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Abstract

We address here the classical bearings-only tracking @no§BOT) for a single target, issue that belongs to
the general class of nonlinear filtering problems. Receatfjorithm-based sequential Monte-Carlo methods (dartic
filtering) have been proposed. However, Fearnhead haswauk#rat in practice this algorithm diverges. This problem
is investigated further in this paper. We show that this pime®non is due to the unobservability of the distance
between the observer and the target. We propose a new hlgaramed hierarchical particle filter which takes into
account this aspect of the BOT. We demonstrate that thislfittee architecture largely overperforms the classical
one. Moreover, these results are confirmed when consideigidy maneuvering target scenarios. Finally, we propose
a general architecture based on Monte-Carlo methods ferifii§ initialization, able to accommodate poor prior and

complex constraints.
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NOTATION

LP(C): Logarithmic Polar (Coordinates),

MP(C): Modified Polar (Coordinates),

BOT: Bearings-Only Tracking,

MCMC: Monte Carlo Markov Chain,

xi: is the relative target state in the Cartesian coordinageesy,

yi. is the relative target state in the LPC system,
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X*: denotes the transpose of mati
¢: Dirac é-function,

- time period,

Id,: n x nidentity matrix,

®: Kronecker product,

0 1
F: F = Id, + n,B with B = ® Idy,
0 0

) : @z a2 . 7} n2
Q:Q=X®Idywith¥ = . In practice,as = 3, ag = 3 etag = 1.
Qo (1
—sinfB cosf

Rg: Rg is a rotation matrix defined in the following waR s = .
cosf sinf

INTRODUCTION

A common denominator to passive systems is that obsergatiomreduced to bearings. This is true for
systems as varied as passive sonar, Electronic Supportukésasnt (ESM) or Infrared systems (FLIR).
Collected bearings are used to infer the target trajectdhyis tracking problem has been of continuous
interest for the past thirty years. The aim of Bearings-Amfcking (BOT) is to estimate the target trajectory
(a sequence of states) using noise-corrupted bearing negasnts from a single observer. Target motion
is classically described by a diffusion motisb that the filtering problem is composed of two stochastic
equations. The first one represents the temporal evolufitimedarget state (position and velocity), called
state equation. The second one links the bearing measurémthe target state at time k (measurement
equation).

One of the characteristics of the problem is the nonlingafithe measurement equation so that the clas-
sical Kalman filter is not convenient in this case. To addtkissproblem, two methods have been proposed
in the early 70’s: the Extended-Kalman Filter (EKF) and teeymlo-measurement approach (PMF)[2]. Both
methods are based on the transformation of the measurempeatian. However, these methods still suf-
fer from limitating drawbacks, especially when the problisnpoorly observable. Thus, the EKF remains
relatively unstable due to poor radial distance obseritgbit’hile the pseudo-linear estimator in the same
conditions suffers from bias. A large number of methods Hasen proposed for improving these algo-
rithms. Among them, one can cite the Modified-Gain Extendatiian Filter (MG-EKF) [3], the Modified
Polar coordinates Extended Kalman Filter (MP-EKF) [4] anel Range-Parameterized Extended Kalman

'see [1] for an exhaustive review on dynamic models



Filter (RP-EKF) [5] which are some EKF extensions aiming efirdng more robust tracking algorithms.
These three methods share a common objective which is tantakaccount the poor observability of the ra-
dial distance. On the other hand, in the early 90's, a newtypeethod, fundamentally adapted to nonlinear
filtering issues, has been developed. This new approachedhaeguential Monte Carlo method, has been
initiated by Gordon et al. [6]. This method is a combinatidvarious techniques, namely Monte Carlo in-
tegration, importance sampling and resampling technigésle the first application of particle filtering to
bearings-only tracking can be seen in [6], Arulampalam aistidy 7] have demonstrated the superiority of
such a method over more classical Kalman approaches (RPMRIEKF). For an introduction to particle
methods, we refer to Doucet et al. technical report [8] anthéoexcellent tutorial of Arulampalam et al.
[9]. An interesting compilation of articles about partiikering methods can be found in [10].

However, the problem remains far from being solved for tipiec#fic context. We shall demonstrate
the limits of particle methods in section Il. Indeed, there some relatively simple scenarios for which
the particle approach remains inconsistent. One can obskeat at some point in time, the particle filter
diverges. This has already been noticed by Fearnhead in Fidyv could we explain this phenomenon?
Historically, the particle approach was applied using thelimear specificity of the BOT. But this is not its
only specificity. Another fundamental issue is the unobeeitity 2 of the target-observer distance, which
is called radial distance. We shall demonstrate that thissatal specificity, which is not taken into account
in the particle approach, could be the reason why the algorfierforms so badly. Numerous publications
dealing with the problem of unobservability -in the BOT cexit have been published in the 80's. In this
respect, Aidala and Hammel [4] proposed, as early a#3 a seminal approach. The key idea was to
use a novel coordinate system (namely Modified Polar Coate#) to analyze and overcome the problem
induced by poor radial observability. The fundamentalrigge of this system is its ability to separate the
observable components from the unobservable componetite tdrget.

The aim of this paper is to take benefit of the ideas developedithala and Hammel by immersing
them in a Particle Filtering framework. In this way, a specfbordinate system named Logarithmic Polar
Coordinates (LPC) will be of constant use. This new coorirsystem has been developed by Bréhard et
al. in [12] for deriving closed-form formula for thposterior Cramér-Rao bound. We use here the LPC
framework for analyzing the weak performances of the parfidter. Furthermore, it provides a natural
way for solving the BOT problem via hierarchical particle filter. We shall demonstrate in section IlI
that this new filter is able to solve the divergence problerfnthe classical particle filter. These results
will be confirmed in section V while using a more "difficult” epario, this one being characterized by a

20r at bespoor observabilityas long as strong observer maneuver does not occur.



maneuvering target.

Particle filter initialization is a classical problem, pyoevoked in the literature. It is generally assumed
that the initial law is very informative -which is clearlyrfrom reality- to cover the support of the initial
distribution. A classical remedy is to consider grid-bassethods, which require to draw a huge number
of particles. Thus, the aim of section IV is to show how eadyg tb gather our hierarchical particle filter
architecture with a simple MCMC method for track initialian. In this new setup, prior is limited to radial
distance and target speed lower and upper bounds. Our megindoke referred to [13], [14], [15] and [11],
which suggest using a sampling method based on the likalitioked to the observation equation. Thus, the
objective is to use aatcH method so as to initialize the tracking process in a "cleveay. Here, a definite
advantage of MCMC methods is their ability to explore the lglsiomain of solutions (here the posterior
density), while taking benefit from informative constrainfor a complete presentation, we refer to [16].
The Markov chain can be simulated either by a classical HigstMetropolis algorithm or by Hit-and-Run
sampling [17]. The advantage of the latter method is itstgliib take into account complex constraints as

target route, map, operational requirements, etc.

The paper is organized as follows. A general presentaticheoBOT problem is presented in the first
section. We shall demonstrate in section Il, via simulatjotiat the classical bootstrap filter does not
perform satisfactorily for poorly observable scenariogrefor perfect initialization. We define in section
Il the LPC and develop a more robust filter based on a hieieathrchitecture, named hierarchical particle
filter. We show in the same section the superiority of thisagph compared to the more classical bootstrap
filter. The problem of filter initialization is dealt withinestion IV. We propose a method based on the
Hasting-Metropolis algorithm. This method in particulaakes it possible to initialize the filter even when
the knowledge on the initial state of the target is poor. Iyasection V presents some complementary
simulations. The initialization method developed in sattlV is integrated within the hierarchical particle
filter architecture and used for tracking a maneuveringetariVe will show that the performances of the

hierarchical particle filter largely exceeds that of a tiiadial particle filter.

I. THE PROBLEM

Let us consider the following problem, described in figureAln object evolves in a x-y plane. One
wishes to estimate the position and the speed of this oljestay time period. We have a moving observer

providing at each period a relative bearing measurement.



Target Target
N N
!

TL/»

Observer (a) Observer (b)

Fig. 1. An example of object trajectory. At the initial timeniod (a), the observer-target bearing measuremexpt is

Then, at the next time (b), itig, etc..
Let us start by defining the target state in Cartesian coaténat time k:
t
<2 [ ) ) R R | M

composed of the position and speed of the target ir:they plane. In the same way, we define the observer

state at time k:
obs A obs obs obs obs !
XE 2| s (k) rbs (k) oot(R) w(k) | - 2)
Assuming that the observer state is known, rilative target state is:
A tgt obs A ¢
xe 20 =X 2 [ (k) (k) k) o, (R) | 3)

Throughout this paper, we will be concerned with the estionaftracking) of thisrelative state vector.
The observation equation.
Denoting z;, the bearing measurement received at timdhe target state is connected to the angular

measurement via the following equation:
2k = h(xg) + wi 4)
where:
h(x};) = atan2 (ry(k),r2(k)) (5)

whereatan? is the four quadrant inverse tangent. This equation is géljaralled measurement equation.

It is supposed thaiy, is a centered Gaussian noise of known variaf%:e



The state equation.
To solve the problem, it is supposed that we have some intiwmabout the target trajectories. It is

usual to model our uncertainty by the discretized white emaisceleration model:
Xy = Fx +ovi v~ N(0,Q) (6)

The process noise structure is represented byGthmatrix, its intensity is ther scalar. The matrices F
and Q are specified in the notational subsection. Dependinthe application, a wide variety of target
dynamics has been considered in the literature (see [1]jveder, the model (6) is quite relevant for our
applications. If thes factor can be considered as mainly conceptual, it is moriglgehing to consider
(6) (with a convenient) as a majorizing model (see Hernandez et al. [18]). In aatuitive will study the

evolution of the target relatively to the observer. Also,imteoduce the evolution equation of the observer:
lefl = szbs —u, @)

whereuy, stands for the part of the observer state due to the conttohatperiod controk. Combining

equations (6) and (7), the relative evolution equation efttrget is obtained:
X1 = Fxp +ug +ovy . (8)

The state covariance is unknown. However, we assume classically that o4, SO that we use in

practice the following equation:
Xp1 = FXp + ug + Omaa Vi - 9)

Equations (4) and (9) form the framework of the BOT filteringldem. One can notice right now that
we are confronted to a nonlinear problem of filtering. The Bdbjective then appears clearly. We have
to estimate the law of the trajectory until time k notegl, = (xo,...,x;) knowing the observations
z1.; = (21,...,2,). The associated density, denote(k..|z1.x) is namedposterior density. Obviously,
from a filtering point of view, it can be sufficient to deal withe posterior density associated with the
current state, i.ep(xx|z1.x)-

Lastly, let us finish this presentation of the BOT by mentignihe problem of unobservability of the dis-
tance between the observer and the target i.e. the rangeguks ## shows it, to a given set of measurements
z1., corresponds a set of trajectories. Three of them are repiess on this figure. This type of ambiguity
can be offset by an observer maneuver. However, there axrisigaous maneuvers so that maneuver is a

necessary but not a sufficient condition [19].
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Fig. 2. An observability problem. To a given set of measuneisiéa) corresponds a set of acceptable trajectories for

the target. Three of them are represented on figure (b).

[1. LIMITATIONS OF THE PARTICLE FILTERING APPROACH FOR THEBOT

It is at the beginning of the 90’s, that Gordon et al. [6] pregd an algorithm for the problem of stochastic
filtering in the non-Gaussian nonlinear case, namely thestrag filter. We consider in this section various
representative BOT target tracking scenarios, tendinp@gavghat the traditional particle filter suffers from
severe drawbacks, even for relatively "simple” scenariost us specify the two performance criteria we
will use thereafter. Firstly, we will look at the evolutior the Mean Square Error (MSE) in the course of
time, defined in the following way:

Definition 1 (MSE) At timek, the mean square error is defined by:

MSEy = E{(xx — Xz)" (xx — %)} - (10)
However, a second index of performance, integrating theejotof confidence area, is also meaningful. The
idea consists in estimating the probability that the stath@target is in the area of confidence associated
with the posterior law. It will be said that the algorithm diverges if this prdiiity is lower than1 — a.
More precisely, this criterion is defined as follows:

Definition 2 (divergence)At a given time period, a divergence criterion is defined by:
Dy, 2 P (x4 — %) S (0 = %) < ko) <1—a, (11)

wherex;, X, and 3, are respectively the true target state, its estimate (ragkand the variance of this
estimate deduced form tpesteriordistribution. Scalar, denotes the fractile of the Chi square distribution
with n, degrees of freedom at the leveln,, is the size of target state.

This definition is based on the construction of a confidenea.aOf course, a convenient approach would

consist in using the Central Limit Theorem for sequentiahtéeCarlo methods as derived in [20]. However,



the estimation of the asymptotic covariance in this conteatdifficult problem. To overcome this problem,
one assumes(xy|z1.;) ~ N (f{k, Ek> so that(xy, — xx)'3; ! (x1. — %y,) follows a Chi square distribution
with n, degrees of freedom.

Three scenarios, of passive sonar type, inspired by thelaimns suggested in the work of Ristic et
al. [21] are studied. These scenarios are differentiatedabipus target behaviors. Scenario constants are
summarized in table I. For the three scenarios, the targebbserver trajectories are represented by fig. 3.
Moreover, this same figure represents measurements ohbeagceived by the observer in the course of
time. One can notice that the evolution of measurements arefig3(b.1), 3(b.2) and 3(b.3) is very different
according to the scenario considered. This has signifieardaguences on the variance of estimation of the
trajectories. To figure the effects, let us recall the cohoéfpcal observability in the BOT context studied
firstin [22]. It has been shown (see [23]) that the deterntinéthe Fisher Information Matrix (FIM) locally

admits the following approximation:

det(FIMy) ~ —-< (45 + 265y — 367) | (12)
Bk

whereg; is the relative angle between the target and the observenait Termsg, 5 and denote the
first, second and third order derivative @f This formula indicates that the variance of estimatiorovgdr
for scenarios with "large” bearing rates in the course oftirtt is meaningful to rank the three scenarios.
The first scenario is the most difficult (very weak bearinggyawhile the bearing-rate (and bearing-rate
change) is rather large for the third scenario, the secordeing of intermediate difficulty. This remark is
illustrated by a comparison of the Posterior Cramér-Raor8id12] for each the three scenarios in fig.4.

A bootstrap filter is applied with the constants summed umbiet Il. The initial cloud of particles is

sampled in the following way:
x(()i) = réi) cos ﬁoi) r(()i) sin ﬁéi) U(()i) cos ﬁ(gi) véi) sin ﬁ(gi)
where:
Yo~ SN0,

r((f) ~ 19+50N(0,1) (in meters) (13)

o)~ Wy +0.0LN(0,1) (inmis).
Let us notice that to initialize this set of particles we use values-y andvg i.e. the initial distance and
relative speed. We choose here to initialize the particlerfby using the true initial state of the target in

order to show that the problem of divergence of the bootdihap within the framework of the BOT is not

due to a bad initialization of the algorithm.
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Fig. 3. Three scenarios for the BOT. Representation of tiedtories of the observer (dotted line) and the target
(solid line) for scenarios 1 (a.1), 2 (a.2) and 3 (a.3) andwi@s measurements obtained in the course of time, (b.1),

(b.2) and (b.3).
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TABLE |

CONSTANTS FOR THE THREE SCENARIOS

(1 knots~ 0.514m/s)

Scenariol Scenario2 Scenario 3
r94(0) 5 km 5 km 5 km
i (0) 0 km 0 km —10 km
v9'0) 1.3 knots —1.3 knots —1.3 knots
v (0)  —3.7 knots —3.7 knots 3.7 knots
r255(0) 0 km 0 km 0 km
rob(0) 0 km 0 km 0 km
v®5(0) 0 knots 0 knots 0 knots
vzbs (0) —4knots  —4knots  —4 knots

o 0.001m/s  0.00lm/s  0.001m/s
o3 1.5 deg 1.5 deg 1.5 deg
Nk 60 s 60 s 60 s
% scenario 1
I scenario 2
scenario 3

-

i I
] 1000 2000

i i L
3000 4000 5000
time

000

Fig. 4. Comparison of the trace of tResteriorCramér-Rao bound for the three scenarios

TABLE Il

BOOTSTRAP FILTER CONSTANTS

constant value
N(number of particles) 10000
Nihreshold %

Omax 0.01 m/s
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The performance indice®/ S £, andD;, defined by (10) and (11) are calculated by Monte-Carlo istegr
tion (the experiments are repeated 100 times). Figures1)3(8(a.2) and 13(a.3) present the evolution of
Dy, in the course of time. One can notice tH3t decreases quickly for the first scenario. In other words,
at the end of a certain time, the probability that the trutestd the target is in the area of confidence built
by the bootstrap filter is zero. Let us precise this point nBigure 5 shows examples of estimated trajec-
tories obtained for scenarios 1 and 2. One can see that theséihaf particles is not centered around the
true position so that the confidence area built by the bagidtiter does not contain the true trajectory any
more. Moreover, the range is overestimated in the threescdges conclusion is rather disturbing and not
intuitive. Many tests were carried out using various camtstéor the bootstrap filter (the number of particles
N and resampling threshol;;,..sn014), l€ading to the same conclusion.

This problem has been rarely evoked in the literature, Fesmi's PhD thesis [11] being a noticeable
exception. Indeed, "classical” scenarios include an alesenmaneuver at the beginning of the scenario so
that the radial distance is observable. One can thus rellgotiénk that the divergence of the traditional
particle filter is directly related to the radial distanceobservability. We propose in the following section
to study the filtering problem associated to the BOT by usmmjlzer coordinate system in order to develop

a better understanding of this phenomenon.

5000

-5000 2 -5000

coordinate in meters

> -10000
3

-15000 al -15000

I I I I I I I I I I I I I I
-05 0 05 1 15 2 25 3 35 -05 0 05 1 15 2 25

Rx coordinate in meters x10* (a) Rx coordinate in meters x10' (b)

Fig. 5. Divergence of the bootstap filter. Representatidh@festimated trajectory of the target (dashed line) as well
as confidence areas at various moments. The true trajedttivg target is the solid line, the trajectory of the observer

the dotted line. The set of particles at the final time is @digpt. (a): scenario 1, (b): scenario 2

I1l. PARTICLE FILTER APPROACH FOR THEBOT: SOLUTIONS

As previously seen the robustness of the bootstrap filtesng disappointing, even for "simple” scenarios

and perfect initialization. Not surprisingly, it will be elvn now that it is the poor observability of the radial
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distance which is at the origin of this problem. Our approaafsists in rewriting the filtering problem (4,8)
within a new coordinate system, namely the logarithmic poteordinates (LPC), defined in the following
way:

Definition 3 (LPC) The target state, in logarithmic polar coordinates, is defiras follows:

. t
Ye=| Be pr Bk Pk] (14)

where(, and p;, are respectively the bearing and the logarithm of the rekailistance between the target
and the observer at time; 3;, et j;, are respectively the time-derivatives/&fand pj,.

The transition formulas from Cartesian coordinates to fidigaic polar coordinates (LPC) are given

below:
[ cos Ok ]
sin G
xi = f(ye) = | . (15)
— Bk sin Bk, + pr, cos Py
| Brcos B + prsin B |
and
atan2 (ry(k),r (k:)) B
In (/r2(k )—|—r2(k‘) Ok
yi = fP() = < ) =1.1 - (16)
rz(k)vy (k) —ry (k)v (k) 3
r2(k)+r2(k) k
vz (k)ra (k) +ry (k)vy (k) ;
2R k) [Pk
This coordinate system is very close in spirit to the modifiedar coordinates pioneered by Aidala

and Hammel in [4]. The inverse of the radial distance has beplaced by the logarithm of the radial
distance. We can notice that Aidala and Hammel used thislowtie system in [4] precisely to understand
the divergence of the Kalman filter. For the particle filteg, will also use a similar approach. Rewriting the
filtering problem (4,8) in logarithmic polar coordinateglis:

Proposition 1 (formulation of the problem of BOT)he problem of bearings-only tracking described by

the filtering problem (4,8) can be rewritten in the followifogm:

ﬂk + atan2 (Sl(k}), Sg(k)) R
Pht1 pr + 5 In(S3 (k) + S3(k)),

Br+1 _ L Sa(k) —Si(k)| [Ss(k)
Pria CHOEEO g ) Solk) | [Sak)|

2k = B+ wyg

Br+1
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where:

S1(k) Bk
Sa(k 1+ ngp 1
2(k)| _ O L ay o Ry + v (17)
S3(k) Br "k "k
Sak)] [ Ak

R g, is the 2D rotation matrix with anglg;, defined in the notation section. Moreover, by definition ef th
LPC,r, = eP* (r; is the range at timé).
PROOF OF PROPOSITIONL: It consists in rewriting the dynamic system (4,8) by uding transitions for-

mulas (15) and (16). The complete proof of this result is giveappendix A

Formulation (17) is particularly interesting. One can ocethat the terrr?f’; is a scale parameter governing
the diffusion noise. In other words, as long as the obserees dhot maneuver, the BOT problem is a
nonlinear filtering problem, with unknown arighe-varyingcovariance. Moreover, this last term cannot be
controlled via the measurement equation, while it is dejpendn the radial distance. We will now try to

understand to what extent this structure is at the origimefdifficulties encountered by the bootstrap filter.

A. Understanding the divergence of the traditional pa#itilter

We remind that at the initial time, the particles are uniftyraispersed in terms of radial distance between
a minimal distance and a maximum distance. However it sebats &fter a certain time, the particles
corresponding to large radial distances are over-weightedparticles corresponding to smaller distances
then disappear during the state of resampling. Howeversthige consists only in keeping the particles that
have high weights. To understand the divergence problenthuwsepropose to integrate a temporal aspect

and to study the behavior ofzx 1|y ). First, let us notice that thanks to Prop.1, we have:
Zht1 = Pk + atan2 (S1(k)S2(k)) + wg (18)

quantitiesS; (k) and S (k) being defined in Prop. 1. Though (18) is nonlinear, a converrdpproximation
obtained via a first order expansion is:
0Nk

21 R Bepe+ ——= Uk + Wi (19)
7k 9(Bks Pr)
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where:

Brtae = P+ atan2 (nkﬁk, 1+ Ukpk> ;

VOuB? + (14 mpn)?

Tnepr () _ _meBe(4)
9Grpr) Tk gBpe) E

9By, pr)

(1>

Vg

TermSV,(f’) andv,(f‘) denote component numb&rand4 of vectorvy. Using the statistical properties of,

given by eq.(6), one can show that ~ N (0, «3). Finally, we obtain via (19) an approximated expression

for p(zx+1]yx) as follows:

1 <Zk+1*ﬁk+1\k)2
_ R P i)
P(zps1lyr) < — e 2%k (20)
Ok
where:
2.2
g Qs
#= T o

292 (B, pr)
Let us study the behavior @f zx1|yx) given by equation (20), as a functionxf. One can show that this
function has a maximum given by the following expression:

. OTlk+/ O3 _ (1)
9(Br, pk)\/(zk+l — Brrap)” — 05

T =

if (k41 — ﬁk+1|k)2 > 03. Let us remark using (20) that

E{ (zk41 — ﬁk+1\k)2 lvi} = o} (22)

so that

E{(zk1 — ﬁk+1\k)2 i} > 03 (23)

Consequently, as8(zx+1|yx) has a maximum given by (21), one can expect to estimate tige rdmerefore,
the problem is that in classical tracking algorithms, thue tcovariance state is unknown and replaced by
Omaz SO that the maximum associatedto:,1|yx) is shifted. Aso,... > o, i is then overestimated.
This fact has been observed in the simulation results pregdémthe previous section.

Let us remark that, ... is classically used to avoid the estimation of the covagaeem. We have shown
here that this technique can not be used in the bearingseonkgxt. Now let us remark that in system (17),
o andr; do not appear separately if the observer does not maneusenf(i is zero). Consequently, the

only term that can be estimated is the ratio

22| (24)
Tk
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Bréhard et al have shown in [24] that this term which is thattinal” state covariance of system (17) can be
estimated. We precise this point now by incorporatingn the filtering problem (17). First, the evolution

of this time-varying parameter is given by the following atjan:
Grin = on(SH(R) + S3(k)) (25)

whereS?(k) andS3(k) are given by eq.(17). Based 6y's definition given by (24), equation (25) is derived
from the evolution equation gf;, (see eq.(17)). Now, adding this evolution equation to tleesy (17), we
obtain the new filtering problem:

.

Br+1 = By +atan2(S1(k), S2(k))
Grin = Gr(SHk) + S3(k) 2,
= pr+3In(S3(k)+ S
pre1_ = ot 3In(SHE) + SE(R), 06
Brr| ) Sa(k)  —Si(k)| |S3(k)
. —  (SZ(k)+SZ(k) ’
P GO 1k sa(k) | | Salh)
L % = Bk + wy
where:
S1(k) B
Sa(k L+ ngp 1
2(k)| _ .nkpk + —(Idy ® Rg,)uy, + G3,vy, -
S3(k) B Tk
Sa(k)] [ Ak
Let us remark that the filtering problem (26) can then be iésvrias follows:
Verr = ik, %uk y Vi)
prvr = pr+ oDk, sk, Vi),
e = Pt wg
where:
Vi £ {Br, Brs Prs Gk} |- (27)

The definitionsf; and f> are not presented here but are straightforwardly deduoed 26). The important

property here is that as long as the observer does not mar(gave;; = 0Vj € {1,...,k}), {V;}jeqo,..k}

is a Markovian process (i.e it doesn’t depend on the sequéndgc;, . ). This idea is illustrated by

figure 13. It is within this framework that we propose to sdlvis filtering problem by using a hierarchical

approach.
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B. A hierarchical approach

It has been shown, in the preceding section that the BOT isnéinear problem of filtering with an
unknown diffusion parameter in the LPC framework given by(28). This new filtering framework has a
peculiar property illustrated by figure 13. One can noticd,ths long as the observer does not maneuver,
this filtering framework displays a particular structurafpetly adapted to a hierarchical estimation. The
first stage consists in estimatiog, £ {5y, Ok, fr, 6% - The second stage updates fhir knowledgep;,.

Let us detail this structure.
Filter 1: estimation of p(Yy.x|2z1.x)
As long as the observer does not maneuver, based on (26)i¢hi@di problem associated 3., can be

written as follows:

Br+1 = [k + atan2 (S1(k), S2(k)),
G = ou(SP(k) + S3(k))72,
Brw| ! Sa(k)  —Si(k)| | S3(k) (28)
L’M] = (Si(k)+S3(k) { S5 (k) 52(@} {54%)1 ’
[ 2k = Bk +wk
where:
sk | mbe |
S (k) _ 1+.77kf31<: o
S3(k) Br
Sa(k)] | e

In this context, notice that as long as the observer does noeaver{));},co, . iS aMarkovianprocess
(i.e itdoesn’'t depend on the sequerdeg} ;<. »})- One can thus obtain via a bootstrap filter gusterior
distribution functionp()1.x|z1.x) . Itis also possible to use a quasi-optimal particle alparifis defined by

Doucet in [8].5¢ can be initialized using the following method based on diédini(24):
() o® 0
Gy’ = —= wherec' ~  0,,,,U([0,1]) (29)
To
andréi) is sampled using the initial prior on radial distance.
Filter 2: estimation of p(px|z1.x)
The objective of the second filter is to estimatey.|z1., ) in a recursive way or more precisely to generate

a sample[p,(f)}je{lv___,M} according to this law. First, combining the diffusion edoatof p; andg;, given
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by (26), we obtain:

Pk = Pr—1+1n <Uﬁ_1> . (30)
0%

Iterating, the last equation can be rewritten

pr = po + Ay, (31)

where:

0j—1
Ay,, = Zln(J >

Jj=1 i

Now using eq.(31)p(pr|z1.x) can be rewritten

poulz10) = [ Gpsan,, (9000 Yoalma)d{Dis. o} (32)

Let us remark that

P(21:£|Vo:x» o) P(pol Vo:k) _
p(zlzk ’yO:k)

(0| Vo:ks Z1:k) = p(po| Vo) - (33)

Incorporating (33) in (32), we obtain

p(pklz1x) = /5p0+Ay0:k(Pk)p(PO|y0:lc)p(yO:k|Z1:k)d{yO:kapO} - (34)

Then, the hierarchical structure of the filter described gyri 13 implies that

p(Vo:xlpo)p(po)
p(y(]:k)

This property is only valid as long as the observer does ndbpe any maneuver. Incorporating (35) into

p(polVo:k) = =p(po) - (35)

(34), we obtain:

p(pr|z1k) = /5PO+AyO‘k(Pk)p(PO)p(yO:k‘zlzk)d{yO:k7PO} : (36)
’ S~ —

One can notice that all the elementary terms composing thatieq (36) are known. Indeed,is the prior
distribution function of the range at the initial timex is the result of filter 1 at the momeht It is thus
possible to perform a simulation according to this distiidou by Monte-Carlo integration in the following

way:

p(Vo:k|21:k) PR wk y< iy (Vok)

p(po) D ~:0, o (po) -

Q

(37)
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The first approximation is the result at the time periodf filter 1 which is a particle filter. The second one
is obtained fronp(pp). Combining (36) and (37), we can thus generate a sampﬂp,i@f}, associated with

the p(pr|z1.1) density, as follows:

N N ()
pE~ YD N—képéj)+Ay<i (k) - (38)
0

=1 j=1 2 o

Final algorithm: the hierarchical filter

We have built a hierarchical particle estimation algorithfine various stages of the algorithm are sum-
marized by algorithm 1. This algorithm is based on the paldicstructure of the problem, illustrated by
figure 13. The latter in particular makes it possible to destrate formula (35). However, as shown on
fig. 13, as soon as th®, is observable, the structure of the problem also changes.e$timation of com-
ponentsY; 2 {fs, Bk, pr, 5} and p;, can then be carried out jointly using a traditional partiiier. to
be completely exhaustive, a statistical test should beldeed to precise whep, is observable. Then,
the algorithm should be able through the scenariot o switaim fthe hierarchical particle filter to the tra-
ditional particle filter wherp is unobservable and vice versa. This point is out of scopbepaper but
should investigated further. The global algorithm thus thasfinal structure described in figure 6. Let us
notice finally that from an algorithmic point of view, thiggalrithm is equivalent in terms of complexity to a

traditional particle algorithm.

FILTER 1 FILTER 2
Py unchservable estimation of 371( }—‘ update
‘ ONE FILTER
pk cbservable ‘ } timation of yk and pk

Fig. 6. Hierarchical particle filter. Estimation at tifke Whenp, is unobservable, estimation is proceeded using a

hierarchical particle filter. Whepy, is observable, a classical particle filter is used.
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C. Simulations

We will now compare the performance of this new algorithmhwhibotstrap filter ones, considering again
the three scenarios considered in section 2. We refer to, figi3stants are summarized in table I. The
bootstrap particle filter is applied using the constantsgmeed in table 1. The hierarchical particle filter
uses the constants given in table Ill. The set of particles@ated to{ 5y, px, B, pr } are initialized in the
same way using (13) for the two filters. Concerning the haiaal particle filterg can be initialized using
the following method based on definition (24):

G pu ey

g, = —=
0 ’r'(()l)

(39)

where:

r((f) ~ 19+50N(0,1)  (in meters)

c@ ~ opmad([0,1])
Results are displayed in fig.14. We represent the evolutieus time of the performance indicksS Fy,
and D;, defined by (10) and (11). One can notice that the hierarcfiitad gives much more satisfactory
results in terms of divergence, the true state of the targieiglalwaysin the area of confidence associated
with the hierarchical estimate. Moreover, one can noties, in terms of quadratic error, the performances

of this new algorithm largely exceeds that of the bootstranigle filter.
TABLE IlI

HIERARCHICAL PARTICLE FILTER CONSTANTS

constant value

Ni(number of particles for filter 1) 10000

Ns(number of particles for filter 2) 10000

N
Ninreshotd 3
Omagz 0.01 m/s

IV. INITIALIZING THE HIERARCHICAL BOT PARTICLE FILTER

This section deals with the initialization of (hierarcH)caequential Monte-Carlo methods in the BOT
context. Though this problem is rarely mentioned in thaditre it is of a crucial importance, especially
for the partially observed case. It is generally admitteat the initial distributionp(yo) is "sufficiently”
informative. However, in practice, ourior knowledge is frequently very poor. A straightforward appli

cation of particle filtering would require a huge number oftigées, allowing to cover the support of the
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initial density distribution. Even if this approach can gitdy work, it seems unrealistic. To avoid these
drawbacks, first let us recall that we can take benefit (in td Bontext) from operational constraints.
These constraints may be minimal and maximal range, or spéedwill see that MCMC methods are a
natural way for using these constraints in our context [Mgreover, it is well admitted to have recourse
to abatchtype method for tracking initialization (see e.g. [13]).imeans that we assume that the target
trajectory is deterministic throughout the initializatioOne can then build in an analytical way the density
of the initial state given abatcH' of measurementg;... The objective of the initialization method is then

to generate a set df particles with the following posterior distribution:

p(yolz1.x) (40)

via the likelihoodp(z..;|yo) and priors (constraints). This idea is represented by figid7veill consists in
generating a Markovian process which will evolve on the suppf the distribution. A simple and feasi-
ble solution is given by the Hasting-Metropolis algorith@b]. The idea of the algorithm itself consists in
defining a Markov Chain whose stationary distribution iscigely p(yo|z1.x). For a very readable presen-
tation of this (and related) algorithm, we refer to [26]. Aslaingredient is simply the Bayes formula, here

yielding:

p(¥olz1:x) o< p(2z1:4|y0)P(¥0) - (41)

In the right-hand side of the above expressiogn, ) stands for the prior, here limited to a uniform density on
the constraint domain. Moreover, if the diffusion noisedsxdurings time-periods, an analytic expression

p(z1.4|y0) can be derived:

_ L) (1= f(0)
20’2

p(zlili|y0) x e s ) (42)

whereo—% is the variance of the measurement noise,

To
fyo) = : (43)
o+ atan2 (1 + s 22 + e~ (sin BoUL + cos BoU2), ko + e~ (cos UL — sin foU2)

Bo + atan2 (1 + M2 4 e (sin BoU} + cos BoUR), nifo + e (cos BoU} — sinﬁon)>

andU; etU? are the two components of tfig "control” vector defined by

k times

——f—
Fk:FX...XF7 (44)

_ k-1 )
u; = ijo Fy_ju; .
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A proof of (42) can be found in the Appendix B.

From a practical point of view, at each step of the algoritipimysical constraints are checked when a
new state is proposed. As long as the state suggested do@stmtite constraints, a new state is proposed.
According to the acceptance probability, the candidatee ssathen accepted or rejected. This probability
is computed using the likelihooglz;..|yo) given by (42). The algorithm stops when we have a set of N
particles. Let us remark that it is important for this firsttjfide to be on the support of the distribution of
the related density(yq|z1..). This is achieved thanks to a standard Gauss-Newton digo(gee [27] and
[28]). Finally, let us emphasize that integration of compb®enstraints can be achieved via an extension
of the Hasting-Metropolis algorithm, named Hit-and-Rumgéer [17]. Finally, remark that the choice of
an optimal batch size is an open problem. This constant should be fixed dependirtbeonature of the

scenario and the number of particles used in the particts.filt

Fig. 7. Initialization of the particle filter.

V. TRACKING A MANEUVERING TARGET

We consider in this section another application of the Inidviaal particle filter developed in section
lll. The scenario considered is the tracking of a maneugetamnget. It is a question here of showing the
robustness of the approach. Moreover, we also supposéthlahbwledge on the initial state of the target is
poor so that the method of initialization based on MCMC mdghsuggested in section 1V is applied. The

scenario is presented in the following subsection, whiteugation results are detailed in subsection B.

A. Scenario

We consider the scenario described by figure 8. A plane movesdight line at the speed of 350 m/s. It
considers every.02 sec. a relative angular measurement between its positidtharposition of a missile
in approach. The trajectory of the latter is governed by dauce law, for which the observer does not have

any prior. In practice, this guidance law was generated bpgtional navigation (see [29]). The constants
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of the scenarios are summarized in table 1V. Our knowledgéheninitial state of the target is relatively
weak. We simply have lower and upper bounds for target spegdaange. Two different initial priors given
in table V are considered in simulations. The second onedottes a bias on the radial distance at the inital
time. We use the initialization method developed in sectMrirhe batch sizes is fixed to 40. Figure 9
illustrates the influence of this parameter on the perfomaaf the hierarchical particle filter. We compare
the performances of the hierarchical particle filter (alipon described by figure 6)) proposed in section
Il with constants given in table VII to those of the bootgtrfilter with constants given in table VI. Both

algorithms use the same initialization.

SOV [ U U, S T T—
EO00
4000

2000

Fy coordinate in meters

T | R

4000 |

B0 s

I B N R S S
o 200 400 £00 &00 1000 1200 0 2 4 6 8 10 12 14 16 18 20

Fix coordinate in meters (a) time in seconds (b)

Fig. 8. “maneuvering targétscenario. Representation of the trajectories of the alesddotted line) and the target

(solid line) (a) and evolution of angles measurements ircthese of time (b).

batch size=20

batch size=40

batch size=80

Fig. 9. Comparison of the performances of the LPC filter foeheuvering targétscenario for different batch sizes.

Evolution of the mean square error through time for difféfgatch sizes.



TABLE IV

CONSTANTS OF THE"maneuvering targétSCENARIO

Scenario

duration 18 s

r94(0) 0 km

i (0) 7 km
() 0m/s
v (0)  —680 m/s
r2%5(0) 0 km
rob(0) 0 km
v (0) 58 m/s
vng(O) —376 m/s
o3 0.1 deg
Nk 0.02 s
TABLE V

INITIAL Prior INFORMATION ON THE “maneuvering targétSCENARIO

prior 1 prior 2

Trmin 4 km 3 km

Trmas 9 km 8 km

Umin 600 m/s 600 m/s
Umaz 900 m/s 900 m/s

TABLE VI

BOOTSTRAP FILTER CONSTANTS

constant value

N(number of particles) 5000

N
Ninreshold 3

Omaz 20 m/s

23
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TABLE VI

HIERARCHICAL PARTICLE FILTER CONSTANTS

constant value

Ni(number of particles for filter 1) 5000

Ns(number of particles for filter 2) 5000

N
Ninreshold 3
Omax 20m/s

B. Simulations

The estimated trajectories as well as confidence ellipstittgee time periods for the hierarchical particle
filter and the bootstrap filter using initial prior 1 (giventable V) are represented on figures 10. We note
that after a certain time, the bootstrap algorithm divengbch is not the case of the hierarchical filter.
One can notice that both filters perform conveniently dutimg first part of the scenario. However (see
fig.10(a)), one can notice that the bootstrap filter estinrdaterges after a certain time. Thus, at the end of
the scenario, the radial distance is largely over-estichalus, the associated confidence ellipsoid does not
include the true state of the target any more. Conversedytrijectory obtained by the hierarchical filter
(see fig.10(b)) performs quite satisfactorily. Figure ldresents a comparison of the estimated trajectories
as well as confidence ellipsoids computed with the hieraathpartical filter and the bootstrap filter with
initial prior 2 (given in table V). At the initial time, bothlfers suffers from a bias on the radial distance due
to the initial prior. One more time, we observe the divergeatthe bootstrap filter when the hierarchical
particle filter performs satisfactory. Specially, the cdafice ellipsoid contains the true target state even
if the estimate is biased. Finally, we present in fig.12 theperal evolution of the mean quadratic error

evaluated on the basis o0 trials. Again, the hierarchical filter widely overperforrine bootstrap filter.

VI. CONCLUSION

We have shown that the performance of the "classical’ baayidtlter developed by Gordon, Salmond and
Smith [6] could be relatively disappointing in a partiallpserved context. This corroborates Fearnhead’s
work [11]. More precisely, in cases where the observer perfoa maneuver relatively late, a systematic
divergence of the filter is observed. A rewriting of the peshlusing a new frame of reference, named
logarithmic polar coordinates, was used to understangti@aomenon. Classical trackers like the bootstrap

filter fix to a maximal value the unknown variance appearinfpéstate equation. We suggested in this paper
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Fig. 10. Estimates and areas of confidences of the filterhiéoirhaneuvering target ” scenario using prior 1 given in
tab.V. Representation of the trajectories of the obsedett€d line) and the target (solid line). Estimated trajget
for the two algorithms: the bootstrap filter (a) and the hiehéal particle filter (b). Areas of confidence at the iditia

time step and at timé s and18 s.
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Fig. 11. Estimates and areas of confidences of the filterhiéofrhaneuvering target ” scenario using prior 2 given in
tab.V. Representation of the trajectories of the obsedett€d line) and the target (solid line). Estimated trajget
for the two algorithms: the bootstrap filter (a) and the hielécal particle filter (b). Areas of confidence at the iditia

time step and at timé s and18 s.

that this choice induces an overestimation of the radighdce. To avoid this problem, a hierarchical method
of estimation based on the LPC framework was proposed. Weeshthe superiority of this hierarchical
particle filter in terms of divergence and mean square etrmoaddition these results were confirmed for a
more difficult scenario characterized by a maneuveringetarg

The robustness of this new algorithm would be helpful to edhe multi-target tracking problems [30],
[31]. Moreover, it can also be integrated within the framewof maneuvering target [32], [33] and dis-
tributed tracking [34].

Let us notice that all this study was carried out using theatfitigmic polar coordinates but could have
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bootstrap filter

Fig. 12. Comparison of the mean square error through timbeobbotstrap filter and the hierarchical particle filter

for “maneuvering targétscenario

just as easily been carried out by using the modified polardioates suggested by Aidala and Hammel [4].
However, this new frame of reference takes all its interdgtinvthe framework of performance analysis
[12]. Indeed, the LPC make it possible to calculate an exaghd for the error covariance matrix, which
is impossible when using the MPC or the Cartesian coordinadtée have considered in this article a target
evolving in a two dimensional environment. One can thennadlfuput the question of the extension of this
work to the case of a three dimensional setting which prakiiterest is obvious. The essential point is
to find the extension of the logarithmic polar coordinatethia context. Let us notice that there are some
identified systems that could be interesting. One can qumatemodified spherical coordinates evoked by
Allen and Blackman in [35] and the Cartesian system starnzioicby the distance proposed by Grossman

[36] which is not without pointing out the modified polar cdorates.

APPENDIX A: PROOF OF PROPOSITION

The aim of this section is to show that the equation of evolutf the target expressed in LPC has a very
particular form. One uses the equation (9). Let us start lpyessing the tern¥'x;, in logarithmic polar

coordinates using (15):

re(k) 4+ nrve (k) kB
k) + myvy (k) i 1+ mef
Fxp — 7y ( MUy _ .nkpk (45)
TkRﬁk )
G N . TPk | |
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where:

Rﬁk =

—sinf; cos Ok
cos O sin [

Inserting this result in equation (9), we obtain:

nkBk ] ]
L+ 1P
Br
Pk

TkRﬁk

Xptl = +ug +ovyg . (46)

Tkng

If we factorizerthk, the previous expression can be rewritten in the followirayw

[ _Sl(k)_ ]
T Rg,
So (k)
Xkt+1 = =S (k;)= 47)
3
TkRﬁk
i _54(k)_ ]
where:
S1(k) M.
So(k 14 np 1
2( ) = 'Ukpk +—(Id2®72ﬁk)uk+ivk .
S3(k) B "k "k
| Sa(k) | .

Expression (47) is obtained by remarking thad, © R s, )vi, has the same statistical properties tivan

Now, we study the terny;; using:

atan2 (ry(k +1),7,(k + 1))
In <\/r§(/~c + 1)+ r2(k + 1))

ro(k+1)vy (k4+1)—ry (k+1)vg (k+1)

Y1 = fP(Xp1) = (48)

r2(k+1)+r2(k+1)
re(k+1)vg (k+1)) 41y (k+1)vy (k+1)
i r2(k+1)+r2(k+1)
Finally, putting (47) in (48), we obtain
ﬁk-}-l - ﬁk + atan2 (51(1{7), 52(]{7)) s
Pl+1 = pp+ 3 In(S7(k) + S3(k)),

Bt _ . Sa(k)  —Si(k)| |Ss(k)
o ST 6 stk) | | Salh)
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where:
S1(k) B
So(k 1+ np 1
2(k)| _ MO L Ty 0 R, g+ Zv (49)
S3(k) B "k "k
| Sa(k)| 2

APPENDIX B: PROOF OF EQ(42)

The idea consists in simplifying the problem by supposirag the target follows a uniform rectilinear

motion:
Xp+1 = Fxp +uy . (50)

This entails to suppose that the noisgis null in the equation of evolution (9) associated with thetjem

of BOT presented in section 1. In other words, the target ltistexministic behavior. All the interest of this
approach lies then in the fact that one can parameterizeafeetory by a low number of parameters. One
generally chooses to parameterize it by a target state anongent of reference. In the following, the state
of reference is the initial statey. The target's state at time k is then obtained starting frisishihitial state

using the following relation:
Xp = Fixg + Up

where:
k times

F=Fx. xF, (51)
Up = Z;:é Fy_ju; .
By using the equation of observation (4) and the equatiol (&ie obtains the following result:
21 h(Fixo + Uy) w1
= : +1 ] - (52)
2 h(Fxo + Uy) Wi
The key point of the demonstration consists in rewriting) (32 using the modified logarithmic polar coor-

dinates via the formulas of transitions (15) and (16).
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Fig. 13. Representation of the Markovian process assakiaith the dynamic system (26).The observer maneuvers
only at time 4. This operation causes to add a conditionipgesented by the red arrow. As long as the observer does

not maneuver, the diffusion of componepisdoes not depend gm.
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Algorithm 1 Hierarchical particle filter

e FILTER 1 sequential importance sampling for):
1. sampling :

for i = 1...Ny, sampl@™ ~ p(V|¥?),
2. compute un-normalized weights :
fori=1..Ny, computez’ﬁ,(:) = p(zk\y,gi))w,(:),
3. normalize weights :

. (0 _ _ @
for i = 1...Ny, computew,” = W
w

j=1Wg
e FILTER 2 sampling for p:
for j = 1...Ns, samplingp(()j) ~ p(po)

forj =1...No, samplingp,(f) ~ ZZ lw,(f)5 <J>+A @ (Pr)

e Monte Carlo estimation

the cIouds{y,gi),w,(f)}izlle and {p;,\7)

}i=1..n, allow to approximate th@osterior
distribution function

N1 N Z'
p(Yk|z1:k) = ZZ 5y<) (Vk)d 0 (r)

=1 j=1

and forg Lebesgue integrable

1 2
E{g()lznt =~ > > g o)

i=1 j=1
e resampling :

1. computeN, s = #;;52

2. if Negp < Ninresholds

draw N particlesfiofk in {yéfll}izl___Nl proportionally to WeightS{w,g) }iz1..n, and set
w = 1/Ny, V) = 38 fori = 1...Ny.
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Fig. 14. Comparison of the performances in the course oftiftiee hierarchical filter (solid line) and of the bootstrap
filter (dotted line) for different scenario®n the left side, evolution of the divergence (probability that the statéhef
targetis in the area of confidence) (a.1): scenario 1, (a&)ario 2, (a.3) scenario &n the right side, comparison

of the evolution of the mean square error in the course of fandifferent scenarios (b.1): scenario 1, (b.2) scenario

2, (b.3) scenario 3.



