϕo(x) = p−1

x (P(φo)) and αo(x) =
η/p′

x(p
−1
x (P(φo))). Since αo is a probability density, it fol-

lows that
∑

x∈T
αo(x) = 1. The dual variable η is then

deduced. After simplification, the simple formula η = P
′(φo)

Naval Research Logistics DOI 10.1002/nav



Dambreville and Le Cadre: Minimax Optimization of Continuous Search Efforts 591

is obtained. The saddle point strategy (αo, ϕo) is simply
given by

∀x ∈ T,

{
αo(x) = (p−1

x ◦ P)′(φo)

ϕo(x) = (p−1
x ◦ P)(φo)

(5)

Nakai’s game thus admits a mathematical solution. It
is interesting to compare it with the classical one-sided
search problem of de Guenin [4], where α(x) is now
a fixed prior and only ϕ is optimized, i.e. ϕo =
arg minϕ∈R(φo)

∑
x∈E α(x)px(ϕ(x)). It happens that the

searcher’s strategy is less complex in the case of the game.
In the next section, an extension of Nakai’s game will be

considered. It is a zero sum game, wherein constraints are
put on the target mixed strategies. Such problem will be seen
as a generalization of both Nakai’s game and de Guenin’s
problem, but is much more complex than these two par-
ent problems. Particularly, there is no general mathematical
solution. New properties will be established to handle these
difficulties and an original algorithm will be presented.

2. BOUNDING CONSTRAINTS

In Nakai’s game, the prior on target, T, is given by the set of
available target locations. This prior is more general and more
flexible than a probabilistic density on the target location,
in particular for modeling uncertain targets. Nevertheless, it
does not allow sufficient refinement, for modeling the target
behavior. For example, when the detection occurs after a pre-
liminary target move, it is wise to handle the target motion
modelling. Itself depending on the target reaction capabili-
ties, it follows that some final locations are more probable
than others. To model this fact, we will simply introduce
lower and upper bounds on the probability associated with
the target mixed strategy.

Similarly, operational considerations plead for introducing
lower and upper bounding on the resources sharing functions.
Doing that involves a symmetrization of our problem. How-
ever, such bounding constraints on resources have a physical
meaning. It implies a minimum value and a maximum value
of resource on each cell of the space search. Definitions have
now to be clarified.

Definition. Again, the search of the target is made within a
space E. Each element x ∈ E is called a cell. A mixed strat-
egy of the target is represented by a density function α defined
on E. The function α is an unknown variable of the problem.
The summation of α on E is known and is denoted Ao. The
following constraint then holds:∑

x∈E

α(x) = Ao.

Since α is a density probability, Ao generally equals 1. But
Ao < 0 means that the target is possibly outside the search

space. Two functions α1 and α2, mapping from E to IR+, are
given with the property 0 ≤ α1 ≤ α2. These functions yield
a constraint on the mixed target strategy:

α1 ≤ α ≤ α2.

A pure strategy of the searcher is represented by a resource
sharing function ϕ defined on E. The function ϕ is also
an unknown variable of the problem. The total amount of
resources φo is fixed, so that∑

x∈E

ϕ(x) = φo.

Two functions ϕ1 and ϕ2, mapping from E to IR+, are given
with the property 0 ≤ ϕ1 ≤ ϕ2. These functions yield a
constraint on the pure search strategy:

ϕ1 ≤ ϕ ≤ ϕ2.

For each cell x, the probability of nondetection is a decreas-
ing and convex function px . The game evaluation of a
strategy pair (α, ϕ) is given by the averaged probability of
nondetection:

Pnd(α, ϕ) =
∑
x∈E

α(x)px(ϕ(x)).

Since the game is convex with respect to ϕ, there is a couple
of optimal strategies involving a mixed strategy for the target
and a pure strategy for the searcher. The associated zero sum
game stands as follows:

Find αo, ϕo such that

αo ∈ arg max
α

∑
x∈E

α(x)px(ϕo(x))

and

ϕo ∈ arg min
ϕ

∑
x∈E

αo(x)px(ϕ(x)),

under constraints

∀x ∈ E, α1(x) ≤ α(x) ≤ α2(x), and
∑
x∈E

α(x) = Ao,

∀x ∈ E, ϕ1(x) ≤ ϕ(x) ≤ ϕ2(x), and
∑
x∈E

ϕ(x) = φo.

Summary of the problem setting.

• α1: lower bound for the target mixed strategy
• α2: upper bound for the target mixed strategy
• ϕ1: lower bound for the searcher strategy
• ϕ2: upper bound for the searcher strategy
• Constraints on the target mixed strategy:

– α1 ≤ α ≤ α2

–
∑

x∈E α(x) = Ao
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• Constraints on the searcher strategy:
– ϕ1 ≤ ϕ ≤ ϕ2

–
∑

x∈E ϕ(x) = φo

• px(ϕ(x)): Conditional probability of nondetection,
when resource ϕ(x) is applied on cell x

– px > 0
– p

′
x(ϕ(x)) < 0

– p′′
x > 0

Additional properties are hypothesized in order to ensure the
existence of solutions:

∑
x∈E

α1(x) ≤ Ao ≤
∑
x∈E

α2(x) and
∑
x∈E

ϕ1(x)

≤ φo ≤
∑
x∈E

ϕ2(x).

3. OPTIMALITY CONDITIONS

Problem setting having been defined, we are now dealing
with the derivation of the optimality conditions which con-
stitute the core of this paper and are fundamental for deriving
a practical optimization algorithm.

3.1. Deriving the Optimality Conditions

Considering a saddle point strategy (αo, ϕo) for the game,
two optimality equations are obtained by variational means.

de Guenin’s condition. Since (αo, ϕo) is a couple of saddle
points, it appears that

ϕo ∈ arg min
ϕ

Pnd(αo, ϕ).

The constraints ϕ1 ≤ ϕ ≤ ϕ2 apply to the minimiza-
tion. A result very similar to the condition of de Guenin
is thus obtained, e.g. by applying the Karush–Kuhn–Tucker
theorem. The following conditions hold true:

∃η < 0,


ϕo(x) = ϕ1(x) if ϕ1(x) ≥ p′
x
−1

(η/αo(x)),

ϕo(x) = ϕ2(x) if ϕ2(x) ≤ p′
x
−1

(η/αo(x)),

ϕo(x) = p′
x
−1

(η/αo(x)) else.
(6)

Constancy condition. This condition is recovered from the
maximization, applying for any saddle point:

αo ∈ arg max
α

Pnd(α, ϕo).

The constraints α1 ≤ α ≤ α2 apply to the maximization. By
use of the KKT theorem, and since ϕ �→ px(ϕ) is decreasing,
the following conditions are refined:

∃λ ≥ 0,




ϕo(x) ≤ p−1
x (λ) if α(x) = α2(x) > α1(x),

ϕo(x) ≥ p−1
x (λ) if α(x) = α1(x) < α2(x),

ϕo(x) = p−1
x (λ) if α1(x) < α(x) < α2(x).

(7)

Related curves. The previous conditions (6) and (7) have an
obvious geometric interpretation. For a given cell x, the opti-
mal strategies (αo, ϕo) are locally defined by the intersection
of two parameterized curves Hx

η and �x
λ (η < 0 and λ ≥ 0).

In other words, (αo(x), ϕo(x)) ∈ Hx
η ∩ �x

λ. These two curves
are defined respectively from (6) and (7):

(a, f )∈Hx
η ⇔




a ≤ η

p′
x (ϕ1(x))

⇒ f = ϕ1(x)
η

p′
x (ϕ1(x))

<a<
η

p′
x (ϕ2(x))

⇒ a p′
x(f ) = η

a ≥ η

p′
x (ϕ2(x))

⇒ f = ϕ2(x)

(8)

and

(a, f )∈�x
λ ⇔




f < p−1
x (λ) ⇒ a = α2(x)

f = p−1
x (λ) ⇒ a ∈ [α1(x), α2(x)]

f > p−1
x (λ) ⇒ a = α1(x)

(9)

In this definition, the coordinates a and f are related to the
variables α(x) and ϕ(x). The conditions (6) and (7) have a
more precise meaning. There is a common choice of dual
variables, which defines the whole optimal strategies as local
intersections of the associated curves.

∃ηo, ∃λo, ∀x ∈ E, (αo(x), ϕo(x)) ∈ Hx
ηo

∩ �x
λo

. (10)

This point will be instrumental for developing a feasible
algorithm.

Graphical meaning. Since px is convex, it follows that Hx
ηo

is a nondecreasing curve. More precisely, Hx
ηo

is increas-
ing for η

p′
x (ϕ1(x))

< a <
η

p′
x (ϕ2(x))

and flat otherwise. On the
contrary, �x

λo
is a nonincreasing curve, which is flat for

a ∈]α1(x), α2(x)[ and infinitely decreasing otherwise. These
two curves are sketched in Fig. 1. If these curves were strictly
increasing/decreasing, there would have been only one inter-
section for Hx

η and �x
λ. But owing to the possible flatness of

the curves, the intersection may be a segment, as shown in the
left picture of Fig. 1. The nonuniqueness of the intersection
is related to possibly undetermined cases for the optimal-
ity conditions. Thus, after tuning the dual parameters λ, η in
accordance with the resource constraints

∑
x∈E α(x) = Ao

and
∑

x∈E ϕ(x) = φo, it is still possible that several solutions
are optimal.

Naval Research Logistics DOI 10.1002/nav
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Figure 1. Curves �x
λ and Hx

η : defined and undefined intersection cases.

3.2. Inverting the Optimality Conditions

Optimality conditions have been derived in Section 3.1. In
this section, the inversion of these conditions is investigated.

Dual mapping. For a given choice (η, λ) of the dual vari-
ables, the set of possible saddle points is Hx

η ∩ �x
λ. It has

been seen that Hx
η ∩ �x

λ is always an horizontal closed inter-
val, thus defining a mapping from the dual variable to the
possible saddle strategies:

(η, λ) �−→ [
α

ηλ

min, αηλ
max

] × ϕηλ.

But while this mapping is 1:1 for ϕ (i.e. ϕηλ), it is char-
acterized by a minimum value α

ηλ

min and a maximum value
α

ηλ
max for α. However, the case α

ηλ

min(x) = α
ηλ
max(x) is quite

common; in fact, because of the middle flatness of �x
λ and

the two extremal flatness of Hx
η , there is at most two λ such

that α
ηλ

min(x) < α
ηλ
max(x).

The crucial point is that α
ηλ

min, α
ηλ
max, and ϕηλ are simply

and entirely defined and computable from the problem data.
However, the explicit definition of these functions is not given
in the main part of this paper, because a lot of case checking
is required. Readers should refer to Appendix A for more
details.

Knowing α
ηλ

min, α
ηλ
max, and ϕηλ it is useful to define the

following global values:

φηλ =
∑
x∈E

ϕηλ(x), Aηλ

min =
∑
x∈E

α
ηλ

min(x),

and Aηλ
max =

∑
x∈E

αηλ
max(x).

The values φηλ, A
ηλ

min, and A
ηλ
max are of constant use in the

development of our algorithm.

Variation of φηλ, A
ηλ

min, and A
ηλ
max. Our interest now focuses

on the variation of φηλ, Aηλ

min, and A
ηλ
max according to the vari-

ables η and λ. Most of the subsequent variation properties
are foreseeable by considering the graphical properties of
the curves Hx

η and �x
λ; this paragraph offers such qualitative

graphical justification. A proof is possible however by means
of the constraint inversion described in Appendix A (refer to
Appendix B).

It appears that an increase of η produces an upswelling
(associated with a left shifting) of the curve Hx

η . Conse-
quently, the increase of η yields also an up-left move of the
intersection Hx

η ∩ �x
λ, i.e.

η1 < η2 =⇒




α
η1λ

min(x) ≥ α
η2λ

min(x)

α
η1λ
max(x) ≥ α

η2λ
max(x)

ϕη1λ(x) ≤ ϕη2λ(x)

(11)

This property is provable by means of the constraint inversion
(see Appendices A and B).

An increase of λ produces a left swelling (associated with
a down shifting) of the curve �x

λ, and implies consequently
a down-left move of the intersection Hx

η ∩ �x
λ. Nevertheless,

the intersection variation is somewhat sharper here:

λ1 < λ2 =⇒
{

α
ηλ1
min(x) ≥ α

ηλ2
max(x)

ϕηλ1(x) ≥ ϕηλ2(x)
(12)

This property is provable by means of the constraint inversion
(Appendices A and B). The variation of the global variables
are then deduced, yielding the following proposition:

PROPOSITION 2: Consider variations of dual variables
η and λ; then the variations of A

ηλ

min, Aηλ
max, and �ηλ have

Naval Research Logistics DOI 10.1002/nav
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Figure 2. An illustration of Proposition 2.

monotonicity properties, as given by

∀λ, η1 < η2 ⇒




A
η1λ

min ≥ A
η2λ

min

A
η1λ
max ≥ A

η2λ
max

φη1λ ≤ φη2λ

(13)

and

∀η, λ1 < λ2 ⇒
{

A
ηλ1
min ≥ A

ηλ2
max

φηλ1 ≥ φηλ2
(14)

The above properties [see Eqs. (13) and (14) ] will be applied
subsequently in order to compute the game value by means
of a bisectional method. They are summarized in Fig. 2. In
order to apply this method, some continuity properties are
necessary.

Continuity. Let us begin by the following definition–
proposition.

DEFINITION 1: Let I ⊂ R and J ⊂ R. The distance
d(I , J ) between I and J is classicaly defined by

d(I , J ) = inf
i∈I

inf
j∈J

|i − j |.

Then, the following properties hold:


(η, λ) �→ ϕηλ(x) is continuous,

d
([

α
ηλ

min(x), αηλ
max(x)

]
,
[
α

η′λ′
min (x), αη′λ′

max(x)
]) −−−−−−−−→

η′,λ′→η,λ
0,

η �→ (
α

ηλ

min(x), αηλ
max(x)

)
is continuous for any λ ≥ 0.

(15)

These properties are rather obvious, when considering the
graphical properties of Hx

η and �x
λ. In particular,

• the curve Hx
η is nondecreasing, but without disconti-

nuity;
• since p′

x is continuous, Hx
η evolves continuously

with η;
• since px is continuous, �x

λ evolves continuously
with λ; and

• the curve �x
λ is nonincreasing.

The property Eq. (15) is provable by means of the constraint
inversion (Appendices A and B ). Now, the continuity of the
local variables implies a continuous behavior of the global
variables:


(η, λ) �→ φηλ is continuous,

d
([

A
ηλ

min, Aηλ
max

]
,
[
A

η′λ′
min , Aη′λ′

max

]) −−−−−−−−→
η′,λ′→η,λ

0,

η �→ (
A

ηλ

min, Aηλ
max

)
is continuous for any λ ≥ 0.

(16)

The continuity of the global variables will ensure that the
bisectional processes work.

As a first step of the condition inversion, a bisectional
process will be applied to the dual variable η only, and η

will be expressed as a function of λ.

Implicit definition of η(λ). The purpose of this paragraph is
to characterize the function η(λ), which is implicitly defined
when the constraint

∑
x∈E ϕo(x) = φo is fulfilled. As a first

step, a rough bounding of η is derived. This bounding is used
in order to initialize a bisectional method (described in the
next section) for the computation of η(λ).

Define:

ηmin = min
x

(
α2(x)p′

x(ϕ1(x))
)
,

and

ηmax = max
x

(
α1(x)p′

x(ϕ2(x))
)
.

Definition (8) of Hη implies

∀λ,

{
η ≤ ηmin =⇒ ϕηλ = ϕ1,

η ≥ ηmax =⇒ ϕηλ = ϕ2.

Thus, the function ϕηλ is independent of the dual variables,
when η ≤ ηmin or when η ≥ ηmax. Owing to Definition (9) of
�λ, the bounds α

ηλ

min and α
ηλ
max then happen to be independent

of the dual variable η, in the following meaning:

∀λ,




[η1 ≤ ηmin and η2 ≤ ηmin] =⇒ (
ϕη1λ, αη1λ

min, αη1λ
max

)
= (

ϕη2λ, αη2λ

min, αη2λ
max

)
,

[η1 ≥ ηmax and η2 ≥ ηmax] =⇒ (
ϕη1λ, αη1λ

min, αη1λ
max

)
= (

ϕη2λ, αη2λ

min, αη2λ
max

)
.
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In other words, every possible configuration for the game
may be represented by a dual variable η ∈ [ηmin, ηmax]. For
this reason, the function η(λ) will be constructed within this
range, subsequently. Then, related to the extremal duals ηmin

and ηmax are also defined the extremal global values of the
resources:

φηmin = φηminλ =
∑
x∈E

ϕ1(x) and φηmax = φηmaxλ =
∑
x∈E

ϕ2(x).

From Eq. (13), it appears that η �→ φηλ is non decreasing.
The bounds ηmin and ηmax being defined, it seems possible to
derive η(λ) by inverting the equation φηλ = φo and using a
bisectional process. This process is guaranteed to work, since
η �→ φηλ is continuous [Eq. (16)].

It follows that every φ ∈ [∑x∈E ϕ1(x),
∑

x∈E ϕ2(x)]
admits a nonempty connected set of antecedents. It is in par-
ticular true for φo. The set of antecedents is often reduced to
one element, when the mapping η �→ φηλ is increasing, other-
wise it is an interval when the mapping η �→ φηλ is flat. Thus,
the bounds ηmin(λ) ∈ [ηmin, ηmax] and ηmax(λ) ∈ [ηmin, ηmax]
are defined such that

∀η ∈ [ηmin, ηmax], φηλ = φo ⇔ η ∈ [ηmin(λ), ηmax(λ)],

and the function η(λ) is thus defined by η(λ) = [ηmin, ηmax].
These bounds will be actually computed by the bisectional
process over η. However, in order to complete the conditions
for inversion, a second bisectional process (described in the
next section) will be applied to the variable λ. This second
process will tune λ toward the constraint

∑
x∈E αo(x) = Ao.

In order to justify this bisectional process, it is necessary
to verify that λ �→ Aη(λ)λ is “monotonic.” This is the last
purpose of the paragraph.

Assume λ1 < λ2. Then, it is deduced φηmin(λ2)λ1 ≥
φηmin(λ2)λ2 from Eq. (14). Since by definition φηmin(λ2)λ2 =
φo = φηmin(λ1)λ1 , the property φηmin(λ2)λ1 ≥ φηmin(λ1)λ1 holds.
Now, η �→ φηλ1 is a non decreasing function [see eq. (13)]
and it is deduced:

ηmin(λ2) > ηmin(λ1) or φηmin(λ2)λ1 = φηmin(λ1)λ1 .

Since ηmin(λ1) is defined as the smaller η such that φηλ1 = φo,
we have

ηmin(λ2) > ηmin(λ1) or ηmin(λ2) ≥ ηmin(λ1).

Finally, it has been shown that ηmin(λ2) ≥ ηmin(λ1) and it is
similarly proved that ηmax(λ2) ≥ ηmax(λ1). The variations of
ηmin(λ) and ηmax(λ) are thus monotonic:

λ1 < λ2 =⇒
{

ηmin(λ1) ≤ ηmin(λ2)

ηmax(λ1) ≤ ηmax(λ2)

Figure 3. An illustration of Proposition 3.

Now, A
ηλ

min and A
ηλ
max are decreasing for both η and λ

(Properties (13) and (14)) and the following properties are
derived:

PROPOSITION 3: Consider two values (λ1 and λ2) of the
parameter λ, with λ1 < λ2; then the following inequalities
hold true:

λ1 < λ2 =⇒




A
ηmin(λ1)λ1
min ≥ A

ηmin(λ2)λ2
min

A
ηmin(λ1)λ1
max ≥ A

ηmin(λ2)λ2
max

A
ηmax(λ1)λ1
min ≥ A

ηmax(λ2)λ2
min

A
ηmax(λ1)λ1
max ≥ A

ηmax(λ2)λ2
max

(17)

These properties are graphically illustrated by Fig. 3: It is
now possible to describe the entire inversion algorithm.

4. ALGORITHM

Because of the monotonic variation of A
ηλ

min, A
ηλ
max, and

φηλ, and the continuity property (16), bisectional methods
are chosen for the inversion conditions. Our algorithm is
made of three parts. The first part computes the optimal
dual parameter λo. The second part sharpens the convergence
and improves some subconditions, by adjusting the optimal
dual parameter ηo. At this point, the convergence is almost
achieved. The last part makes a final tuning of α, so as to
equalize to Ao and reduce some indetermination.

Computing λo. First it is necessary to define the sub-
processes, which will compute ηmin(λ) and ηmax(λ): thanks
to the non decreasing property of η �→ φηλ, two bisectional
processes around φo are used in order to compute ηmin(λ) and
ηmax(λ).

The main part of the process consists in finding λ such
that Ao ∈ [

A
ηmax(λ)λ

min , Aηmin(λ)λ
max

]
. Thanks to the non increasing
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Figure 4. Game description.

property (see Proposition 3), this task is done by a bisectional
process. However, this process will call the subprocesses
computing ηmin(λ) and ηmax(λ), and thus constitutes a double
bisectional method.

After this stage, the optimal dual variable λo is computed.

Computing ηo. It is noteworthy that φηλo = φo for any
η ∈ [ηmin(λo), ηmax(λo)]; we do not have to care about the
constraint on φo anymore. As a consequence, the computa-
tion of ηo will be obtained by applying the constraint related
to Ao.

Now, since Ao∈
[
A

ηmax(λo)λo

min ,Aηmin(λo)λo
max

]
, there is η∈[ηmin(λo),

ηmax(λo)] such that Ao ∈ [
A

ηλo

min, Aηλo
max

]
. This η will be the opti-

mal dual variable ηo. To compute it, a bisectional process is
again instrumental, owing to the nonincrease property (13)
of η �→ A

ηλo

min and η �→ A
ηλo
max.

Refinement. The optimal dual variables ηo and λo are now
computed and the function ϕo is defined as ϕηoλo . How-
ever, some indetermination is possible for αo, when A

ηoλo

min <

A
ηoλo
max . Whatever, the objective is to fulfill the last constraint∑
x∈E αo(x) = Ao. Recalling that A

ηoλo

min = ∑
x∈E α

ηoλo

min (x)

and A
ηoλo
max = ∑

x∈E α
ηoλo
max (x), an optimal target strategy αo

could be defined as the barycenter of α
ηoλo

min and α
ηoλo
max , where

the weights are given by the relative positions of A
ηoλo

min , Aηoλo
max ,

and Ao:


ϕo = ϕηoλo ,

αo = α
ηoλo

min + Ao − A
ηoλo

min

Aηoλo

max − A
ηoλo

min

(
α

ηoλo
max − α

ηoλo

min

)
.

Notice that there may be many other choices for αo.

The whole process. The whole process is summed up
below:

i. Find λo such that Ao ∈ [
A

ηmax(λo)λo

min , Aηmin(λo)λo
max

]
; do it

by means of a bisectional process; a sub-procedure
is used to compute ηmin(λ) and ηmax(λ).

ii. Find ηo, element of [ηmin(λo), ηmax(λo)], such that
Ao ∈ [

A
ηoλo

min , Aηoλo
max

]
; do it by means of a bisectional

process.
iii. Setϕo = ϕηoλo andαo = α

ηoλo

min + Ao−A
ηoλo
min

A
ηoλo
max −A

ηoλo
min

(
α

ηoλo
max −

α
ηoλo

min

)
.

Subprocesses. Compute ηmin(λ) and ηmax(λ) by means of a
bisectional process.

5. RESULTS

In the sequel, the search space E is a set of 30 × 20 cells.
The values Ao = 1 and φo = 30 are used.

5.1. Some Examples

In this section, a game example is solved by our algo-
rithm. It is characterized by the local bounds α1, α2, ϕ1,
and ϕ2 described in Fig. 4; in this figure and the following,
the dark cells are representing low values, while the bright
cells represent high values. The conditional probability, p,
is of exponential form px(ϕ) = exp(−ωxϕ). The visibility
parameter ωx is weak for poor detection and high for good
detection. The parameter ω is described in Fig. 4. Optimal
functionsαo andϕo obtained via the algorithm are represented
in Fig. 5. Again, the dark cells represent low values whereas

Figure 5. Strategies. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Figure 6. Optimization of de Guenin (α = ᾱ is fixed).

the bright cells represent high values. Moreover, the color of
the cell boundaries indicates whether the bounds are reached
or not. More precisely, a blue boundary on cell x means
ϕo(x) = ϕ1(x) or αo(x) = α1(x). A green boundary on cell
x means ϕ1(x) < ϕo(x) < ϕ2(x) or α1(x) < αo(x) < α2(x).
And a red boundary on cell x means ϕo(x) = ϕ2(x) or
αo(x) = α2(x). Fig. 5 appears as a mix of the local bounding
constraints and of the visibility parameters. It is noteworthy
that αo reaches its upper bound on cells with weak visibility
(center of the search space) and its lower bound on cells with
strong visibility (corners). The situation is opposite for ϕo.

Implementation. In this case, the convergence occurs after
483 iterations of the inner dichotomy (computation of η(λ)).
The algorithm has been tested with its graphical user inter-
face. The convergence time is about 2 on a SUN computer,
using a single CPU “UltraSPARC-II” that runs at 360 MHz;
the convergence criterion was strong (a precision of 10−6).

5.2. A Comparison with de Guenin and Nakai

Since the constrained games considered in this paper are
middle links between a simple optimization (de Guenin) and
a pure game (Nakai), it is interesting to make a compari-
son between these three viewpoints by means of correlated
optimization/game examples.

Setting. In order to make the examples easily readable, the
bounding constraints are removed for ϕ. However, the bounds

are maintained for α. More precisely, the bounds are absolute
constraints for an optimization of de Guenin, i.e. α1 = α2.
Then, the bounds are gradually relaxed, i.e. α2−α1 increases,
until vanishing. Vanished bounds, i.e. α1 = 0 and α2 ≥ Ao,
make the constrained game equivalent to a pure game. Six
such games, gradually relaxed, have been considered. All
games are based on the same visibility ωx , as described in
Fig. 4.

The first “game” is such that α1 = α2 = ᾱ, where in the
prior ᾱ is described by Fig. 6. This case is equivalent to an
optimization of de Guenin, and the optimized value ϕo is
described by Fig. 6.

The subsequent games, with respective relaxation degrees
d ∈ {0, 1, 2, 3, ∞}, are defined with the bounds αd

1 = 2−d ᾱ1

and αd
2 = 2d ᾱ2, where ᾱ1 and ᾱ2 are two moderate distortions

of the law ᾱ, such that ᾱ1 < ᾱ < ᾱ2. The functions ᾱ1 and
ᾱ2 are represented in Fig. 7. For each game, the computed
saddle strategies are represented in Fig. 8.

Comments. For the small relaxation degree 0, it appears
that the optimal target strategy αo is still similar to ᾱ. The
same result holds for the strategy ϕo, which appears to be
quite similar to the solution of the simple optimization. But
with the increase in the relaxation, the target optimal strat-
egy focuses toward the lower center of the search space. As a
consequence, the observer follows by putting more resources
toward the center, although the visibility is bad. At last, the
fully relaxed game (i.e. Nakai’s game) is solved by an almost

Figure 7. Bound prototypes for α.
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Figure 8. Strategies with constraints relaxation on α. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

pure saddle point (the strategy αo and thus ϕo almost reduce
to a point.). Notice however that Nakai’s games are not solved
by pure saddle points in general.

Some additional comments could be made about the col-
ors associated with the strategies in Fig. 8. The main color

is green: for most cells, the bounds are not reached, result-
ing in a “true” saddle point. However, the blue (d = 0, left
and right borders) and the red (d = 1, 2, 3, lower center)
associated with αo have a particular meaning. In the case
of degree 0, the lower bound of α is very high and implies

Naval Research Logistics DOI 10.1002/nav
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Figure 9. No constraint on α + worse case exclusion. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

the most significant constraint against the target: the target
is forced to play in the most visible areas. The target will
minimize such play (blue color). In the cases d = 1, 2, 3, the
lower bound of α is rather small, but the upper bound is too
limitative in the less visible areas: the target is not allowed
to play here as much as it wants (red color). Conversely, the
lower bound is reached by ϕo on the same areas for d = 1, 2, 3
(lower center).

Pure game. In the previous example, the optimal strate-
gies of the pure game focused on a single cell, (15, 15).
The reason is that the visibility for (15, 15) was 10× lower
than for the other cells. In Fig. 9, the same game is opti-
mized, but the cell (15, 15) is removed from the play, i.e.
T = E \ {(15, 15)}. It appears that the strategies are no more
focusing on single cells.

6. CONCLUSION

Our aim was to solve a spatial resource allocation problem,
in a game context between the target and the searcher. A great
enhancement and a generalization of both Nakai’s game and
de Guenin’s optimization were obtained, by means of games
with constraints on the mixed strategies. This viewpoint is
versatile, allowing subtle modelling of the target and resource
behavior. It is not limited to simple priors on the available tar-
get location. The algorithm developed in this work is efficient
and is theoretically grounded.

A more general study of such games with constraints on the
mixed strategies should be investigated in the future. These
games are quite interesting, because they are related to a par-
ticular modelling of the prior knowledge in an optimization
problem. More precisely, an objective criterion for optimizing
a function, when the prior knowledge is probabilist (e.g. de
Guenin’s problem), is the optimization of the function mean.
This is a purely uncertainty-based prior. When the prior is
defined by a set of possible configurations of the variable,
the objective criterion is generally a (classical) game (e.g.
Nakai’s problem). This is a purely imprecision-based prior.

There are intermediate models for defining the prior about
the knowledge. For example, it is possible to define proba-
bilistic laws on imprecision intervals. Such models are a mix
of both uncertainty and imprecision. Our paper investigated
a particular case of mixed model. The definition of an objec-
tive optimization criterion related to a mixed prior modelling
is still an uneasy task. Games with constraints on the mixed
strategies could be good candidates.

APPENDIX A: COMPUTING α
ηλ

min, α
ηλ
max, AND ϕηλ

The purpose of this section is to give a systematic method for computing
α

ηλ

min, α
ηλ
max and ϕηλ, when duals η, and λ are given (proofs are left to the

reader). Theoretically, this problem is very simple, but the implementation
is not easy because a lot of cases have to be checked.

Let η < 0, λ ≥ 0, and x ∈ E. Five main cases are considered.

CASE I: p−1
x (λ) < ϕ1(x).

α
ηλ

min(x) and α
ηλ
max(x) are directly stated:

α
ηλ

min(x) = αηλ
max(x) = α1(x).

For ϕηλ(x), three subcases are considered:

CASE a: α1(x) <
η

p′
x (ϕ1(x))

. Then ϕηλ(x) = ϕ1(x).

CASE b: η

p′
x (ϕ1(x))

≤ α1(x) ≤ η

p′
x (ϕ2(x))

. Thenϕηλ(x) = p′
x
−1

(
η

α1(x)

)
.

CASE c: α1(x) >
η

p′
x (ϕ2(x))

. Then ϕηλ(x) = ϕ2(x).

CASE II: p−1
x (λ) = ϕ1(x).

Four subcases are considered here:

CASE a: η

p′
x (ϕ1(x))

> α2(x). Then ϕηλ(x) = ϕ1(x), α
ηλ

min(x) = α1(x),

and α
ηλ
max(x) = α2(x).

CASE b: α1(x) ≤ η

p′
x (ϕ1(x))

≤ α2(x). Thenϕηλ(x) = ϕ1(x),αηλ

min(x) =
α1(x), and α

ηλ
max(x) = η

p′
x (ϕ1(x))

.

CASE c: η

p′
x (ϕ1(x))

< α1(x) ≤ η

p′
x (ϕ2(x))

. Then α
ηλ

min(x) = α
ηλ
max(x) =

α1(x) and ϕηλ(x) = p′
x
−1

(
η

α1(x)

)
.

CASE d: η

p′
x (ϕ2(x))

< α1(x). Then ϕηλ(x) = ϕ2(x) and α
ηλ

min(x) =
α

ηλ
max(x) = α1(x).
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CASE III: ϕ1(x) < p−1
x (λ) < ϕ2(x).

First, define ϕL and ϕR by




α1(x) <
η

p′
x (ϕ1(x))

⇒ ϕL = ϕ1(x),
η

p′
x (ϕ1(x))

≤ α1(x) ≤ η

p′
x (ϕ2(x))

⇒ ϕL = p′
x
−1

(
η

α1(x)

)
,

α1(x) >
η

p′
x (ϕ2(x))

⇒ ϕL = ϕ2(x),

and




α2(x) >
η

p′
x (ϕ2(x))

⇒ ϕR = ϕ2(x),
η

p′
x (ϕ1(x))

≤ α2(x) ≤ η

p′
x (ϕ2(x))

⇒ ϕR = p′
x
−1

(
η

α2(x)

)
,

α2(x) <
η

p′
x (ϕ1(x))

⇒ ϕR = ϕ1(x).

Then, three cases are considered:

CASE a: ϕL > p−1
x (λ). Then α

ηλ

min(x) = α
ηλ
max(x) = α1(x) and

ϕηλ(x) = ϕL.
CASE b: ϕL ≤ p−1

x (λ) ≤ ϕR . Then α
ηλ

min(x) = α
ηλ
max(x) = η

p′
x (p−1

x (λ))

and ϕηλ(x) = p−1
x (λ).

CASE c: ϕR < p−1
x (λ). Then α

ηλ

min(x) = α
ηλ
max(x) = α2(x) and

ϕηλ(x) = ϕR .

CASE IV: p−1
x (λ) = ϕ2(x).

Four subcases are considered here:

CASE a: η

p′
x (ϕ1(x))

> α2(x). Then ϕηλ(x) = ϕ1(x) and α
ηλ

min(x) =
α

ηλ
max(x) = α2(x).

CASE b: η

p′
x (ϕ1(x))

≤ α2(x) <
η

p′
x (ϕ2(x))

. Then α
ηλ

min(x) = α
ηλ
max(x) =

α2(x) and ϕηλ(x) = p′
x
−1

(
η

α2(x)

)
.

CASE c: α1(x) ≤ η

p′
x (ϕ2(x))

≤ α2(x). Thenϕηλ(x) = ϕ2(x),αηλ

min(x) =
η

p′
x (ϕ2(x))

, and α
ηλ
max(x) = α2(x).

CASE d: η

p′
x (ϕ2(x))

< α1(x). Then ϕηλ(x) = ϕ2(x), α
ηλ

min(x) = α1(x),

and α
ηλ
max(x) = α2(x).

CASE V: p−1
x (λ) > ϕ2(x).

α
ηλ

min(x) and α
ηλ
max(x) are directly stated:

α
ηλ

min(x) = αηλ
max(x) = α2(x).

For ϕηλ(x), three subcases are considered:

CASE a: α2(x) <
η

p′
x (ϕ1(x))

. Then ϕηλ(x) = ϕ1(x).

CASE b: η

p′
x (ϕ1(x))

≤ α2(x) ≤ η

p′
x (ϕ2(x))

. Thenϕηλ(x) = p′
x
−1

(
η

α2(x)

)
.

CASE c: α2(x) >
η

p′
x (ϕ2(x))

. Then ϕηλ(x) = ϕ2(x).

APPENDIX B: PROOFS

In this section, it is shown that the inversion of Appendix A implies
the Propositions (11), (12), and (15). Since there are many cases, most
verifications are left to the reader.

Variation according to η. First, let us consider in Appendix A the
Cases I, II, IV, and V. In all these cases, the variable η increases with the
Subcases a, b, c, and possibly, d. Now, it appears that ϕηλ nondecreases from
a subcase to its sequel. It is also non decreasing according to η within each
subcase (since p′

x
−1 is increasing). At the same time, the variables α

ηλ

min and

α
ηλ
max do not increase from a subcase to its sequel, and within each subcase

(since p′
x < 0).

In Case III, ϕηλ is non decreasing because p−1
x is decreasing. Again, αηλ

min
and α

ηλ
max do not increase because p′

x < 0.
At last, ϕηλ is non decreasing according to η, while α

ηλ

min and α
ηλ
max are non

increasing according to η.

Variation according to λ. Notice that λ decreases with the Cases I, II,
III, IV, and V. It also appears that ϕηλ, α

ηλ

min, and α
ηλ
max do not decrease from

a case to its sequel (the subcases have to be put together properly). Now,
within the Cases I, II, IV, and V, ϕηλ, α

ηλ

min, and α
ηλ
max are constant according

to λ. Within the Cases III, ϕηλ, αηλ

min, and α
ηλ
max are non increasing according

to λ (because λ �→ η

p′
x (p−1

x (λ))
and λ �→ p−1

x (λ) decrease).

At last, ϕηλ, α
ηλ

min, and α
ηλ
max are non increasing according to λ.

Now, in order to prove (12), it is still necessary to verify λ1 < λ2 ⇒
α

ηλ1
min ≥ α

ηλ2
max. It is noticed that αηλ

min �= α
ηλ
max is possible only in the Cases IIa,

IIb, IVc, and IVd. These are the only cases that pose a slight difficulty. Now,
it happens that the property holds at the interfaces I/IIa, IIa/III, I/IIb, IIb/III,
III/IVc, III/IVc, IVd/V, and IVd/V, which end the proof.

For example, let us consider in detail the interface IIb/III. In particular,
let λ1, λ2, η be such that,

{
ϕ1(x) < p−1

x (λ1) < ϕ2(x) [Case III].

p−1
x (λ2) = ϕ1(x) and α1(x) ≤ η

p′
x (ϕ1(x))

≤ α2(x) [Case IIb],

(It is noteworthy that λ1 < λ2 since p−1
x decreases.)

Then, ϕL = ϕ1(x) and ϕR = ϕ2(x) in III.
From III, it is then deduced ϕL ≤ p−1

x (λ1) ≤ ϕR and α
ηλ1
min (x) =

α
ηλ1
max(x) = η

p′
x (p−1

x (λ1))
.

Now, from II, it is derived α
ηλ2
max(x) = η

p′
x (ϕ1(x))

.

Since ϕ1(x) ≤ p−1
x (λ1) and f �→ η

p′
x (f )

increases, it is deduced
α

ηλ2
max(x) ≤ α

ηλ1
min (x).

Thus, (12) holds for IIb/III.

Continuity. First, it is noticed that λ, η �→ ϕηλ, η �→ α
ηλ

min, and η �→ α
ηλ
max

are continuous according to the piecewise definition of Appendix A.
Now, there is more difficulty about λ �→ αηλ. When α

ηλ

min = α
ηλ
max, it is

easy to check the contituity of λ �→ α
ηλ

min and λ �→ α
ηλ
max. The problem comes

from the Cases IIa, IIb, IVc, and IVd, for which could happen α
ηλ

min �= α
ηλ
max.

In order to recover (15), it is just sufficient to prove

α
ηλ1
min (x)

λ1<λ2−−−−−−−−→
λ1→λ2

αηλ2
max(x) and αηλ1

max(x)
λ1>λ2−−−−−−−−→
λ1→λ2

α
ηλ2
min (x),

at the interfaces I/IIa, IIa/III, I/IIb, IIb/III, III/IVc, III/IVc, IVd/V, and IVd/V,
and that these convergences are locally uniform with η. These verifications
are left to the reader. However, we will consider in detail the interface IIb/III.

Let λ1, λ2, η be such that

{
p−1

x (λ2) = ϕ1(x) and α1(x) ≤ η

p′
x (ϕ1(x))

≤ α2(x) [Case IIb],

ϕ1(x) < p−1
x (λ1) < ϕ2(x) [case III].

(In this case, it is noteworthy that η belongs to a compact set.)
Then, ϕL = ϕ1(x) and ϕR = ϕ2(x) in III.
From III, it is then deduced ϕL ≤ p−1

x (λ1) ≤ ϕR and α
ηλ1
min (x) =

α
ηλ1
max(x) = η

p′
x (p−1

x (λ1))
.

Naval Research Logistics DOI 10.1002/nav



Dambreville and Le Cadre: Minimax Optimization of Continuous Search Efforts 601

Now, from II, it is derived α
ηλ2
max(x) = η

p′
x (ϕ1(x))

.

Since limλ1→λ2 p−1
x (λ1) = ϕ1(x), f �→ η

p′
x (f )

is continuous, and

η belongs to a compact subset of IR−∗, α
ηλ1
min (x)

λ1<λ2−−−−−−−−→
λ1→λ2

αηλ2
max(x)

uniformly with η.
Thus, (15) holds for IIb/III.
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