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Abstract. We present a novel space-time exemplar-based method for
image sequence restoration. We have designed a locally adaptive estima-
tion framework which relies on the analysis of the bias-variance trade-off.
It allows us to select on-line the best adapted filtering space-time neigh-
borhood at each pixel. Furthermore, it involves an original space-time
exemplar-based restoration which improves the overall performance.
This method is unsupervised and requires no motion estimation. It nev-
ertheless can be combined with motion estimation to cope with very large
displacements due to camera motion. Experiments show that this method
is able to drastically improve the quality of highly corrupted image se-
quences. Quantitative results on standard image sequences demonstrate
that our approach outperforms other recent methods.



1 Introduction

Image sequence restoration takes a crucial place in several important domains. In
biology, confocal microscopes provide noisy image sequences due to the limited
number of photons. In astronomy, the same phenomenon occurs in telescopes and
image sequences are also corrupted with an important noise level. In medicine,
image sequence denoising is critical especially in ultra-sound and X-ray imag-
ing. Video surveillance also provides some noisy image sequences. Finally, we
can notice that the noise increases the required bandwidth for video sequence
broadcasting and that a denoising algorithm can then produce a more compact
image sequence digital representation [1].

The main difficulties in image sequence restoration arises from the non-
stationarity of the spatio-temporal signal. Denoising methods must preserve
these space-time discontinuities while minimizing the error between the unknown
noise-free image sequence and the denoised sequence. The later is usually stated
as the minimization of a local quadratic objective function.

In order to recover the correct intensity at every pixel of the image sequence,
we can exploit the local correlation of the signal and use the neighboring pixels.
A method based on a pre-determined shape and size (scale) will not be able to
take into account the spatio-temporal discontinuities of the intensity function.
This would result in a blurred image sequence. As for video sequences, temporal
discontinuities are mainly due to motion, image sequence denoising methods
have to be able to filter along motion trajectories. Thus, the local neighborhood
can be oriented according to the motion direction; or conversely, the motion can
be compensated for. This implies a motion estimation stage. However, motion
estimation is usually not that easy specially in noisy sequences.

Another way to remove noise is to find similar samples in the image sequence.
Exemplar-based approach has proved its efficiency in texture synthesis [2], image
in-painting [3] and also video completion [4]. In [5], an exemplar-based image
sequence filtering method is also proposed: the non-local mean algorithm. In
these methods the similarity between two points is measured by using patches
that describe their local context. Examples are usually searched in the whole
image or in an area around the considered pixel.

The original method we propose is an exemplar-based adaptive statistical
method for image sequence restoration. It is related to the framework already
described for still images [6–8] and image sequences [9]. Methods designed for still
image like wavelet shrinkage [13], Wiener filtering [14] or PDE based filters [12]
have been extended to image sequences. Unlike robust anisotropic diffusion [10]
and non-linear Gaussian filtering [11], our local adaptive estimation approach
supplies scale selection for each pixel by locally estimating the appropriate space-
time filtering window. Moreover, if required, the proposed method is able to
process in a decoupled way the space and the time dimensions which is not the
case for methods that simply consider the image sequence as a 3D volume [12,
13]. Unlike [7, 9] our approach is not based on a geometrical partition of the
neighborhood in sectors but use an appropriate and more flexible weighted sum
of data points in a neighborhood. The weights are defined by computing the



distance between a patch centered on a given pixel and examples patches in
the estimated space-time neighborhood. Additionally, a confidence level (i.e.
variance) attached to each restored pixel is provided. Lets us finally point out
that the Total Variation minimization method [15] cannot be easily extended to
space-time domain.

The remainder of the paper is organized as follows. Section 2 describes the
general framework of our method and the intensity estimation is defined. In
Section 3, the adaptive choice of the local space-time neighborhood is intro-
duced. Section 4 deals with the similarity measure involved in the selection of
the patches in the space-time neighborhood of the pixel to be restored and Sec-
tion 5 gives details of the algorithm implementation. In Section 6, we report
an important set of experimental results. Intensive comparisons with other re-
cent methods has been carried out, demonstrating that our method outperforms
them. We also present how our denoising method can be combined with a motion
estimation method and we comment the usefulness of a motion compensation
stage. Finally, Section 7 contains concluding remarks.

2 Proposed exemplar-based space-time approach

We consider the following statistical image model:

Yi = u(xi) + ξi, (1)

where xi ∈ Ω denotes the pixel location in the space-time volume Ω ⊂ IR3. The
image function ui = u(xi) has to be recovered from observations Yi. The errors
ξi are assumed to be independent zero-mean Gaussian variables with unknown
variance τ2.

We need minimal assumptions on the structure of the image for recovering
u. We assume that u(xi) is a locally piecewise constant function in a space-
time neighborhood of pixel xi. However, the size and shape of the neighborhood
should varie in the image sequence because of non-stationarities and presence of
discontinuities. If we can determine the adequate neighborhood for each pixel,
then the regression function u can be estimated by optimizing a local maximum
likelihood (ML) criterion. The proposed method addresses these two issues as
described below.

We construct a sequence of increasing nested space-time neighborhoods
(Wi,n)n∈[0:N ] centered at each point xi, i.e. Wi,n ⊂ Wi,n+1 with N indicating
the largest window. Further details about the neighborhood design are described
in Section 3. At the initialization, we choose a small neighborhood (the 8 nearest
neighbors in the 2D space domain) as the pilot (starting) window Wi,0 at point
xi,∀xi ∈ Ω. Then, we compute an initial estimate ûi,0 of u(xi) and its associated
variance σ̂2

i,0 as:

ûi,0 =
∑

xj∈Wi,0

ωijYj and σ̂2
i,0 = τ̂2

∑
xj∈Wi,0

ωij (2)



Patch ûi,n−1 of size 3× 3 associated to xi (in green).

xj location and corresponding 3× 3 patch.

Space-time neighborhood Wi,n (in blue).

Current pixel located at xi.

Fig. 1. Exemplar-based space-time approach. To each point of the image sequence
is associated an estimated space-time neighborhood Wi,n. To each point xj of this
neighborhood is associated a 3 × 3 patch. The weights ωij are defined as a function
of the distance between the patch centered in point xi and patches centered in point
xj ∈ Wi,n.

where τ̂2 is an empirical estimate of the noise variance τ2 as described in Sec-
tion 5. At the initialization step, the weights ωij are defined as a function of the
distance between two 2D image patches of p2 pixels centered in xi and xj .

At the next iteration, we consider a larger space-time neighborhood Wi,1

such that Wi,0 ⊂ Wi,1 and calculate new estimates ûi,1 and σ̂2
i,1 over Wi,1. We

continue this way, and at iteration n, we define the estimator as:

ûi,n =
∑

xj∈Wi,n

ωijYj and σ̂2
i,n = τ̂2

∑
xj∈Wi,n

ω2
ij , (3)

The estimate ûi,n corresponds to a weighted average of the data points located
in the space-time neighborhood. We propose to define weights ωij as a function
of the distance between two 2D regularized image patches ûi,n−1 and ûj,n−1

defined at iteration n− 1 and centered in xi and xj as shown in Figure 1. In the
two next sections, we address the problems of the definition of the neighborhood
Wi,n and propose the design of a distance to compare image patches.

3 Space-time neighborhood adaptation

3.1 Space-time neighborhood geometry

One important contribution of this work is the on-line adaptation of the space-
time neighborhood sequence (Wi,n)n∈[0:N ]. We consider a simple hyper-cubic
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Fig. 2. (a) Spatio-temporal neighborhood: colors correspond to iterations plotted in
(b); (b) confidence intervals: circles represent estimates ûi,n obtained at each iteration
n. The gray rectangles represent the intersection between the current confidence in-
terval and the previous one. As long as the estimate belongs to this intersection, the
estimation process is updated.

space-time volume as neighborhood shape. Nevertheless, we separate the space
dimensions from the time dimension. Then, the space-time neighborhood is char-
acterized by its extent in the space domain and its extent in the time domain.
The use of two distinct extents in space and in time allows us to respect space-
time discontinuities and the space-time domain is not considered as an isotropic
3D volume. In Figure 2(a) the increasing neighborhood sequence is illustrated.
At each iteration, the spatial extent and the temporal extent are alternatively
increased until a stopping rule is satisfied.

3.2 Space-time neighborhood selection

A point-wise rules is used to guide the space-time neighborhood estimation pro-
cess. This rule aims at estimating the optimal neighborhood at xi and is based
on the measure of the closeness of the estimator ûi to the unknown function ui

given by the local L2 risk. This measure of performance can be decomposed in
two terms, that is the squared bias and the variance as

E [ûi,n − ui]
2 = [bias (ûi,n)]2 + σ̂2

i,n, (4)

where E(.) denotes the mathematical expectation. In the sequel, we can reason-
ably assume that the squared bias is an increasing function of the neighborhood
size and the variance is a decreasing function of the neighborhood size [6–8, 16].
Then, the optimal neighborhood will be the one that achieves an optimal com-
promise between these two terms. A closed-form optimal solution for the ideal
window is not available for such a non-linear estimator but we can assume that
the optimal neighborhood is the one for which the squared bias and the variance
are nearly the same: E

[
u∗i,n − ui

]2 ≈ 2σ2∗
i,n [16].



A practical rule based on pairwise comparison of successive estimates can
be derived to select the optimal neighborhood. It amounts to define the largest
neighborhood satisfying the following point-wise statistical rule [6, 8, 16]

|ûi,n − ûi,n′ | < η σ̂i,n′ , ∀n′ < n, (5)

as the optimal neighborhood. This rule can be interpreted as follows. While
the succesive estimates ûi,n are sufficiently close to each other, we continue the
estimation process. As shown in Figure 2, the estimation process is continued,
while new estimates belong to the intersection of estimated confidence intervals
[ûi,n − ησ̂i,n, ûi,n + ησ̂i,n]. Besides, it shows that we do not need to store all the
previous estimates (ûi,n′)n′≤n but only the intersection of confidence intervals,
the last previous estimate and its variance for each pixel. Finally, the factor η
can be easily chosen in the range [2, 4] as justified in [6–8].

4 Local similarity measure for patch selection

As an alternative to a geometry-based approach [7, 9], we prefer to use weights
that allow us to select the data points in the neighborhood for filtering. This
selection is based on the similarity between a given small image patch at point
xi and patches at points xj belonging to the space-time neighborhood Wi,n.
Considering small patches enables to capture the local intensity structure. The
sum of square image differences is widely used for similarity measure between
image patches. However, in order to take into account the local variance of the
estimator we define the following symmetric distance between image patches
ûi,n−1 and ûj,n−1:

δ2
ij = 1

2

[
(ûi,n−1 − ûj,n−1)V −1

i,n−1(ûi,n−1 − ûj,n−1) +
(ûi,n−1 − ûj,n−1)V −1

j,n−1(ûi,n−1 − ûj,n−1)
] (6)

where Vi,n−1 denotes the estimator covariance matrix. The two vectors ûi,n−1

and ûj,n−1 denote p × p patches respectively centered on point xi and point
xj . The two matrices Vi,n−1 and Vj,n−1 are diagonal with the diagonal elements
equal to σ̂2

i,n and σ̂2
j,n respectively. We decide that the two vectors ûi,n−1 and

ûj,n−1 are similar with a probability of false alarm 1− α, under the hypothesis
that they are Gaussian distributed, using a classical χ2 test with p2 degrees
of freedom. In other words, when δ2

ij/λ < 1, with λ choosen as a quantile of
a χ2

p2,1−α distribution we can decide that the two patches are similar. In our
experiments, we use a confidence level of 99% for setting α to 0.01 .

The distance δ2
ij is transformed into a similarity measure using the exponen-

tial kernel. We compute the similarity measure for all the points of the neigh-
borhood and normalize it to obtain the following expression for the weights:

ωij =
e−δ2

ij/2λ∑
xj∈Wi,n

e−δ2
ij/2λ

. (7)



Then, if the distance δij between two patches is important then the weight ωij

associated to pixel xj is small and the pixel will not participate in the intensity
estimation at point xi.

Consequently, the weights provide an efficient and flexible way to implicitly
choose the appropriate pixels contributing to the intensity estimation in the
adaptive space-time neighborhood while effectively preserving space-time dis-
continuities. Note that the process is entirely data-driven and does not require
particular geometry adapted to image content.

5 Algorithm implementation

At the initialization of the algorithm, we have to estimate the noise variance τ2.
It can be robustly estimated by calculating pseudo-residuals εi as described in
[17]. If we choose a space-time 6-neighborhood (4 spatial neighbors and 2 tempo-
ral ones), pseudo-residuals are compactly represented by εi = (8Yi −∆Yi) /

√
42

where ∆Yi is the discrete Laplacian at xi and the constant
√

42 is introduced to
ensure that E[ε2

i ] = τ2. Given the residuals εi, we can then robustly estimate the
noise variance τ2 by: τ = 1.4826 medi (| εi −medj |εj | |). In our experiments, λ
is set to the 0.99 quantile of the χ2

k,0.99 distribution with k ∈ {(2p + 1)2, p ∈
{1, 2, 3, 4}}. The last parameter η is set to 2

√
2 to ensure a good accuracy of

the estimation. During the estimation, we alternate the increasing of the spa-
tial and temporal extents of the space-time neighborhoods. Furthermore, the
algorithm can be easily parallelized. Actually, estimation steps use only local
information and have been distributed over 8 CPUs dividing the computation
time by 8. Finally, another possibility to speed up the algorithm is to use a
dyadic scheme when increasing the extent of the neighborhood. To conclude,
the proposed method is very simple to implement and do not require the fine
adjustment of parameters λ and η which control the estimatation process.

6 Experimental results

In this section, we report a great number of experiments to show how our
exemplar-based space-time adaptive filtering method performs on real image
sequences with artificially added noise. The described method is compared to
others commonly-used methods for denoising image sequences. The performance
of the algorithm combined with a global affine motion compensation stage is also
analyzed. For an objective performance evaluation, we use the Peak-Signal-to-
Noise-Ratio global measure defined as PSNR = 20 log10(255/mse) where mse
denotes the mean squared error between the original noise-free image sequence
and the denoised image sequence.

6.1 Performance assessment and comparison with other recent
methods

We first report experiments to evaluate the influence of the noise level and the
patch size on the overall method performance. Figure 3 plots PSNR values ob-
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Fig. 3. Denoising performance for several noise levels and for several patch sizes. The
PSNR is used to measure the overall performance of the filtering and the test sequence
is Akyio ( 176 × 144 × 300). This sequence mainly exhibits low motion. Experiments
show that the introduction of patches improve the PSNR of at least 2dB. We can also
remark that the results for patch 7× 7 and 9× 9 are similar.

tained for 8 noise levels and 5 patch sizes. First, we can note that the exemplar-
based method is stable while the noise level increases. The improvement gained
by introducing patches (to be compared to pixel-wise version) is clearly demon-
strated. As it could be expected, it is useless to consider too larges patches.
When the size of the patch increases, the PSNR increases too, however, the
result for size 7 × 7 and 9 × 9 are quite similar while the computation time is
proportional to the number of points in the patch.

In Figure 4, we can observe the improvement brought by the progressive
increasing neighborhood scheme in term of PSNR as well as in term of visual
quality. Figure 4(c) contains denoised image sequence with the same weighted
intensity estimation as in our method but with a fixed 11×11×11 neighborhood
size which corresponds to the biggest one used to filter the image sequence with
our method whose result is shown in Figure 4(d). The image sequence denoised
using our method is smoother and its edges are better preserved compared to
the sequence denoised with a fixed neighborhood which appears as blurred. This
is due to the fact that the weights are calculated from a regularized version of
the image sequence and not the original noisy sequence.

We have compared our method with 4 other recent methods: a combina-
tion of a spatial Wiener filter with a motion-compensated temporal Kalman
filter [1], a space-time non linear adaptive K-NN filter [18], a 3D wavelet-based
method [13] and a 3D point-wise adaptive estimate using a geometrical design
for the neighborhood [9].



(a) (b) (c) (d)

Fig. 4. (a) Original sequence (b) noisy sequence with a additive Gaussian white noise
of standard deviation τ = 30 (PSNR = 18.58) (c) denoised sequence using a fixed
11× 11× 11 neighborhood and a 5× 5 patch. The PSNR is 28.72dB and we can see
that the sequence is quite blurred (d) denoised sequence with the proposed method.
The PSNR is 32.14dB.

Fig. 5. Sequence “Garden”. (a) original sequence, (b) noisy sequence with a additive
Gaussian white noise of standard deviation τ = 30 ( PSNR = 18.58dB ) and (c)
denoised sequence, PSNR = 23.59dB. (d), (e) and (f) represent corresponding XT
slices in space-time domain. The camera motion appear as lines in the XT slices.

8 test sequences corrupted with noise of different levels are used. For a fair
evaluation, we have considered the results supplied by the authors themselves in
the referenced papers. Therefore, we cannot provide the PSNR measure for all
the test sequences. Table 1 contains all the available results. Our method clearly
outperform all the other methods since it supplies the best PSNR results for
all the test sequences sometimes with a quite significative improvement (up to
4dB). We have also to stress that the implementation of our method is easy and
it involves no parameters tuning.

Figure 5 reports another experiments on the “Flower Garden” sequence. It
involves an important apparent (varying) motion due to the camera motion. In
order to give insights into the spatio-temporal behavior of the denoising method,
we have displayed XT slices of the image sequence. Reported results demonstrate
that our method can cope with the presence of motion while preserving as well
as temporal discontinuities.



Sequence name PSNR (a) (b) (c) (d) (e)

Akiyo 22 – – – 33.86 34.31

Salesman 28 34.4 32.5 – – 35.13
24 31.1 – – 32.60

Garden 28 – 28.2 – – 31.33

Miss America 1 28 – 35.3 – – 39.39

Miss America 2 7 – – 26.36 – 26.69
(1283) 12 – – 28.16 – 29.63

17 – – 30.46 – 32.05
22 – – 32.66 – 34.20

Suzie 28 34.8 – – – 37.07
24 32.0 – – – 35.11

Trevor 28 33.9 34.1 – – 36.68
24 31.3 – – – 34.79

Foreman 28 33.9 – – – 34.94
24 31.1 – – – 32.90

Table 1. PSNR results for 8 test sequences and 5 denoising methods. (a) Join Kalman
and Wiener denoising with motion compensation using dense motion field [1], (b) Adap-
tive K-NN space-time filter [18],(c)Wavelet based method for image sequence denoising:
TIWP3D [13], (d) 3D non-parametric regression approach [9], (e) the proposed adap-
tive method with 7×7 patches and 6 iterations. Numerical results for the other method
are taken from the related publications.

6.2 Filtering with motion compensation

In this section, we analyze the case of image sequences with a global cam-
era motion and we investigate the addition of a motion compensation stage.
Global parametric motion can be accurately computed using a robust estima-
tion method even if independent moving objects are present in the scene as
described in [19].

In Figure 6, we give the overall block-diagram of the resulting method forming
by adding a motion compensated stage to our denoising method. Motion estima-
tion and denoising are not performed alternatively. Actually, we consider that
the global affine motion is correctly estimated with the method described in [19]
(We used the software made available on the web). A similar exploitation of a
parametric motion compensation was proposed in [14] and associated with a 3D
Wiener filtering technique. After the motion estimation step, the whole sequence
is back-warped in the frame (referential) of the first image. Then, we apply our
denoising method to this motion-compensated sequence. The result of the filter-
ing has to be warped again to recover the images into their original frames. This
is accomplished by using a two-step procedure. First, the denoised images are
warped by using the initially estimated motion. Then, resulting images undergo
a second transformation inferred from motion estimated between each result-
ing denoised image and its corresponding image of the original sequence. The
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Fig. 6. Block diagram of the denoising method with motion compensation. A motion
compensation is applied to the image sequence before the denoising stage. It corre-
sponds to the dotted box on the left. This module is composed of the estimation of
affine motion models and the projection of the image sequence in the coordinates sys-
tem of the first image. After the denoising stage, a two-step warping procedure is
applied to get the images in their initial frames. The second step estimates the motion
between each image of the input sequence and its corresponding image in the denoised
warped image sequence.

later step is made necessary by the error accumulation in combining the motion
models estimated from frame to frame in the warping procedure.

Figure 7(c) shows one image the sequence denoised without motion com-
pensation and Figure 7(d) shows the denoising result with the proposed motion
compensation stage. The processed image sequence contains two cars tracked
by the camera from an helicopter. The warping stage involved in the motion-
compensated version of the algorithm require bilinear interpolations that some-
what blur the image sequence. In this expermient, the PSNR value of the pro-
posed motion-compensated method is thus slightly lower than the PSNR value
of the output of the denoising method without motion compensation.

We have shown that interpolations involved in the warping stage can induce
blur effects that reduce the PSNR value of the filtered image sequence. Then,
if interpolations could be avoided, the results of the motion-compensated de-
noising method would be improved. This could be achieved by transforming the
neighborhood instead of warping the data. Such an investigation is in progress.
In Figure 8, we have simulated an image sequence by sliding a window over an
aerial photography with translation of 10 pixels between successive frame. Since
all the motions are translations of entire pixels, no interpolation is required in the
warping steps. This experiment shows that the motion-compensated denoising
method performs better in the case of large displacements. Consequently, the de-
noising method without motion-compensation is more appropriate for denoising
image sequences with not too large motion magnitude.

7 Conclusion

We have described a novel and efficient unsupervised method for denoising image
sequences. The proposed method is based upon an adaptive estimation statistical
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Fig. 7. Sequence “Avenger”. (a) original sequence (b) noisy sequence with a additive
Gaussian white noise of variance 100 (c) denoised sequence with the proposed method
PSNR = 31.36 (d) denoised with the proposed motion-compensated method PSNR =
31.04. (e) and (f) are details of respectively (c) and (d). Some spatial blurring effects
due to interpolation are visible in (f)

framework. It can specify, in a simple data-driven way, the most appropriate
space-time neighborhood and associate weights to select the data points involved
in the intensity estimation at each pixel. Moreover, it involves an exemplar-based
approach extended to the space-time domain. All the parameters of the algorithm
are well calibrated and our method does not require any fine tuning. Quite
satisfactory results have been obtained on several image sequences. Furthermore,
it was experimentally demonstrated that our method outperforms other recent
methods. The visual quality of the denoised image sequences is noticeable since
noise is well smoothed out while spatial and temporal discontinuities are well
preserved. Finally, some improvements are proposed to incorporate a motion-
compensated stage It was shown that motion-compensation was really needed
for large displacement only provided interpolations involved in the warping steps
could be avoided which is under progress.
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