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Abstract

We address here the classical bearings-only tracking problem (BOT) for a single target, issue that belongs to

the general class of nonlinear filtering problems. Recently, algorithm-based sequential Monte-Carlo methods (particle

filtering) have been proposed. However, Fearnhead has observed that in practice this algorithm diverges. This problem

is investigated further in this paper. We show that this phenomenon is due to the unobservability of the distance

between the observer and the target. We propose a new algorithm named hierarchical particle filter which takes into

account this aspect of the BOT. We demonstrate that this novel filter architecture largely overperforms the classical

one. Moreover, these results are confirmed when consideringhighly maneuvering target scenarios. Finally, we propose

a general architecture based on Monte-Carlo methods for filtering initialization, able to accommodate poor prior and

complex constraints.
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NOTATION

LP(C): Logarithmic Polar (Coordinates),

MP(C): Modified Polar (Coordinates),

BOT: Bearings-Only Tracking,

MCMC: Monte Carlo Markov Chain,

xk: is the relative target state in the Cartesian coordinate system,

yk: is the relative target state in the LPC system,
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Xt: denotes the transpose of matrixX,

δ: Dirac δ-function,

ηk: time period,

Idn: n × n identity matrix,

⊗: Kronecker product,

F : F = Id4 + ηkB with B =


0 1

0 0


 ⊗ Id2,

Q: Q = Σ ⊗ Id2 with Σ =


α3 α2

α2 α1


. In practice,α3 =

η3
k

3 , α2 =
η2

k

2 etα1 = ηk.

Rβ: Rβ is a rotation matrix defined in the following way:Rβ ,


− sin β cos β

cos β sin β


.

INTRODUCTION

A common denominator to passive systems is that observations are reduced to bearings. This is true for

systems as varied as passive sonar, Electronic Support Measurement (ESM) or Infrared systems (FLIR).

Collected bearings are used to infer the target trajectory.This tracking problem has been of continuous

interest for the past thirty years. The aim of Bearings-OnlyTracking (BOT) is to estimate the target trajectory

(a sequence of states) using noise-corrupted bearing measurements from a single observer. Target motion

is classically described by a diffusion model1 so that the filtering problem is composed of two stochastic

equations. The first one represents the temporal evolution of the target state (position and velocity), called

state equation. The second one links the bearing measurement to the target state at time k (measurement

equation).

One of the characteristics of the problem is the nonlinearity of the measurement equation so that the clas-

sical Kalman filter is not convenient in this case. To addressthis problem, two methods have been proposed

in the early 70’s: the Extended-Kalman Filter (EKF) and the pseudo-measurement approach (PMF)[2]. Both

methods are based on the transformation of the measurement equation. However, these methods still suf-

fer from limitating drawbacks, especially when the problemis poorly observable. Thus, the EKF remains

relatively unstable due to poor radial distance observability, while the pseudo-linear estimator in the same

conditions suffers from bias. A large number of methods havebeen proposed for improving these algo-

rithms. Among them, one can cite the Modified-Gain Extended Kalman Filter (MG-EKF) [3] , the Modified

Polar coordinates Extended Kalman Filter (MP-EKF) [4] and the Range-Parameterized Extended Kalman

1see [1] for an exhaustive review on dynamic models
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Filter (RP-EKF) [5] which are some EKF extensions aiming at defining more robust tracking algorithms.

These three methods share a common objective which is to takeinto account the poor observability of the ra-

dial distance. On the other hand, in the early 90’s, a new typeof method, fundamentally adapted to nonlinear

filtering issues, has been developed. This new approach, named sequential Monte Carlo method, has been

initiated by Gordon et al. [6]. This method is a combination of various techniques, namely Monte Carlo in-

tegration, importance sampling and resampling techniques. While the first application of particle filtering to

bearings-only tracking can be seen in [6], Arulampalam and Ristic [7] have demonstrated the superiority of

such a method over more classical Kalman approaches (RP-EKF, MP-EKF). For an introduction to particle

methods, we refer to Doucet et al. technical report [8] and tothe excellent tutorial of Arulampalam et al.

[9]. An interesting compilation of articles about particlefiltering methods can be found in [10].

However, the problem remains far from being solved for this specific context. We shall demonstrate

the limits of particle methods in section II. Indeed, there are some relatively simple scenarios for which

the particle approach remains inconsistent. One can observe that at some point in time, the particle filter

diverges. This has already been noticed by Fearnhead in [11]. How could we explain this phenomenon?

Historically, the particle approach was applied using the nonlinear specificity of the BOT. But this is not its

only specificity. Another fundamental issue is the unobservability 2 of the target-observer distance, which

is called radial distance. We shall demonstrate that this classical specificity, which is not taken into account

in the particle approach, could be the reason why the algorithm performs so badly. Numerous publications

dealing with the problem of unobservability -in the BOT context- have been published in the 80’s. In this

respect, Aidala and Hammel [4] proposed, as early as in1983 a seminal approach. The key idea was to

use a novel coordinate system (namely Modified Polar Coordinates) to analyze and overcome the problem

induced by poor radial observability. The fundamental interest of this system is its ability to separate the

observable components from the unobservable components ofthe target.

The aim of this paper is to take benefit of the ideas developed by Aidala and Hammel by immersing

them in a Particle Filtering framework. In this way, a specific coordinate system named Logarithmic Polar

Coordinates (LPC) will be of constant use. This new coordinate system has been developed by Bréhard et

al. in [12] for deriving closed-form formula for theposterior Cramér-Rao bound. We use here the LPC

framework for analyzing the weak performances of the particle filter. Furthermore, it provides a natural

way for solving the BOT problem via ahierarchical particle filter. We shall demonstrate in section III

that this new filter is able to solve the divergence problems of the classical particle filter. These results

will be confirmed in section V while using a more ”difficult” scenario, this one being characterized by a

2Or at bestpoor observabilityas long as strong observer maneuver does not occur.
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maneuvering target.

Particle filter initialization is a classical problem, poorly evoked in the literature. It is generally assumed

that the initial law is very informative -which is clearly far from reality- to cover the support of the initial

distribution. A classical remedy is to consider grid-basedmethods, which require to draw a huge number

of particles. Thus, the aim of section IV is to show how easy itis to gather our hierarchical particle filter

architecture with a simple MCMC method for track initialization. In this new setup, prior is limited to radial

distance and target speed lower and upper bounds. Our methodcan be referred to [13], [14], [15] and [11],

which suggest using a sampling method based on the likelihood linked to the observation equation. Thus, the

objective is to use a ”batch” method so as to initialize the tracking process in a ”clever” way. Here, a definite

advantage of MCMC methods is their ability to explore the whole domain of solutions (here the posterior

density), while taking benefit from informative constraints. For a complete presentation, we refer to [16].

The Markov chain can be simulated either by a classical Hastings-Metropolis algorithm or by Hit-and-Run

sampling [17]. The advantage of the latter method is its ability to take into account complex constraints as

target route, map, operational requirements, etc.

The paper is organized as follows. A general presentation ofthe BOT problem is presented in the first

section. We shall demonstrate in section II, via simulations, that the classical bootstrap filter does not

perform satisfactorily for poorly observable scenarios, even for perfect initialization. We define in section

III the LPC and develop a more robust filter based on a hierarchical architecture, named hierarchical particle

filter. We show in the same section the superiority of this approach compared to the more classical bootstrap

filter. The problem of filter initialization is dealt within section IV. We propose a method based on the

Hasting-Metropolis algorithm. This method in particular makes it possible to initialize the filter even when

the knowledge on the initial state of the target is poor. Lastly, section V presents some complementary

simulations. The initialization method developed in section IV is integrated within the hierarchical particle

filter architecture and used for tracking a maneuvering target. We will show that the performances of the

hierarchical particle filter largely exceeds that of a traditional particle filter.

I. THE PROBLEM

Let us consider the following problem, described in figure 1.An object evolves in a x-y plane. One

wishes to estimate the position and the speed of this object at every time period. We have a moving observer

providing at each period a relative bearing measurement.
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Fig. 1. An example of object trajectory. At the initial time period (a), the observer-target bearing measurement isz0.

Then, at the next time (b), it isz1, etc..

Let us start by defining the target state in Cartesian coordinates at time k:

x
tgt
k ,

[
rtgt
x (k) rtgt

y (k) vtgt
x (k) vtgt

y (k)
]t

, (1)

composed of the position and speed of the target in thex− y plane. In the same way, we define the observer

state at time k:

x
obs
k ,

[
robs
x (k) robs

y (k) vobs
x (k) vobs

y (k)
]t

. (2)

Assuming that the observer state is known, therelative target state is:

xk , x
tgt
k − x

obs
k ,

[
rx(k) ry(k) vx(k) vy(k)

]t

. (3)

Throughout this paper, we will be concerned with the estimation (tracking) of thisrelativestate vector.

The observation equation.

Denotingzk the bearing measurement received at timek, the target state is connected to the angular

measurement via the following equation:

zk = h(xk) + wk (4)

where:

h(xk) , atan2 (ry(k), rx(k)) (5)

whereatan2 is the four quadrant inverse tangent. This equation is generally called measurement equation.

It is supposed thatwk is a centered Gaussian noise of known varianceσ2
β.
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The state equation.

To solve the problem, it is supposed that we have some information about the target trajectories. It is

usual to model our uncertainty by the discretized white noise acceleration model:

x
tgt
k+1 = Fx

tgt
k + σvk , vk ∼ N (0, Q) . (6)

The process noise structure is represented by theQ matrix, its intensity is theσ scalar. The matrices F

and Q are specified in the notational subsection. Depending on the application, a wide variety of target

dynamics has been considered in the literature (see [1]). However, the model (6) is quite relevant for our

applications. If theσ factor can be considered as mainly conceptual, it is more enlightening to consider

(6) (with a convenientσ) as a majorizing model (see Hernandez et al. [18]). In addition, we will study the

evolution of the target relatively to the observer. Also, weintroduce the evolution equation of the observer:

x
obs
k+1 = Fx

obs
k − uk , (7)

whereuk stands for the part of the observer state due to the control attime period controlk. Combining

equations (6) and (7), the relative evolution equation of the target is obtained:

xk+1 = Fxk + uk + σvk . (8)

The state covarianceσ is unknown. However, we assume classically thatσ < σmax, so that we use in

practice the following equation:

xk+1 = Fxk + uk + σmaxvk . (9)

Equations (4) and (9) form the framework of the BOT filtering problem. One can notice right now that

we are confronted to a nonlinear problem of filtering. The BOTobjective then appears clearly. We have

to estimate the law of the trajectory until time k notedx0:k , (x0, . . . ,xk) knowing the observations

z1:k , (z1, . . . , zk). The associated density, denotedp(x0:k|z1:k) is namedposterior density. Obviously,

from a filtering point of view, it can be sufficient to deal withthe posterior density associated with the

current state, i.e.p(xk|z1:k).

Lastly, let us finish this presentation of the BOT by mentioning the problem of unobservability of the dis-

tance between the observer and the target i.e. the range. As figure 2 shows it, to a given set of measurements

z1:k, corresponds a set of trajectories. Three of them are represented on this figure. This type of ambiguity

can be offset by an observer maneuver. However, there exist ambiguous maneuvers so that maneuver is a

necessary but not a sufficient condition [19].
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Fig. 2. An observability problem. To a given set of measurements (a) corresponds a set of acceptable trajectories for

the target. Three of them are represented on figure (b).

II. L IMITATIONS OF THE PARTICLE FILTERING APPROACH FOR THEBOT

It is at the beginning of the 90’s, that Gordon et al. [6] proposed an algorithm for the problem of stochastic

filtering in the non-Gaussian nonlinear case, namely the bootstrap filter. We consider in this section various

representative BOT target tracking scenarios, tending to show that the traditional particle filter suffers from

severe drawbacks, even for relatively ”simple” scenarios.Let us specify the two performance criteria we

will use thereafter. Firstly, we will look at the evolution of the Mean Square Error (MSE) in the course of

time, defined in the following way:

Definition 1 (MSE) At timek, the mean square error is defined by:

MSEk = E{(xk − x̂k)
t(xk − x̂k)} . (10)

However, a second index of performance, integrating the concept of confidence area, is also meaningful. The

idea consists in estimating the probability that the state of the target is in the area of confidence associated

with the posterior law. It will be said that the algorithm diverges if this probability is lower than1 − α.

More precisely, this criterion is defined as follows:

Definition 2 (divergence)At a given time periodk, a divergence criterion is defined by:

Dk , P

(
(xk − x̂k)

tΣ̂−1
k (xk − x̂k) ≤ κα

)
< 1 − α , (11)

wherexk, x̂k and Σ̂k are respectively the true target state, its estimate (tracking) and the variance of this

estimate deduced form theposteriordistribution. Scalarκα denotes the fractile of the Chi square distribution

with nx degrees of freedom at the levelα. nx is the size of target state.

This definition is based on the construction of a confidence area. Of course, a convenient approach would

consist in using the Central Limit Theorem for sequential Monte-Carlo methods as derived in [20]. However,
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the estimation of the asymptotic covariance in this contextis a difficult problem. To overcome this problem,

one assumesp(xk|z1:k) ≈ N
(
x̂k, Σ̂k

)
so that(xk − x̂k)

tΣ̂−1
k (xk − x̂k) follows a Chi square distribution

with nx degrees of freedom.

Three scenarios, of passive sonar type, inspired by the simulations suggested in the work of Ristic et

al. [21] are studied. These scenarios are differentiated byvarious target behaviors. Scenario constants are

summarized in table I. For the three scenarios, the target and observer trajectories are represented by fig. 3.

Moreover, this same figure represents measurements of bearings received by the observer in the course of

time. One can notice that the evolution of measurements on figures 3(b.1), 3(b.2) and 3(b.3) is very different

according to the scenario considered. This has significant consequences on the variance of estimation of the

trajectories. To figure the effects, let us recall the concept of local observability in the BOT context studied

first in [22]. It has been shown (see [23]) that the determinant of the Fisher Information Matrix (FIM) locally

admits the following approximation:

det(FIMk) ≈ ck

σ8
βr8

k

(4β̇4
k + 2β̇k

...
βk − 3β̈2

k) , (12)

whereβk is the relative angle between the target and the observer at time k. Termsβ̇, β̇ andβ̇ denote the

first, second and third order derivative ofβ. This formula indicates that the variance of estimation is lower

for scenarios with ”large” bearing rates in the course of time. It is meaningful to rank the three scenarios.

The first scenario is the most difficult (very weak bearing-rate), while the bearing-rate (and bearing-rate

change) is rather large for the third scenario, the second one being of intermediate difficulty. This remark is

illustrated by a comparison of the Posterior Cramér-Rao Bound [12] for each the three scenarios in fig.4.

A bootstrap filter is applied with the constants summed up in table II. The initial cloud of particles is

sampled in the following way:

x
(i)
0 =

[
r
(i)
0 cos β

(i)
0 r

(i)
0 sin β

(i)
0 v

(i)
0 cos β

(i)
0 v

(i)
0 sin β

(i)
0

]

where:




β
(i)
0 ∼ z0 + π√

12
N (0, 1) ,

r
(i)
0 ∼ r0 + 50 N (0, 1) (in meters),

v
(i)
0 ∼ v0 + 0.01 N (0, 1) (in m/s).

(13)

Let us notice that to initialize this set of particles we use the valuesr0 andv0 i.e. the initial distance and

relative speed. We choose here to initialize the particle filter by using the true initial state of the target in

order to show that the problem of divergence of the bootstrapfilter within the framework of the BOT is not

due to a bad initialization of the algorithm.
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Fig. 3. Three scenarios for the BOT. Representation of the trajectories of the observer (dotted line) and the target

(solid line) for scenarios 1 (a.1), 2 (a.2) and 3 (a.3) and of angles measurements obtained in the course of time, (b.1),

(b.2) and (b.3).



10

TABLE I

CONSTANTS FOR THE THREE SCENARIOS

(1 knots≈ 0.514m/s)

Scenario 1 Scenario 2 Scenario 3

rtgt
x (0) 5 km 5 km 5 km

rtgt
y (0) 0 km 0 km −10 km

vtgt
x (0) 1.3 knots −1.3 knots −1.3 knots

vtgt
y (0) −3.7 knots −3.7 knots 3.7 knots

robs
x (0) 0 km 0 km 0 km

robs
y (0) 0 km 0 km 0 km

vobs
x (0) 0 knots 0 knots 0 knots

vobs
y (0) −4 knots −4 knots −4 knots

σ 0.001m/s 0.001m/s 0.001m/s

σβ 1.5 deg 1.5 deg 1.5 deg

ηk 60 s 60 s 60 s

Fig. 4. Comparison of the trace of thePosteriorCramér-Rao bound for the three scenarios

TABLE II

BOOTSTRAP FILTER CONSTANTS

constant value

N (number of particles) 10000

Nthreshold
N
3

σmax 0.01 m/s
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The performance indicesMSEk andDk defined by (10) and (11) are calculated by Monte-Carlo integra-

tion (the experiments are repeated 100 times). Figures 13(a.1), 13(a.2) and 13(a.3) present the evolution of

Dk in the course of time. One can notice thatDk decreases quickly for the first scenario. In other words,

at the end of a certain time, the probability that the true state of the target is in the area of confidence built

by the bootstrap filter is zero. Let us precise this point now.Figure 5 shows examples of estimated trajec-

tories obtained for scenarios 1 and 2. One can see that the final set of particles is not centered around the

true position so that the confidence area built by the bootstrap filter does not contain the true trajectory any

more. Moreover, the range is overestimated in the three cases. This conclusion is rather disturbing and not

intuitive. Many tests were carried out using various constants for the bootstrap filter (the number of particles

N and resampling thresholdNthreshold), leading to the same conclusion.

This problem has been rarely evoked in the literature, Fearnhead’s PhD thesis [11] being a noticeable

exception. Indeed, ”classical” scenarios include an observer maneuver at the beginning of the scenario so

that the radial distance is observable. One can thus reasonably think that the divergence of the traditional

particle filter is directly related to the radial distance unobservability. We propose in the following section

to study the filtering problem associated to the BOT by using another coordinate system in order to develop

a better understanding of this phenomenon.
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Fig. 5. Divergence of the bootstap filter. Representation ofthe estimated trajectory of the target (dashed line) as well

as confidence areas at various moments. The true trajectory of the target is the solid line, the trajectory of the observer

the dotted line. The set of particles at the final time is displayed. (a): scenario 1, (b): scenario 2

III. PARTICLE FILTER APPROACH FOR THEBOT: SOLUTIONS

As previously seen the robustness of the bootstrap filter is very disappointing, even for ”simple” scenarios

and perfect initialization. Not surprisingly, it will be shown now that it is the poor observability of the radial
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distance which is at the origin of this problem. Our approachconsists in rewriting the filtering problem (4,8)

within a new coordinate system, namely the logarithmic polar coordinates (LPC), defined in the following

way:

Definition 3 (LPC) The target state, in logarithmic polar coordinates, is defined as follows:

yk =
[

βk ρk β̇k ρ̇k

]t

(14)

whereβk andρk are respectively the bearing and the logarithm of the relative distance between the target

and the observer at timek; β̇k et ρ̇k are respectively the time-derivatives ofβk andρk.

The transition formulas from Cartesian coordinates to logarithmic polar coordinates (LPC) are given

below:

xk = f c
lp(yk) = eρk




cos βk

sin βk

−β̇k sin βk + ρ̇k cos βk

β̇k cos βk + ρ̇k sin βk




(15)

and

yk = f lp
c (xk) =




atan2 (ry(k), rx(k))

ln
(√

r2
x(k) + r2

y(k)
)

rx(k)vy(k)−ry(k)vx(k)
r2
x(k)+r2

y(k)

vx(k)rx(k)+ry(k)vy(k)
r2
x(k)+r2

y(k)




=




βk

ρk

β̇k

ρ̇k




. (16)

This coordinate system is very close in spirit to the modifiedpolar coordinates pioneered by Aidala

and Hammel in [4]. The inverse of the radial distance has beenreplaced by the logarithm of the radial

distance. We can notice that Aidala and Hammel used this coordinate system in [4] precisely to understand

the divergence of the Kalman filter. For the particle filter, we will also use a similar approach. Rewriting the

filtering problem (4,8) in logarithmic polar coordinates yields:

Proposition 1 (formulation of the problem of BOT)The problem of bearings-only tracking described by

the filtering problem (4,8) can be rewritten in the followingform:




βk+1 = βk + atan2 (S1(k), S2(k)) ,

ρk+1 = ρk + 1
2 ln(S2

1(k) + S2
2(k)),

β̇k+1

ρ̇k+1


 = 1

(S2
1(k)+S2

2 (k))


S2(k) −S1(k)

S1(k) S2(k)





S3(k)

S4(k)


 ,

zk = βk + wk
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where:




S1(k)

S2(k)

S3(k)

S4(k)




=




ηkβ̇k

1 + ηkρ̇k

β̇k

ρ̇k




+
1

rk

(Id2 ⊗Rβk
)uk +

σ

rk

vk . (17)

Rβk
is the 2D rotation matrix with angleβk defined in the notation section. Moreover, by definition of the

LPC,rk = eρk (rk is the range at timek).

PROOF OF PROPOSITION1: It consists in rewriting the dynamic system (4,8) by usingthe transitions for-

mulas (15) and (16). The complete proof of this result is given in appendix A.�

Formulation (17) is particularly interesting. One can notice that the termσ
rk

is a scale parameter governing

the diffusion noise. In other words, as long as the observer does not maneuver, the BOT problem is a

nonlinear filtering problem, with unknown andtime-varyingcovariance. Moreover, this last term cannot be

controlled via the measurement equation, while it is depending on the radial distance. We will now try to

understand to what extent this structure is at the origin of the difficulties encountered by the bootstrap filter.

A. Understanding the divergence of the traditional particle filter

We remind that at the initial time, the particles are uniformly dispersed in terms of radial distance between

a minimal distance and a maximum distance. However it seems that, after a certain time, the particles

corresponding to large radial distances are over-weighted, the particles corresponding to smaller distances

then disappear during the state of resampling. However, this stage consists only in keeping the particles that

have high weights. To understand the divergence problem, wethus propose to integrate a temporal aspect

and to study the behavior ofp(zk+1|yk). First, let us notice that thanks to Prop.1, we have:

zk+1 = βk + atan2 (S1(k)S2(k)) + wk , (18)

quantitiesS1(k) andS2(k) being defined in Prop. 1. Though (18) is nonlinear, a convenient approximation

obtained via a first order expansion is:

zk+1 ≈ βk+1|k +
σηk

rk g(β̇k, ρ̇k)
vk + wk , (19)
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where:




βk+1|k , βk + atan2
(
ηkβ̇k, 1 + ηkρ̇k

)
,

g(β̇k, ρ̇k) ,

√
(ηkβ̇k)2 + (1 + ηkρ̇k)2 ,

vk ,
1+ηk ρ̇k

g(β̇k,ρ̇k)
v

(3)
k − ηkβ̇k

g(β̇k,ρ̇k)
v

(4)
k

Termsv(3)
k andv

(4)
k denote component number3 and4 of vectorvk. Using the statistical properties ofvk

given by eq.(6), one can show thatvk ∼ N (0, α3). Finally, we obtain via (19) an approximated expression

for p(zk+1|yk) as follows:

p(zk+1|yk) ∝
1

φk

e
−

(zk+1−βk+1|k)2

2φ2
k (20)

where:

φ2
k =

σ2η2
kα3

r2
kg

2(β̇k, ρ̇k)
+ σ2

β .

Let us study the behavior ofp(zk+1|yk) given by equation (20), as a function ofrk. One can show that this

function has a maximum given by the following expression:

rk =
σηk

√
α3

g(β̇k, ρ̇k)
√(

zk+1 − βk+1|k
)2 − σ2

β

(21)

if
(
zk+1 − βk+1|k

)2
> σ2

β. Let us remark using (20) that

E{
(
zk+1 − βk+1|k

)2 |yk} = φ2
k (22)

so that

E{
(
zk+1 − βk+1|k

)2 |yk} > σ2
β . (23)

Consequently, asp(zk+1|yk) has a maximum given by (21), one can expect to estimate the range. Therefore,

the problem is that in classical tracking algorithms, the true covariance stateσ is unknown and replaced by

σmax so that the maximum associated top(zk+1|yk) is shifted. Asσmax > σ, rk is then overestimated.

This fact has been observed in the simulation results presented in the previous section.

Let us remark thatσmax is classically used to avoid the estimation of the covariance term. We have shown

here that this technique can not be used in the bearings-onlycontext. Now let us remark that in system (17),

σ andrk do not appear separately if the observer does not maneuver (i.e. uk is zero). Consequently, the

only term that can be estimated is the ratio

σ̃k ,
σ

rk

. (24)
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Bréhard et al have shown in [24] that this term which is the ”natural” state covariance of system (17) can be

estimated. We precise this point now by incorporatingσ̃k in the filtering problem (17). First, the evolution

of this time-varying parameter is given by the following equation:

σ̃k+1 = σ̃k(S
2
1(k) + S2

2(k))−
1
2 (25)

whereS2
1(k) andS2

2(k) are given by eq.(17). Based onσ̃k’s definition given by (24), equation (25) is derived

from the evolution equation ofρk (see eq.(17)). Now, adding this evolution equation to the system (17), we

obtain the new filtering problem:




βk+1 = βk + atan2 (S1(k), S2(k)) ,

σ̃k+1 = σ̃k(S
2
1(k) + S2

2(k))−
1
2 ,

ρk+1 = ρk + 1
2 ln(S2

1(k) + S2
2(k)),

β̇k+1

ρ̇k+1


 = 1

(S2
1(k)+S2

2 (k))


S2(k) −S1(k)

S1(k) S2(k)





S3(k)

S4(k)


 ,

zk = βk + wk

(26)

where:



S1(k)

S2(k)

S3(k)

S4(k)




=




ηkβ̇k

1 + ηkρ̇k

β̇k

ρ̇k




+
1

rk

(Id2 ⊗Rβk
)uk + σ̃kvk .

Let us remark that the filtering problem (26) can then be rewritten as follows:




Yk+1 = f1(Yk , 1
rk

uk , vk) ,

ρk+1 = ρk + f2(Yk , 1
rk

uk , vk) ,

zk = βk + wk

where:

Yk , {βk, β̇k, ρ̇k, σ̃k} . (27)

The definitionsf1 andf2 are not presented here but are straightforwardly deduced from (26). The important

property here is that as long as the observer does not maneuver (i.e. uj = 0 ∀j ∈ {1, . . . , k} ), {Yj}j∈{0,...,k}

is a Markovian process (i.e it doesn’t depend on the sequence{rj}j∈{1,...,k}). This idea is illustrated by

figure 13. It is within this framework that we propose to solvethis filtering problem by using a hierarchical

approach.
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B. A hierarchical approach

It has been shown, in the preceding section that the BOT is a nonlinear problem of filtering with an

unknown diffusion parameter in the LPC framework given by eq.(26). This new filtering framework has a

peculiar property illustrated by figure 13. One can notice that, as long as the observer does not maneuver,

this filtering framework displays a particular structure perfectly adapted to a hierarchical estimation. The

first stage consists in estimatingYk , {βk, β̇k, ρ̇k, σ̃k}. The second stage updates theprior knowledgeρk.

Let us detail this structure.

Filter 1: estimation of p(Y0:k|z1:k)

As long as the observer does not maneuver, based on (26), the filtering problem associated toY0:k can be

written as follows:




βk+1 = βk + atan2 (S1(k), S2(k)) ,

σ̃k+1 = σ̃k(S
2
1(k) + S2

2(k))−
1
2 ,

β̇k+1

ρ̇k+1


 = 1

(S2
1(k)+S2

2 (k))


S2(k) −S1(k)

S1(k) S2(k)





S3(k)

S4(k)


 ,

zk = βk + wk

(28)

where:



S1(k)

S2(k)

S3(k)

S4(k)




=




ηkβ̇k

1 + ηkρ̇k

β̇k

ρ̇k




+ σ̃kvk .

In this context, notice that as long as the observer does not maneuver,{Yj}j∈0,...,k is aMarkovianprocess

(i.e it doesn’t depend on the sequence{rj}j∈{1,...,k}). One can thus obtain via a bootstrap filter theposterior

distribution functionp(Y1:k|z1:k) . It is also possible to use a quasi-optimal particle algorithm as defined by

Doucet in [8].σ̃0 can be initialized using the following method based on definition (24):

σ̃
(i)
0 =

σ(i)

r
(i)
0

whereσ(i) ∼ σmaxU([0, 1]) (29)

andr
(i)
0 is sampled using the initial prior on radial distance.

Filter 2: estimation of p(ρk|z1:k)

The objective of the second filter is to estimatep(ρk|z1:k) in a recursive way or more precisely to generate

a sample{ρ(j)
k }j∈{1,...,M} according to this law. First, combining the diffusion equation of ρk andσ̃k given
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by (26), we obtain:

ρk = ρk−1 + ln

(
σ̃k−1

σ̃k

)
. (30)

Iterating, the last equation can be rewritten

ρk = ρ0 + ∆Y0:k
(31)

where:

∆Y0:k
=

k∑

j=1

ln

(
σ̃j−1

σ̃j

)
.

Now using eq.(31),p(ρk|z1:k) can be rewritten

p(ρk|z1:k) =

∫
δρ0+∆Y0:k

(ρk)p(ρ0,Y0:k|z1:k)d{Y0:k, ρ0} . (32)

Let us remark that

p(ρ0|Y0:k, z1:k) =
p(z1:k|Y0:k, ρ0)p(ρ0|Y0:k)

p(z1:k|Y0:k)
= p(ρ0|Y0:k) . (33)

Incorporating (33) in (32), we obtain

p(ρk|z1:k) =

∫
δρ0+∆Y0:k

(ρk)p(ρ0|Y0:k)p(Y0:k|z1:k)d{Y0:k, ρ0} . (34)

Then, the hierarchical structure of the filter described by figure 13 implies that

p(ρ0|Y0:k) =
p(Y0:k|ρ0)p(ρ0)

p(Y0:k)
= p(ρ0) . (35)

This property is only valid as long as the observer does not perform any maneuver. Incorporating (35) into

(34), we obtain:

p(ρk|z1:k) =

∫
δρ0+∆Y0:k

(ρk) p(ρ0)︸ ︷︷ ︸
⋆

p(Y0:k|z1:k)︸ ︷︷ ︸
⋆⋆

d{Y0:k, ρ0} . (36)

One can notice that all the elementary terms composing the equation (36) are known. Indeed,⋆ is the prior

distribution function of the range at the initial time,⋆⋆ is the result of filter 1 at the momentk. It is thus

possible to perform a simulation according to this distribution by Monte-Carlo integration in the following

way:




p(Y0:k|z1:k) ≈ ∑N1
i=1 w

(i)
k δY(i)

0:k

(Y0:k) ,

p(ρ0) ≈ ∑N2
j=1

1
N2

δ
ρ
(j)
0

(ρ0) .
(37)
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The first approximation is the result at the time periodk of filter 1 which is a particle filter. The second one

is obtained fromp(ρ0). Combining (36) and (37), we can thus generate a sample of{ρ(k)
k }, associated with

thep(ρk|z1:k) density, as follows:

ρk ∼
N1∑

i=1

N2∑

j=1

w
(i)
k

N2
δ
ρ
(j)
0 +∆

Y
(i)
0:k

(ρk) . (38)

Final algorithm: the hierarchical filter

We have built a hierarchical particle estimation algorithm. The various stages of the algorithm are sum-

marized by algorithm 1. This algorithm is based on the particular structure of the problem, illustrated by

figure 13. The latter in particular makes it possible to demonstrate formula (35). However, as shown on

fig. 13, as soon as theρk is observable, the structure of the problem also changes. The estimation of com-

ponentsYk , {βk, β̇k, ρ̇k, σ̃k} andρk can then be carried out jointly using a traditional particlefilter. to

be completely exhaustive, a statistical test should be developed to precise whenρk is observable. Then,

the algorithm should be able through the scenariot o switch from the hierarchical particle filter to the tra-

ditional particle filter whenρk is unobservable and vice versa. This point is out of scope of the paper but

should investigated further. The global algorithm thus hasthe final structure described in figure 6. Let us

notice finally that from an algorithmic point of view, this algorithm is equivalent in terms of complexity to a

traditional particle algorithm.

Fig. 6. Hierarchical particle filter. Estimation at timek. Whenρk is unobservable, estimation is proceeded using a

hierarchical particle filter. Whenρk is observable, a classical particle filter is used.
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C. Simulations

We will now compare the performance of this new algorithm with bootstrap filter ones, considering again

the three scenarios considered in section 2. We refer to fig.3, constants are summarized in table I. The

bootstrap particle filter is applied using the constants presented in table II. The hierarchical particle filter

uses the constants given in table III. The set of particles associated to{βk, ρk, β̇k, ρ̇k} are initialized in the

same way using (13) for the two filters. Concerning the hierarchical particle filter,̃σ0 can be initialized using

the following method based on definition (24):

σ̃
(i)
0 =

σ(i)

r
(i)
0

(39)

where:




r
(i)
0 ∼ r0 + 50 N (0, 1) (in meters),

σ(i) ∼ σmaxU([0, 1]) .

Results are displayed in fig.14. We represent the evolution versus time of the performance indicesMSEk

andDk defined by (10) and (11). One can notice that the hierarchicalfilter gives much more satisfactory

results in terms of divergence, the true state of the target beingalwaysin the area of confidence associated

with the hierarchical estimate. Moreover, one can notice that, in terms of quadratic error, the performances

of this new algorithm largely exceeds that of the bootstrap particle filter.

TABLE III

HIERARCHICAL PARTICLE FILTER CONSTANTS

constant value

N1(number of particles for filter 1) 10000

N2(number of particles for filter 2) 10000

Nthreshold
N
3

σmax 0.01 m/s

IV. I NITIALIZING THE HIERARCHICAL BOT PARTICLE FILTER

This section deals with the initialization of (hierarchical) sequential Monte-Carlo methods in the BOT

context. Though this problem is rarely mentioned in the literature it is of a crucial importance, especially

for the partially observed case. It is generally admitted that the initial distributionp(y0) is ”sufficiently”

informative. However, in practice, ourprior knowledge is frequently very poor. A straightforward appli-

cation of particle filtering would require a huge number of particles, allowing to cover the support of the
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initial density distribution. Even if this approach can possibly work, it seems unrealistic. To avoid these

drawbacks, first let us recall that we can take benefit (in the BOT context) from operational constraints.

These constraints may be minimal and maximal range, or speed. We will see that MCMC methods are a

natural way for using these constraints in our context [16].Moreover, it is well admitted to have recourse

to abatchtype method for tracking initialization (see e.g. [13]). This means that we assume that the target

trajectory is deterministic throughout the initialization. One can then build in an analytical way the density

of the initial state given a ”batch” of measurementsz1:κ. The objective of the initialization method is then

to generate a set ofN particles with the following posterior distribution:

p(y0|z1:κ) (40)

via the likelihoodp(z1:κ|y0) and priors (constraints). This idea is represented by fig. 7 and will consists in

generating a Markovian process which will evolve on the support of the distribution. A simple and feasi-

ble solution is given by the Hasting-Metropolis algorithm [25]. The idea of the algorithm itself consists in

defining a Markov Chain whose stationary distribution is preciselyp(y0|z1:κ). For a very readable presen-

tation of this (and related) algorithm, we refer to [26]. A basic ingredient is simply the Bayes formula, here

yielding:

p(y0|z1:κ) ∝ p(z1:κ|y0)p(y0) . (41)

In the right-hand side of the above expressionp(y0) stands for the prior, here limited to a uniform density on

the constraint domain. Moreover, if the diffusion noise is zero duringκ time-periods, an analytic expression

p(z1:κ|y0) can be derived:

p(z1:κ|y0) ∝ e
− (z1:κ−f(y0))t(z1:κ−f(y0))

2σ2
β , (42)

whereσ2
β is the variance of the measurement noise,

f(y0) =




β0 + atan2
(
1 + ηk

ṙ0
r0

+ e−ρ0(sin β0U
1
1 + cos β0U

2
1 ), ηkβ̇0 + e−ρ0(cos β0U

1
1 − sinβ0U

2
1 )

)

...

β0 + atan2
(
1 + κηk

ṙ0
r0

+ e−ρ0(sin β0U
1
κ + cos β0U

2
κ), κηkβ̇0 + e−ρ0(cos β0U

1
κ − sin β0U

2
κ)

)


 (43)

andU1
j etU2

j are the two components of theUj ”control” vector defined by





Fk =

k times︷ ︸︸ ︷
F × . . . × F ,

uk =
∑k−1

j=0 Fk−juj .

(44)
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A proof of (42) can be found in the Appendix B.

From a practical point of view, at each step of the algorithm,physical constraints are checked when a

new state is proposed. As long as the state suggested does notfit to the constraints, a new state is proposed.

According to the acceptance probability, the candidate state is then accepted or rejected. This probability

is computed using the likelihoodp(z1:κ|y0) given by (42). The algorithm stops when we have a set of N

particles. Let us remark that it is important for this first particle to be on the support of the distribution of

the related densityp(y0|z1:κ). This is achieved thanks to a standard Gauss-Newton algorithm (see [27] and

[28]). Finally, let us emphasize that integration of complex constraints can be achieved via an extension

of the Hasting-Metropolis algorithm, named Hit-and-Run sampler [17]. Finally, remark that the choice of

an optimal batch sizeκ is an open problem. This constant should be fixed depending onthe nature of the

scenario and the number of particles used in the particle filter.

Fig. 7. Initialization of the particle filter.

V. TRACKING A MANEUVERING TARGET

We consider in this section another application of the hierarchical particle filter developed in section

III. The scenario considered is the tracking of a maneuvering target. It is a question here of showing the

robustness of the approach. Moreover, we also suppose that the knowledge on the initial state of the target is

poor so that the method of initialization based on MCMC methods suggested in section IV is applied. The

scenario is presented in the following subsection, while simulation results are detailed in subsection B.

A. Scenario

We consider the scenario described by figure 8. A plane moves in straight line at the speed of 350 m/s. It

considers every0.02 sec. a relative angular measurement between its position and the position of a missile

in approach. The trajectory of the latter is governed by a guidance law, for which the observer does not have

any prior. In practice, this guidance law was generated by proportional navigation (see [29]). The constants
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of the scenarios are summarized in table IV. Our knowledge onthe initial state of the target is relatively

weak. We simply have lower and upper bounds for target speed and range. Two different initial priors given

in table V are considered in simulations. The second one introduces a bias on the radial distance at the inital

time. We use the initialization method developed in sectionIV. The batch sizeκ is fixed to 40. Figure 9

illustrates the influence of this parameter on the performance of the hierarchical particle filter. We compare

the performances of the hierarchical particle filter (algorithm described by figure 6)) proposed in section

III with constants given in table VII to those of the bootstrap filter with constants given in table VI. Both

algorithms use the same initialization.

(a)
0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

2.5

3

time in seconds

ra
d

(b)

Fig. 8. “maneuvering target” scenario. Representation of the trajectories of the observer (dotted line) and the target

(solid line) (a) and evolution of angles measurements in thecourse of time (b).

Fig. 9. Comparison of the performances of the LPC filter for “maneuvering target” scenario for different batch sizes.

Evolution of the mean square error through time for different batch sizes.
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TABLE IV

CONSTANTS OF THE“maneuvering target” SCENARIO

Scenario

duration 18 s

rtgt
x (0) 0 km

rtgt
y (0) 7 km

vtgt
x (0) 0 m/s

vtgt
y (0) −680 m/s

robs
x (0) 0 km

robs
y (0) 0 km

vobs
x (0) 58 m/s

vobs
y (0) −376 m/s

σβ 0.1 deg

ηk 0.02 s

TABLE V

INITIAL Prior INFORMATION ON THE “maneuvering target” SCENARIO

prior 1 prior 2

rmin 4 km 3 km

rmax 9 km 8 km

vmin 600 m/s 600 m/s

vmax 900 m/s 900 m/s

TABLE VI

BOOTSTRAP FILTER CONSTANTS

constant value

N (number of particles) 5000

Nthreshold
N
3

σmax 20 m/s
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TABLE VII

HIERARCHICAL PARTICLE FILTER CONSTANTS

constant value

N1(number of particles for filter 1) 5000

N2(number of particles for filter 2) 5000

Nthreshold
N
3

σmax 20 m/s

B. Simulations

The estimated trajectories as well as confidence ellipsoidsat three time periods for the hierarchical particle

filter and the bootstrap filter using initial prior 1 (given intable V) are represented on figures 10. We note

that after a certain time, the bootstrap algorithm divergeswhich is not the case of the hierarchical filter.

One can notice that both filters perform conveniently duringthe first part of the scenario. However (see

fig.10(a)), one can notice that the bootstrap filter estimatediverges after a certain time. Thus, at the end of

the scenario, the radial distance is largely over-estimated. Thus, the associated confidence ellipsoid does not

include the true state of the target any more. Conversely, the trajectory obtained by the hierarchical filter

(see fig.10(b)) performs quite satisfactorily. Figure 11 represents a comparison of the estimated trajectories

as well as confidence ellipsoids computed with the hierarchical partical filter and the bootstrap filter with

initial prior 2 (given in table V). At the initial time, both filters suffers from a bias on the radial distance due

to the initial prior. One more time, we observe the divergence of the bootstrap filter when the hierarchical

particle filter performs satisfactory. Specially, the confidence ellipsoid contains the true target state even

if the estimate is biased. Finally, we present in fig.12 the temporal evolution of the mean quadratic error

evaluated on the basis of100 trials. Again, the hierarchical filter widely overperformsthe bootstrap filter.

VI. CONCLUSION

We have shown that the performance of the ”classical” bootstrap filter developed by Gordon, Salmond and

Smith [6] could be relatively disappointing in a partially observed context. This corroborates Fearnhead’s

work [11]. More precisely, in cases where the observer performs a maneuver relatively late, a systematic

divergence of the filter is observed. A rewriting of the problem using a new frame of reference, named

logarithmic polar coordinates, was used to understand thisphenomenon. Classical trackers like the bootstrap

filter fix to a maximal value the unknown variance appearing inthe state equation. We suggested in this paper
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Fig. 10. Estimates and areas of confidences of the filters for the ”maneuvering target ” scenario using prior 1 given in

tab.V. Representation of the trajectories of the observer (dotted line) and the target (solid line). Estimated trajectories

for the two algorithms: the bootstrap filter (a) and the hierarchical particle filter (b). Areas of confidence at the initial

time step and at time7 s and18 s.
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Fig. 11. Estimates and areas of confidences of the filters for the ”maneuvering target ” scenario using prior 2 given in

tab.V. Representation of the trajectories of the observer (dotted line) and the target (solid line). Estimated trajectories

for the two algorithms: the bootstrap filter (a) and the hierarchical particle filter (b). Areas of confidence at the initial

time step and at time7 s and18 s.

that this choice induces an overestimation of the radial distance. To avoid this problem, a hierarchical method

of estimation based on the LPC framework was proposed. We showed the superiority of this hierarchical

particle filter in terms of divergence and mean square error.In addition these results were confirmed for a

more difficult scenario characterized by a maneuvering target.

The robustness of this new algorithm would be helpful to solve the multi-target tracking problems [30],

[31]. Moreover, it can also be integrated within the framework of maneuvering target [32], [33] and dis-

tributed tracking [34].

Let us notice that all this study was carried out using the logarithmic polar coordinates but could have
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Fig. 12. Comparison of the mean square error through time of the bootstrap filter and the hierarchical particle filter

for “maneuvering target” scenario

just as easily been carried out by using the modified polar coordinates suggested by Aidala and Hammel [4].

However, this new frame of reference takes all its interest within the framework of performance analysis

[12]. Indeed, the LPC make it possible to calculate an exact bound for the error covariance matrix, which

is impossible when using the MPC or the Cartesian coordinates. We have considered in this article a target

evolving in a two dimensional environment. One can then naturally put the question of the extension of this

work to the case of a three dimensional setting which practical interest is obvious. The essential point is

to find the extension of the logarithmic polar coordinates inthis context. Let us notice that there are some

identified systems that could be interesting. One can quote the modified spherical coordinates evoked by

Allen and Blackman in [35] and the Cartesian system standardized by the distance proposed by Grossman

[36] which is not without pointing out the modified polar coordinates.

APPENDIX A: PROOF OF PROPOSITION1

The aim of this section is to show that the equation of evolution of the target expressed in LPC has a very

particular form. One uses the equation (9). Let us start by expressing the termFxk in logarithmic polar

coordinates using (15):

Fxk =




rx(k) + ηkvx(k)

ry(k) + ηkvy(k)

vx(k)

vy(k)




=




rkRβk


 ηkβ̇k

1 + ηkρ̇k




rkRβk


 β̇k

ηkρ̇k







(45)
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where:

Rβk
=


− sinβk cos βk

cos βk sinβk


 .

Inserting this result in equation (9), we obtain:

xk+1 =




rkRβk


 ηkβ̇k

1 + ηkρ̇k




rkRβk


β̇k

ρ̇k







+ uk + σvk . (46)

If we factorizerkRt
βk

, the previous expression can be rewritten in the following way:

xk+1 =




rkRβk


S1(k)

S2(k)




rkRβk


S3(k)

S4(k)







(47)

where:



S1(k)

S2(k)

S3(k)

S4(k)




=




ηkβ̇k

1 + ηkρ̇k

β̇k

ρ̇k




+
1

rk

(Id2 ⊗Rβk
)uk +

σ

rk

vk .

Expression (47) is obtained by remarking that(Id2 ⊗ Rβk
)vk has the same statistical properties thanvk.

Now, we study the termyk+1 using:

yk+1 = f lp
c (xk+1) =




atan2 (ry(k + 1), rx(k + 1))

ln
(√

r2
x(k + 1) + r2

y(k + 1)
)

rx(k+1)vy(k+1)−ry(k+1)vx(k+1)
r2
x(k+1)+r2

y(k+1)

rx(k+1)vx(k+1))+ry(k+1)vy(k+1)
r2
x(k+1)+r2

y(k+1)




. (48)

Finally, putting (47) in (48), we obtain




βk+1 = βk + atan2 (S1(k), S2(k)) ,

ρk+1 = ρk + 1
2 ln(S2

1(k) + S2
2(k)),

β̇k+1

ρ̇k+1


 = 1

(S2
1(k)+S2

2 (k))


S2(k) −S1(k)

S1(k) S2(k)





S3(k)

S4(k)



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where:



S1(k)

S2(k)

S3(k)

S4(k)




=




ηkβ̇k

1 + ηkρ̇k

β̇k

ρ̇k




+
1

rk

(Id2 ⊗Rβk
)uk +

σ

rk

vk (49)

APPENDIX B: PROOF OF EQ.(42)

The idea consists in simplifying the problem by supposing that the target follows a uniform rectilinear

motion:

xk+1 = Fxk + uk . (50)

This entails to suppose that the noisewk is null in the equation of evolution (9) associated with the problem

of BOT presented in section 1. In other words, the target has adeterministic behavior. All the interest of this

approach lies then in the fact that one can parameterize the trajectory by a low number of parameters. One

generally chooses to parameterize it by a target state at onemoment of reference. In the following, the state

of reference is the initial statex0. The target’s state at time k is then obtained starting from this initial state

using the following relation:

xk = Fkx0 + Uk

where:




Fk =

k times︷ ︸︸ ︷
F × . . . × F ,

Uk =
∑k−1

j=0 Fk−juj .

(51)

By using the equation of observation (4) and the equation (51), one obtains the following result:



z1

...

zκ


 =




h(F1x0 + U1)
...

h(Fκx0 + Uκ)


 +




w1

...

wκ


 . (52)

The key point of the demonstration consists in rewriting (52) by using the modified logarithmic polar coor-

dinates via the formulas of transitions (15) and (16).
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[24] T. Bréhard and J-P. Le Cadre. A New Approach for the Bearings-Only Problem: Estimation of the Variance-to-Range Ratio.

In 7th International Conference on Information Fusion, Stockholm, Sweden, 2004.

[25] W. K. Hasting. Monte Carlo Sampling Methods Using Markov Chains and Their Application.Biometrika, 57:97–109, 1970.

[26] D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, 2003.

[27] S.C. Nardone, A.G. Lindgren, and K.F. Gong. Fundamental Properties and Performance of Conventional Bearing-OnlyTarget

Motion Analysis. IEEE Transactions on Automatic Control, 29(9):775–787, September 1984.

[28] J-P. Le Cadre and C. Jauffret. On the Convergence of Iterative Methods for Bearings-Only Tracking.IEEE Transactions on

Aerospace and Electronic Systems, 35(3), July 1999.

[29] M. Li and C-C. Lim. Observability-Enhanced Proportianal Navigation Guidance with Bearings-Only Measurements.J.

Austral. Math. Soc. Ser. B, 40:457–512, 1999.
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Fig. 13. Representation of the Markovian process associated with the dynamic system (26).The observer maneuvers

only at time 4. This operation causes to add a conditioning represented by the red arrow. As long as the observer does

not maneuver, the diffusion of componentsYk does not depend onρ0.
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Algorithm 1 Hierarchical particle filter

• FILTER 1: sequential importance sampling forYk:

1. sampling :

for i = 1...N1, sampleY(i)
k ∼ p(Yk|Y(i)

k−1),

2. compute un-normalized weights :

for i = 1...N1, computew̃(i)
k = p(zk|Y(i)

k )w
(i)
k ,

3. normalize weights :

for i = 1...N1, computew(i)
k =

ew(i)
kPN

j=1 ew(j)
k

.

• FILTER 2: sampling for ρk:

for j = 1...N2, samplingρ(j)
0 ∼ p(ρ0)

for j = 1...N2, samplingρ(j)
k ∼ ∑N1

i=1 w̃
(i)
k δ

ρ
(j)
0 +∆

Y
(i)
0:k

(ρk) ,

• Monte Carlo estimation

the clouds{Y(i)
k , w

(i)
k }i=1...N1 and{ρk

(j)}j=1...N2 allow to approximate theposterior

distribution function

p(yk|z1:k) ≃
N1∑

i=1

N2∑

j=1

w
(i)
k

N2
δY(i)

k

(Yk)δρ
(i)
k

(ρk)

and forg Lebesgue integrable

E{g(yk)|z1:k} ≃
N1∑

i=1

N2∑

j=1

g(Y(i)
k , ρ

(j)
k )

w
(i)
k

N2

• resampling :

1. computeNeff = N1PN1
i=1(w

(i)
k

)2
,

2. if Neff < Nthreshold,

draw N particlesỸ(i)
0:k in {Y(i)

0:k}i=1...N1 proportionally to weights{w(i)
k }i=1...N1 and set

w
(i)
k = 1/N1, Y(i)

0:k = Ỹ(i)
0:k for i = 1...N1.
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Fig. 14. Comparison of the performances in the course of timeof the hierarchical filter (solid line) and of the bootstrap

filter (dotted line) for different scenarios.On the left side, evolution of the divergence (probability that the state ofthe

target is in the area of confidence) (a.1): scenario 1, (a.2) scenario 2, (a.3) scenario 3.On the right side, comparison

of the evolution of the mean square error in the course of timefor different scenarios (b.1): scenario 1, (b.2) scenario

2, (b.3) scenario 3.


