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Abstract

In the article, the radar acquisition problem, e.g. the determination of a directional energy allocation sequence, is studied. The radar search
pattern goal is the detection of a moving target whose initial location is approximately known. We have turned towards the general search theory
where the observer allocates indivisible search efforts while the target presence probability spreads due to its dynamics. A few years ago, a Branch
and Bound algorithm was proposed to determine the optimal sequence for a conditionally deterministic target. This operational research algorithm
supposes a negative exponential detection function and a one over N detection logic, meaning that the target is declared detected if it has been
detected once over a horizon of N looks. We have applied it to a narrow-beam tracking radar attempting to acquire a ballistic target. Non-trivial

search patterns, such as expanding-contracting spirals, are obtained.
© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Optimization; Search theory; Radar search pattern; Beam scheduling

1. Introduction

Target acquisition is a common problem for narrow-beam
tracking radars [1]. During the target acquisition stage, the radar
must operate in a search mode over a limited volume of space.
This limited volume corresponds to the prior uncertainty on the
target location. For instance, it can be provided by a hand-over
coming from other sensors or by an early-warning system for
an ATBM (Anti-Tactical Ballistic Missile) defence [6]. Typ-
ically, a cued electronic beam scanning radar must seek the
target in a 3-dimensional growing error basket. Therefore, the
radar needs to determine a sequence of pulses or looks in suc-
cessive appropriate directions. This sequence, determined over
a fixed temporal horizon, should optimize the chances to detect
the moving target, once or more times. There are classic acqui-
sition search patterns for agile beam radars, such as rectangular
raster scans [1], fence or ellipsoidal search patterns [6], which
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can be dedicated to various operational configurations. How-
ever, these semi-empirical patterns do not necessarily provide
the best search. Other patterns could offer a higher probabil-
ity of detection of the target or could require less resource or
energy. In this article, we investigate this scheduling problem
within the search theory framework.

Search theory [7,8,10] came into being during Wold War
IT with the work of B.O. Koopman and his colleagues [7] in
the ASWORG (Antisubmarine Warfare Operations Research
Group). Now a major discipline within the field of operations
research, it treats the following problem: how best to search
an object when the amount of searching efforts is limited and
when only probabilities of the possible position of the object are
given. Roughly speaking, the aim is to find a spatio-temporal
repartition of search effort in order to optimize the probabil-
ity of detection. In the initial framework of B.O. Koopman,
the goal was to compute a continuous spatial repartition of
the search efforts, the sum of efforts being bounded by a con-
stant. Later, multi-scan search strategies have been developed
for moving targets in the aim to maximize the probability of
detecting them within a fixed amount of time. It is quite usual
to model the target trajectory via a Markovian diffusion. No-
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ticeably, this problem reveals to be formidably difficult as far
as an iterative algorithm, called Forward And Backward (FAB)
[2] provide a feasible way to solve it.

And yet, due to the continuous repartition hypothesis, a di-
rect application of the FAB algorithm for the radar acquisition
issue cannot lead to a search pattern determination. The only
way to determine a search pattern is to consider that search
efforts are indivisible. Practically, we have also to adapt the
search cells to the radar beamwidth. Then, the search consists of
successive cell search moves which depend on the target proba-
bility of presence. As a matter of fact, this problem has already
been studied in the past. An integer search allocation start-
ing from the FAB algorithm has been suggested [12]. Yet the
most powerful technique [3,5] is a Branch and Bound (B&B)
approach. Generally, B& B methods are well-known exact op-
timization methods that consist in enumerating cleverly the so-
lution space. Also called implicit enumeration methods, their
aim is to divide the solution space in smaller and smaller sub-
sets, most of them being eliminated by bounding. In Hohzaki
and lida work [5], the B& B approach was developed above all
in the conditionally deterministic target dynamic case, i.e. when
the target dynamic is conditioned by a set of (random) parame-
ters. Practically, it is the good way [5] to represent the target
location uncertainty by a beam of possible trajectories and the
conditioning parameters may be the ballistic coefficient, the ini-
tial parameters of the reentry phase, etc.

The article purpose is the application of the Hohzaki B&B
approach to the radar acquisition search pattern issue. It is illus-
trated in the following application, the acquisition of a ballistic
target by a narrow-beam radar. The main assumption of [5] is
effectively checked: the target dynamic is conditionally deter-
ministic. We show how we adapt the B&B approach to the radar
acquisition issue. Besides, we especially describe an efficient
strategy search, i.e. an appropriate way to explore fastly the so-
lution space tree; which is a determining factor in the approach
efficiency.

The article is organized as follows. In Section 2, we present
essential and appropriate elements of the search theory frame-
work developed by Hohzaki and lida [5]. Among the main re-
sults, we especially stress the upper bound existence induced
by a relaxation method. In Section 3, we describe the intuitive
heuristic tree search that is part of the B&B algorithm. It offers
an explicit way to explore the tree made by the solution space.
Finally, in Section 4, we describe the application to the determi-
nation of a radar search pattern for ballistic target acquisition.
Various results emphasize the interest of this approach.

2. Search pattern constrained to a beam of trajectories

At first, let us say a few words about the acquisition prob-
lem with the intention of making this current section clearer
and more concrete. Notice that it will be further detailed in
Section 4. Assume that the search space can be divided into
a certain number of cells, whose sizes are linked to the radar
main beamwidth. Notice that each cell of the angular 2D grid
may not necessarily be provided with the same elementary de-
tection. Indeed, each cell may be dedicated at a given time to a

different area in range of the 3D real space and the radar detec-
tion capability is classically a function decreasing with range.
In straightforward terms, the radar goal is to perform a sequence
of scans or looks in order to maximize an acquisition probabil-
ity, which is a global detection function. This is undoubtedly
an optimization issue. On the other hand, the dynamic of a
non-maneuvering ballistic target is quasi-Keplerian before the
re-entry. Hence, the conditionally deterministic assumption is
checked. Moreover, for a cued radar using a hand-over infor-
mation, the initial position and the initial speed are known with
a bounded precision.

Actually, the optimization problem of the radar search pat-
tern perfectly fits with the formalism of Hohzaki and Iida [5].
Their formalism, based on a path formulation, was first sug-
gested by [3]. In this approach, each path is a possible trajec-
tory for the target, with an assigned probability. The paths go
through a certain number of cells in the observation space. Con-
cerning the searcher, a decision variable indicates which cell is
observed at each step of time. The optimization goal is to max-
imize the probability of detecting the target at least once. To
solve the combinatorial problem, Hohzaki and lida develop a
B&B search method. Note that this kind of method was be-
forehand suggested in [11,12]. In [5], the authors establish all
the required elements and especially develop a duality-based
method able to solve efficiently a relaxed version of the prob-
lem. It is subsequently massively used in their application of the
B&B technique.

Next, we introduce the search theory framework, developed
by Hohzaki and lida. The interest of a B&B algorithm is tightly
related to the accuracy of the bound in use. This bound is calcu-
lated via a relaxation of integrity constraints. This part is rather
intricate since it involves multiperiod optimization. So, it will
be carefully considered in the next section. We refer to [5] for
the full theoretical developments.

2.1. Search theory framework

We introduce now the fundamentals of the search theory for-
malism given by Hohzaki and Iida [5]. Notice that for clarity
we have chosen to simplify what is not relevant to our con-
text. Thus, for the sake of completeness, simplified proofs of
the main steps are provided. So, notations of the reference pa-
per (see [5]) will be adopted.

Assuming that the target moves among a finite number of
cells K=1,..., K in discrete time t =1, ..., T, let us intro-
duce the following points:

e A path w is represented by a sequence of cells {a)(t)}thl,
while w(?) is the cell in which the target is located at time

t.

e The target moves on a path w chosen with probability 7 (w)
among the finite set of possible paths £2.

e A searcher knows the probability law of the target paths
in advance and moves along cells K looking for the target.

From a time period 7 to period T + 1, the searcher is al-
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lowed to move from a cell i to one of the adjacent cells
I (i) and to examine only the cell where he is.!

e The conditional probability that the searcher detects the
target by looking at cell i at time 7, given that the tar-
get is there, is p(p(i, 7)) = 1 —exp(—«;@(i, 7)), where ¢;
is a visibility parameter in cell i and ¢(i, t) is the search
effort in cell i at time ¢. Notice that this exponential detec-
tion probability was firstly introduced in Koopman seminal
work. Here, the decision variable ¢(i, t) is equal to one if
the searcher looks at time ¢ into cell i, otherwise it is equal
to zero ({0, 1} search effort).

The searcher wants to find a search pattern, i.e. a sequence of
binary decision variables (or search efforts), which maximizes
the probability of detecting the target at least one time. At first,
let us formulate in equation (1) the probability of detecting the
target at least one time during period [1, ¢]:

t
Pl=1- Z 7 (@) exp|:—2aw(,)cp(a)(t), 7,'):| (1)

wes2 =1

The global criterion (2), proposed by Hohzaki and Iida, is:
Ri = P{ (¢.7). )

Consequently, the problem Py can be formulated in the fol-
lowing way:?

max R{((p) subject to,
@

K
9(5.0)=1;) pl.0=1, teT,
Po i=1 3)
el.0< > @G.t+1), ieK te[0,T—1],
JEI@)
@@, 1) €10, 1},

It is an integer optimization problem, with a concave and
separable criterion. Unfortunately, such an integer number
problem is known to be tough to solve. Hohzaki and Iida [5]
chose to apply the Branch and Bound method. This optimiza-
tion technique is well-known in the integer linear programming
field. It enumerates cleverly the solution space, using separa-
tion and evaluation steps. In order to bring the method into play
efficiently, it is necessary here to use an optimal value of a re-
laxed problem generated from the original problem PO as the
upper bound of the objective function. In the following subsec-
tions, we present concisely the B&B method and the associated
issues.

iekK, reT.

2.2. A Branch and Bound algorithm

Branch and Bound methods are exact optimization methods
that consist in enumerating cleverly the solution space. Also
called implicit enumeration methods, they aim is to divide the

' The “adjacent move” constraint is optional and will not be used in the ac-
quisition application.
2 I (i): adjacent cells.

solution space in smaller and smaller subsets, most of them
being eliminated by bound calculus before being constructed
explicitly. B&B methods can be applied to NP-hard problems
of common size where they are more effective than exhaustive
enumeration. Even if B&B methods can be quite different, they
all resort to the three following components: a branching rule
which separates and partitions the solutions, an evaluation or
bounding function which is the key factor to avoid the afore-
mentioned exhaustive enumeration and eventually the search
strategy which defines the next node to separate and the related
separation decisions.

Let us briefly describe the B&B method applied to the search
pattern program P0. While the tree of all possibilities is pro-
gressively being established, the method advances in the tree
diagram by forcing an integer constraint as it comes across each
tree level. The choice of the integer constraint is suggested by a
relaxation program, i.e. a derived program for which various in-
teger constraints have been put out. For each integer constraint
to force, the relaxation is performed over a time horizon, from
the next arborescence level to the end of the tree. Once the end
is reached with this iterative procedure, a bound is obtained (to
be reset each time a better solution is found). At this step, a
heuristic search is launched, which goes back and forth between
alternative paths. At that time, it is important to stress that the
method makes use of the fact that it is not worth going forward
if the relaxation is lower that the bound. Indeed, each path ob-
tained with the same prior integer constraint will have in this
case a lower value than the bound itself.

The B&B method is indeed a powerful technique, but it re-
quires several conditions. First, one should know how to split
the criterion, the first part of it being integer and the second
being real. Moreover, one has to make sure that the criterion,
split in this way, is congruent with the evolution of probabilities.
Indeed, since new a posteriori probabilities (knowing the first
observations) are to appear, the criterion need to be consistent
with them. Finally, one must ensure that the relaxed criterion is
greater than the global integer criterion, otherwise there is no
justification of the Branch and Bound procedure.

2.3. Criterion splitting and relaxation

In order to use the B&B method, it is necessary to define
relaxed problems for fathoming branches. Of course, such re-
laxation must lead to convenient bounds and (far) easier op-
timization problems. More specifically, relaxing integer con-
straints will allow us to consider optimization of differentiable
functionals. Even with this simplification, the problem remains
difficult since it is a multiperiod one. Again, it will be the FAB
algorithm which will be the workhorse.

First, it is necessary to define the a posteriori probability
A, (w) that the target takes path w and remains undetected up
to the period ¢, i.e.:

(@) exp(—=Y i @@ @(@(§), §))
= Plig.n)

A (w) = . @

Note that exp(— 22:1 uE)p@(&),§)) is simply the proba-
bility that a target following a path @ remains undetected up to
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the period #; while the denominator is simply a normalization
factor so as to ensure the condition ) o A, (w) =1.

As said previously, the B&B approach needs to know how
to split the criterion. The first part consists of integer decision
variables forced by the beginning of the chosen path, while the
second part consists of decision variables for which integer con-
straints are relaxed. Furthermore, if the splitting decision hap-
pens at time # 4 1, we need a formulation of the search problem
on the interval [r 4 1, T']. A simple adaptation of the detection
probability on [t 4 1, T] is:

T
PLi=1- Zn(w)eXp(— > aw(é)‘ﬂ(w(é)f))- ®)

wes? E=t+1
Therefore, the global reward on the interval [z 4 1, T'] is:
Rl =Pl (e ). (6)

Let ﬁtT +1((p, A;1) be a solution of the Py problem, which
is a relaxation of Py (where integrity constraints are relaxed)
on [t + 1, T]. The formulation of P1 is (with dual variables in
brackets):

max Ptil (¢, m) subject to:
¢

¢(s,0) =1,

K
P | 201, )

Vt €[t + 1, T] (dual variables: (7)),
p(i,1) >0,
Vi e K, Vt € [t + 1, T] (dual variables: v(i, 7)).

The following lemmas are fundamentals (see [5] for proof)
for partitioning.

Lemma 1. Partitioning the expected reward
R{ (¢, 1) = Ri(¢, ) + (1 = P{(p, m)R] (9, Ai). (8)

Proof. First, using Eq. (4) and the exponential properties, we
obtain:

1
Rl (o Am)=1— ————) 7(w)
R - P{(p, ) ;2

X exp[—iaw(t)w(w(t))} exp|:— XT: aw(f)w(w(r)):|.

=1 T=t+1

expl— 27ty 9@ ()]

9
Thus we have:
P{(p.m) + (1= P{(¢,m))R], (0, Arr)
_ pt 1 - Plt((p’ ) _ pt
=Pi(p,m)+ (41 — Pll((p,n) 1 —Pi(p,m)
T
- 7(w) ew(—Zaw(f)w(w(r))ﬂ
weNR =1
=Rl (p.7). O (10)

Lemma 2 (The partitioned bound). The following inequality
holds true:

RY (0, 1) <Ri(p, ) + (1 = Pl (¢, 1)) RL, (9, Ar). (1)

For a proof, it is sufficient to note that RtT+1(<p, Amr) <

f?;T +1(@, Agr), which is evident. Indeed, the interest of these
lemmas is to show that the criterion has a compatible structure
with the a posteriori probabilities, which results in an upper
bound when the variables of the second part are relaxed. This
bound will be used intensively for the B&B algorithm. Let us
now consider its calculation. The optimization problem we have
now to deal with is:

md‘?XP,i] (¢, ), subject to:

p K

Pio Y pn=1, t=r+1,....T, (12)
i=1
go(i’r)>0’ izls-"1K9t:t+l,--.,T.

This is now a classical optimization problem, for a differen-
tiable concave functional on a convex domain. A natural way to
solve it is to use duality. The Lagrangian (denoted L(¢)) of the
above problem is:

L(p) = R]\ (¢, Air)

T K
+ Y A(r)(l—Zm, r))
j=1

T=t+1

K T
+> Y vl DelU, ) (13)

j=1 t=t+1
Let us denote {¢* (i, )} 1), the solution of the primal problem

P/1 (see Eq. (12)). Then, Karush—Kuhn—Tucker (KKT) condi-
tions yield:

@) W
500, 7) (¢*Gi. 7)) =0,

v(i,D)e*(i, 1) =0, v@,7)>=0 Vi, V1.
Since the Lagrangian is a differentiable functional, we have:

Vi, V
LD (14)

o) o _ .
B(p(l,‘r) —Bl‘[exp[ al(p(l’r)] )\,(T)"‘U(l,f),
with:
Bimny=a; Y Am(@)8iur)
wes2
T
X eXP|:— Z do@p (o), E)] (15)
E=t+1,E5T

Notice that the Kronecker symbol §;,(r) (see Eq. (15)) there in-
dicates that the calculation of the partial derivative is restricted
to the target paths passing through cell i at step t. Thus, at the
optimum, KKT conditions yield for each time period t:
¢*(i,7) > 0= A(v) = B0y exp[—eig* (i, T) ],
@i, 1)=0
= B(i,r) exp[~0i¢™ (i, )] = A1) = (i, D) <M(D).
R/_J
>0

(16)
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Considering the strictly decreasing property of the exp(—o;x)
function, we have:

1) =0 " r) = o 5
(1, 1)>0=0¢ (,T _ai n D)
£ oy (D),
0 (i, 7) =0= ¢*(i, 1) < pg vy (M(D)), (17)

where:

Pa,7)(x) = B ) exp(—a;x).

The above condition makes sense since the objective functional
is separable which implies that the search efforts at period t (i.e.
@(i,7)) have no effect on the value of B(; ;). Thus, it has been
proved that the optimal distribution of search effort at period t
is defined by:

0", 1) =[G r, ()],

with: (18)
[x]+ =x ifx >0, [x]+ =0 ifx <O.

It remains to determine the convenient values of the dual pa-

rameters A(t) (¢t + 1 < v < T). To that aim, the following
property is instrumental.

Proposition 3. For every period t € {t + 1, T}, there exists a
finite Lagrange multiplier \*(t) such that:

K
S loik, (*@)], =1 and

i=1

0", T) = [p; (M (@®)],-

Proof. This means that all the constraints are satisfied for this
value of the dual parameter (1*(t)). Taking implicitly> into ac-
count the positivity of the search efforts ¢; ;) leads to consider
the following simplified Lagrangian, i.e.:

L(A(1), ) = RL (¢, Agm0)

T K
+ Z x(r)(l —Zw(j, r)), (19)
T=t+1 j=1

o, ) >0 Vi, Vr.

Thanks to the previous results, the dual functional 1 (A(7)) =
maxyL(A(7), ) is:

v (D) =Rl (9" (M(D), Arm)
T K
+ Z A(‘L’)( Z Js A7) ) (20)
T=t+1 j=1
¢* (i, 2()) = [ f)(/\(r))]

This is the dual functional and its great advantage is that our
problem is reduced to the minimization of a monodimensional

3 This means that the Lagrangian is defined on the (convex) domain of con-
straints ¢; ; >0, Vi.

functional. Furthermore, classical optimization results assert
that it is convex. From Eq. (17), we note that A(t) is nec-
essarily positive. When A(t) tends toward zero, then ¢*(i, 7)
tends toward infinity (see Eq. (16)). But it is easily shown that
A7) Zlel ¢@*(i, T) tends toward zero (see Eq. (16) and recall
that lim, _, oo Inx /x = 0), hence:

lim Y (1) =1- ) AT (@in)

M= wes2

T
xexp[— > aw@)«»(w@),s)]. 1)

E=t+1,64T
So, limy ()oY (A(1)) > 0, while

, Jim Z(p @) =

On the same way, there is a maximal value for A(z) (say
;). Examining Eq. (16), we see that A, is bounded above by
max; B(; ;). Furthermore, we have (see Eq. (16)):

> 9 () =0. (22)

jek

The function P ) being continuous, it is inferred that there is
a unique value of the parameter A(7) (say A*(t)) such that:

K
> s (@), =1. (23)
i=1
which ends the proof. O

Practically, 2*(7) is found by a dichotomy search among the
interval [0, A(7)] and is the solution of the dual optimization
problem:

A*(1) = arg mink(,)l//()u(r)),
¥ (A(1)) given by Eq. (20).

From classical duality results, we know that for the value of
A(t) minimizing ¥ (A (7)) the equality constraints (Eq. (12)) are
also satisfied.

Now, we must stress that the primal problem P/1 (see
Eq. (12)) corresponds to a multiperiod optimization. The only
feasible way for solving is to use a Forward And Backward op-
timization procedure [2,4], described in Fig. 1 and summarized
below:

(24)

T

e Forward: foreach t =¢+ 1, —, T, solve the dual problem
D: — ¢*(i, 1),

e Forward: update the B; 141, solve the dual problem D, 1,

e Forward:uptor =T.

e Backward: go back to r + 1 and reiterate the Forward
process, up to convergence.

Consequently, the first iteration of the FAB algorithm con-
sists in starting from a random feasible allocation ¢, solving the
dual problem (see Eq. (23)) at step T = ¢ + 1 (the other periods
being unaltered), taking account of the result, and then again
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1-st iteration (forward step)
1-st iteration (backward step)
2-nd iteration (forward)

t+1 T

141 $ )'( l»‘,-

Fig. 1. Principle of the FAB procedure.

solving in the same way at step T = ¢ + 2, etc. This leads to a
closed loop iterative process: once step T is reached, we start
over again backward until improvement remains sufficiently
great. For convergence analysis of the procedure, we refer to
[2,4].

3. The solution tree exploration

This section is dedicated to the search strategy, meaning the
way the algorithm goes round the solution tree, defines the
next node to separate and the related separation decisions. In
B&B methods, the search strategy is known to be decisive in
the global efficiency. We present here a heuristic search strat-
egy specifically designed for the former section problem. This
explicit search makes choices in order to obtain quickly an in-
ferior integer bound as tight as possible. In other words, the
heuristic distinguishes itself from an exhaustive search and at-
tempts to explore as less as possible the solution tree, taking
advantage of the bound information. It is important to empha-
size that, although the search strategy is a heuristic, the B&B
method provides in the end the optimal solution.

We choose here to show the search strategy principles by
illustrating its behavior in a basic example. After a first pre-
sentation without using the bound, we show how the heuristic
search manages to use the bound to efficiently explore the tree
of all possibilities.

3.1. A depth-first approach

On the left part of Fig. 2, the tree of all the possibilities is
represented in case of a search among 3 steps of time and 3
possibilities (i.e. 3 search cells). On the right part, we show
the algorithm initialization. For each step of time, a sort is per-
formed among all integer decisions for the current period, by
taking into account the past decisions and by relaxing the fu-
ture decisions. In this example, this leads to 3 sorts. The sort is

w

Fig. 2. Step 0 and 1 of the exploration algorithm.

s

W —

Fig. 3. Step 2 and 3 of the exploration algorithm.

represented in the decreasing direction (according to the crite-
rion), at each step of time, by the numbers 1, 2 and 3. The first
solution is obtained by making the best choice at each step of
time. Next, in this depth-first approach, the tree is going to be
explored by successive backtracks.

On Fig. 3, we show what happens next. On the left tree, there
is no alternative at time 3. The strategy is to go back to time 2
and to take the second alternative. Then, the heuristic search
uses again the depth-first procedure previously described for
the initialization. It finds the best solution that takes these new
constraints into account. On the right tree, it carries on with the
third alternative. On Fig. 4, since there is no possible improve-
ment at time 2 and 3, the search strategy goes back further until
time 1. There, it takes the second best alternative and starts over
the exploration again from this step of time, using the new con-
straints, etc.

3.2. The use of the bound

Let us start again the basic example to show how the search
strategy can take advantage of the bound. At time 1, the first
integer solution is obtained. It provides the first bound. Each
integral solution of bigger value is going to replace the bound.
At time 2, on the left part of Fig. 3, the best alternative is still
chosen, but this time, before going further, the algorithm ini-
tiates a test to know if the relaxation problem gives a higher
result than the current bound. If it does so, the search can be re-
sumed. Otherwise, it is not worth carrying on forward. Indeed,
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1,

y
®

Fig. 4. Step 4 of the exploration algorithm.

3
o---»0
4

[¥)

Fig. 5. Step 3 of the exploration algorithm using the bound.

if the obtained relaxation gives a result lower than the bound,
there is no possibility to get a better integer solution than the so-
lution whose value is the bound. Here, the obtained relaxation
has a larger value than the bound and consequently a forward
exploration is launched.

Fig. 5 represents the step 3: during the computation of the
third alternative, the relaxation has given a result lower than the
bound, therefore no search is launched. On Fig. 6, during the
second alternative computation at time 1, once again the relax-
ation is lower than the bound and no exploration is launched.

4. Application to ballistic target acquisition

In this section, we describe the application of the B&B
method to the determination of the optimal search pattern for
the radar acquisition of a ballistic target. The assessment sce-
nario is described in Fig. 7. Similarly to [9], a cued narrow-
beam radar is located near the objective. It attempts to acquire
an Inter Continental Ballistic Missile (ICBM) in the aim to track
it during its re-entry. At one point, the radar gets a hand-over
coming from upper sensors, such as the early warning system
[6]. Typically, the hand-over consists of an estimation of the
target position and velocity. The radar may need to update the
information and predict the target trajectory at the time of ac-
quisition. In Fig. 7, the 3-dimensional error basket represents
the (30) error ellipsoid envelop. Basically, the incertitude on the
target position is growing, due to the incertitude on the speed.
To acquire the target, the radar beam scheduling process must
lead to a sequence of looks or scans in appropriate directions. In
a very close context, [6] briefly mention the “ellipsoidal scan”,

Fig. 6. Step 4 of the exploration algorithm using the bound.

error
basket

e Objective
=" ground
A trace

Fig. 7. The acquisition scenario.

where the successive overlapped beams are uniformly arranged
to cover the error ellipsoid projected onto the radar angular co-
ordinate system.

After the enumeration of the main scenario assumptions, we
present the required modeling adaptations to fit to the developed
search pattern optimization approach. Finally, we present the
obtained results.

4.1. The acquisition scenario

In this subsection, we enumerate the main simple simulation
assumptions about the target and the radar. One must notice
that the following values are arbitrary, most of them coming
from [9].

4.1.1. The ICBM target
e Long-range trajectory with [y =25° — V = 6800 ms~!] at
120 km altitude (see Fig. 7).
e Simulated dynamics (ballistic with drag [9]): gravitation
(spherical Earth), atmospheric density (exponential).
e Re-entry deceleration: constant ballistic coefficient (8 =
5.107* m>kg™ ).
Target RCS (Radar Cross Section): o = 1.5 m? (in the radar
band).
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4.1.2. The cued narrow-beam radar

e Situated at the impact point (see Fig. 7).

e Target acquisition below 120 km altitude (time 0) with a
1 Hz scan rate.
Main lobe beamwidth: 0.6° in both azimuth and elevation.
Detection range: compatible with the target acquisition at
120 km altitude.
Acquisition requirement: at least one detection over the
scans.

4.1.3. The hand-over features
e Position incertitude (when the target is at 120 km altitude):
3000 m (1o).
e Speed incertitude (when the target is at 120 km altitude):
3000 m (1o).

4.2. The modeling adaptation

4.2.1. The beam of ballistic trajectories

As described in Section 2, the trajectory incertitude is mod-
eled by a set of possible trajectories, each of them being com-
patible with the hand-over information. Practically, it consists
in generating random initial conditions at time 0, according to
the position and speed ellipsoidal incertitude. Then, the set of
possible trajectories is created by using an ODE solver (cf. bal-
listic propagator [9]).

4.2.2. The detection function

Let us recall the elementary detection criterion: pe ) =1—
exp(—a(r)), if the searcher looks inside the cell w(t) at the
current time . We assume here that the visibility parameter is
straightforwardly linked to the Signal to Noise Ratio (SNR), i.e.
Qy(r) = SNR. This simplification, compared to more complex
expressions [1], is reasonable in the current context since the
SNR does not vary much.

For a monostatic radar, the link between SNR and the range
R, as well as other parameters (target RCS o, radar power,
pulse duration, etc.), can be expressed in simple terms by the
so-called radar equation (Ref. [6]):

o 8§20

where R is the target range to the radar and £2y is a synthetic
term taking into account all the other terms. As told previ-
ously about the detection range, £2y is beforehand tuned in the
scenario simulation so that the detection probability is good
enough at acquisition time.

4.2.3. Target and search spaces

In Fig. 8, we present the space cutting in (azimuth, eleva-
tion, range) along a spherical window. The beam is represented
in blue and is characterized by its direction, i.e. azimuth and el-
evation values.* To simplify, we assume here that the beam is
squared with no overlap.

4 For colours in figures see the web version of this article.

— — possible trajectory

—— possible path

unit spherical N radar
window -

Fig. 8. The radar search cells.

Fig. 9. The optimal search pattern.

The target moves in the 3D space. The visibility function
can be computed for each path in function of the range, azimuth
and elevation. The search space is 2D, in azimuth and elevation.
The grid is defined according to the beamwidth. Furthermore,
the search space bound is obtained by considering the beam of
possible trajectories. That defines the number of required cells
of the search space.

4.3. Radar search pattern results

Let us first mention that the search space is in this example
a checkerboard of 4 x 4 cells. The radar allows itself 10 scans
or looks to acquire the target, meaning here to detect it at least
once. On the other hand, the beam is made of 80 random trajec-
tories representing the radar incertitude on the target.

‘We show on Fig. 9 the optimal search pattern. In order to cor-
rectly visualize the error ellipsoid expansion, we add artificially
the time as a new dimension to the space search dimensions.
In this specific case, the optimal search pattern turns out to be
an expanding-contracting spiral. At the beginning, the search
visits the extremities of the diffusion cone. Next, after having
reduced drastically the posterior probability of presence there,
the search goes towards the cone center. The a posteriori uncer-
tainty cone section is represented by a blue dot circle.

In Figs. 10-12, we show the solution evolution during the
B&B algorithm, starting from the first solution to the final op-
timal (0-1) solution. Notice that this first solution is not the
myopic search, but the first integer solution, i.e. the depth-first
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Fig. 10. The initial solution.
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Fig. 11. An intermediate solution.

algorithm initialization. In Fig. 13, the evolution of the detec-
tion probability is represented. The optimum is found after a
few tens of tentative progress. We have compared the optimal
search to a heuristic search, called myopic search. The myopic
strategy consists in choosing, at each step of time, the cell with
the highest a posteriori probability of presence. The detection
probability for the myopic method and the B&B method are re-
spectively 77% and 74%. The difference is here low, around
4%. It may be higher in other situations. Notice that the total
(unfeasible) relaxation is more than 86%.

Concerning the computation load, it depends on the problem
complexity, i.e. essentially on the number of possible search
cells and the number of scans. As the search pattern can be
computed off-line, there is no severe requirement. Yet, we have
observed that the B&B method runs up against difficulties when
the scan number is higher than a few tens. Indeed, the method
is not able to overcome the combinatorial explosion. It is there
possible to set up a sub-optimal adaptation of the B&B algo-
rithm, as in [10].
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Fig. 12. The final optimal solution.
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Fig. 13. The evolution of the detection probability.
5. Conclusion

An efficient Branch and Bound method has been applied to
the optimization of the sequence of looks. The method con-
sists of an adaptation of search theory and above all of Hohzaki
and Iida works [5]. It has been tested in the situation where a
narrow-beam radar attempts to acquire a long-range ballistic
missile from an upper sensor hand-over. The powerful dedi-
cated algorithm is able to provide the optimal search pattern
solution in a limited amount of time. In certain conditions,
the search pattern proves to be an expanding-contracting spi-
ral which first visits the extremities of the diffusion cone and
later concentrates gradually on the center.

Numerous “simple” extensions could be proposed to the de-
scribed Branch and Bound method. A sub-optimal adaptation
could be carried out to deal with tough combinatorial situa-
tions. Besides, the method could benefit from the introduction
of cost functions, the generalization to Markovian targets, etc.
A markedly harder extension would be to take the confirmation
matter into account. Similarly to [8], it could consist in substi-
tuting the one detection at least rule for a “p over n” detection
rule.
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