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ABSTRACT

This paper deals with the problem of optimizing the naviga-
tion of an intelligent mobile with respect to the maximiza-
tion of the performance of the localization algorithm used
during execution. It is assumed that a known map com-
posed of features describing natural landmarks in the envi-
ronment is given. The vehicle is also equipped with a range
and bearing sensor to interact with its environment. The
measurements are associated with the map to estimate its
position. The main goal is to design an optimal path which
guarantees the control of a measure of the performance of
the map-based localization filter. Thus, a functional of the
approximate Posterior Cramer-Rao Bound is used. How-
ever, due to the functional properties, classical techniques
such as Dynamic Programming is generally not usable. To
face that, we investigate a learning approach based on the
Cross-Entropy method to stress globally the optimization
problem.

1. INTRODUCTION

We are concerned with the task of finding a plan for a
vehicle moving around in its environment. That is to say,
reaching a given goal position from an initial position.
In many application, it is crucial to be able to estimate
accurately the state of the mobile during the execution of
the plan. So the planning and the execution stages must
be drawn conjointly. One way to achieve that is to define
trajectories which imply a high performance of the local-
ization algorithm. This problem have been well studied
and in most approaches the environment is discretized and
described as a graph whose nodes correspond to particular
area and edges are actions to move from one place to
another. Some of these previous contributions address the
problem within a Markov Decision Process (MDP).
In the present paper, we will also use the basis of the
constrained MDP framework, as in [1]. Our optimality
criterion is based on the Posterior Cramer-Rao bound.
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However, the nature of the objective function for path
planning makes it impossible to perform complete opti-
mization of MDP with classical means. Indeed, we will
show that the reward in one stage of our MDP depends
on the complete history of the trajectory. To solve the
problem, the Cross-Entropy originally used for rare-events
simulation seemed a valuable tool.

The paper is organized in five parts. In the second sec-
tion we introduce the problem in details. Section three deals
with the Posterior Cramer-Rao bound and its properties. We
also derive its formulation for our particular case and the
optimization criterion. In section four, we make a short in-
troduction of the Cross-entropy and show how to apply it
to our needs. Finally, in section five the results of a first
example are discussed.

2. PROBLEM STATEMENT

Let Xk, Ak and Zk respectively denote the state of the
vehicle, the action and the vector of observations at time
k. We consider here that the state vector Xk is the position
and the orientation of the vehicle in a given reference basis
ZRo c , so that Xk A [Xk,yk,Okl'. The action vector
Ak (ax, ay) is restricted to the set A(Xk) c R. The
state {Xk } motion is governed by a dynamic model and an
initial uncertainty, given by:

X07ro-J\FX0,PO)
Xk+1 = f(Xk,Ak)+wk Wk -A(0,Qk)

where f is linear, {wk } a white noise sequence and the sym-
bol "-" means distributed according to
The map M is composed of Nf features (mi)1<i<Nf

with position (Xi, yi) e Ro. At time k, due to the sen-
sor capabilities, the observer received signals from only a
few landmarks (see figure 1). Moreover, we do not consider
data association and non detection problem for the moment.

'The symbol AV means normal
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So each measurement is made from one landmark repre-
sented in the map. If we denote Iv (k) the indexes of visible
landmarks at time k, the measurement vector at time k is
Zk {Zk(j)}cIj (k) with Vj e IV (k)

{ zkj) I(xk Xj)2+(Yk _f2+ k(j)
z zk(j) arctan2 Yk)O4.k()-+;'0 ~~~~Xi-Xk

where {y (j)} and {y (j)} are considered as white
Gaussian noise and mutually independent. Nevertheless, a
more complex modeling must be considered if we want to
take into account correlated errors in the map 2 or observa-

3tions

Fig. 1. Sensor model with its visibility area.

2.1. A discrete approach

As in [1], we first formulate the problem within a dis-
crete sequential decision planning framework similar with
a Markov Decision Process. Generally, a MDP is defined
by its state and action sets, a state transition probabilities
and a reward functions. In our case, the state and action
spaces are discrete and finite. Indeed the map is discretized
in N5 = N, x Ny locations and one action is defined as a
move between two neighbor points (figure 2). At each point,
the mobile can choose one action among Na to change state.
So we can model the process with:

* S = {1, ..., N,} the state space and A {1, ..., Na}
the action space.

* TV,5 (a) Pr(sk+±s1'Sk = s,ak = a) the transi-
tion function.

* R,,/ (a) the cost function, associated with transition
from state s to state s', for an action a.

In our case, we consider that the neighborhood of each
state is composed of less than eight states (see figure 2),
depending whether it is near obstacles or the border of the

2e.g. Markov Random Fields
3e.g. colored noise or biases

map. Moreover each choice of action in a state is equiva-
lent to choose one orientation for the mobile and the dis-
placement between two states is made with a constant ve-
locity. Finding the optimal path between two states si
and sf is equivalent to determine the best sequence of ac-
tions/decisions Va* = (a*, ..., aK) allowing to simultane-
ously connecting them and optimizing a (global) criterion.
Moreover, we take into account operational constraints on

5.5

5 + + + + +

4.5
°m

4F- + +an7 mf e + +

actions (arrow.a=
3.5 s=-m

3 + + +

2.5

ak1 thnae1,2}

0.5 1.5 2 2.5 3 3.5 4 4.5 5 5.5

Fig. 2. grid example and features(o). States (crosses) and
actions (arrows).

the mobile dynamic between two following epochs as in[c].
It is possible to do that by defining one authorized transition
matrixo (ak,am ) which indicates actions that can be cho-
sen at time k according to the choice at time k-s1. For
example, if only 7r] headings controls are allowed, if
ak- = I thenak C {1,~7,21.

In the MDP context when the reward is completely
known, optimal policy can be computed using Dynamic
Programming technique or similar algorithms such as Value
Iteration and Policy Iteration [8]. However, the basic as-
sumptions ofMDP are no longer valid in our context. More
precisely, any Posterior Cramer-Rao Bound (PCRB) based
functional is not separable (with respect to actions) and even
not monotonic. Unable to apply a general monotonic "com-
parison" principle (see [2]), the MDP principle is irrelevant.

3. POSTERIOR CRAMER-RAO BOUND

3.1. Definition

In this section, we briefly remind the properties of the
Cramer-Rao bound for estimation problem. Let X(Z) be
an estimator of an unknown random vector X e Rd based
on random observations Z. When X(Z) is also an unbiased
estimate the Posterior Cramer-Rao Bound is given by the
inverse of the Fisher Information Matrix (FIM) F [9] and
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"measures " 4the minimum mean square errors of X(Z):

E{(Xk(Z)-X)(Xk(Z)-_X)T1 S- F-'(X, Z),~ (1)

where "A >- B" means (A -B) is positive semi-definite.
Let Ax be the second-order partial derivatives operator. If
X is a n-dimensional random vector and px, (X, Z) the
joint probability density of the pair (X, Z), F is a n x n
matrix which can be derived from the following formula:

F = E [- Axlogp,, (X, Z)]
For the filtering case, we estimate at time k the

state Xk based on the collection of observations
Zkk = (Z1, ..., Zk) received since the beginning un-
til k. If we note Xk = Xk (Zk) the estimate at time k and
Vk {al, ..., ak} the sequence of decisions chosen by the
observer, it can be shown [4] that:

E (Xk-k)(X7k T-) IV} J_(Vk)

where Jk l(Vk) is the lower-right block matrix of the
FIM of the vector of state history X0:k = (XO, ..., Xk)
based on Z1:k

and Rk is the covariance matrix of the combined visible ob-
servations which only depends on the current position. For
our observation model, the matrix H(Xk, j) is as follows:

H (Xk, j ) = k

dk

(Yk -Yj)

-(Xk -Xj)
dk ) (9)

d- = (Xk - Xj)2 + (Yk yj)2. Obviously there is no explicit
expression for Jk (Z) as the observation model is nonlinear,
so that it is necessary to resort to Monte Carlo simulation to
estimate it.

3.3. A criterion for path planning

We are interested in finding one or more paths connect-
ing two points which maximizes a functional X of the
PCRB along the trajectory [1]. We consider a functional
which depends on the determinant of the history of PCRB
{fJ1, *--, JK}. The determinant is linked to the volume of
the ellipsoid of error of the position estimate:

K

$(J1:K) ZWk det(Jk)
k=u

3.2. Tichavsky PCRB recursion

A remarkable contribution of Tichasky et al. [4] was to in-
troduce a Ricatti like recursion for computing Jk:

Jk+ = D2- D21(Jk + Dk1)- D12
where

D"1
D12
D21
Dk2

E{- AXlog(p(Xk+1 Xk)},
E{ AXk log(p(Xk+l Xk)},
[D12IT,
E{-A +109(p(Xk+1lXk)} +
E{-AXk log (p(Zk+l Xk+l) .}

(2)

As classical method such as Dynamic Programming is irrel-
evant [2], we investigate a learning approach based on the
Cross Entropy (CE) methods developed by [5].

4. THE CROSS ENTROPY ALGORITHM

4.1. A short introduction

The Cross Entropy method was first used to estimate the
(3) probability of rare events[5, 6]. A rare event is an event

with very small probabilities. It was then adapted for opti-
(4) mization assuming that sampling around the optimum of a
(5) function is a rare event.

(6)
(7)

The initial information matrix Jo can be calculated from
7o. The dynamics being linear we have:

Dk1 = Qk1'
Dk2 = Qk

_Q-1
Qk 1 + Jk+l(Z) .

4.1.1. Simulation of rare event

Let X a random variable on a space X, p, its probability
density function (pdf) and d a function on X. Suppose, we
are concerned with estimating l(y) the probability of the
event F-= { CXX (x) >-} with yIC R+. F, is a rare
event if I (y) is very small. An unbiased estimate can be ob-
tained via Crude Monte Carlo simulation. Given a random
sample (x1i,.. ,XN) drawn from px, this estimate is:

where Jk+1 (Z) is given by:

Jk(Z) = Exk{ H(Xk,j)TRk 1H(Xk,j)},
iGI, (Xk)

4Actually, this is a lower bound which may be reasonably accurate

N

I-0= 1:I[ X(xi) > ]
i=l

For rare event, the variance of 1(Qy) is very high and it is
necessary to increase N to improve the estimation. The es-
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timate properties can be improved with variance minimiza-
tion technique such as importance sampling where the ran-
dom sample is drawn from a more appropriate probability
density function q. It can be easily shown that the optimal
q* pdf is given by I [f(x) > y] px(x)/lQ(y). Nevertheless,
q* depends on l(y) which needs to be estimated. To get
round this difficulty, it can be convenient to choose q in
a family of pdfs {w7(., A)SA e A}. The idea is to find the
optimal parameter A* such as D(q*, (., A)) is minimized
where D is the Kullback-Leibler "pseudo-distance":

D(p, q) = Epn J p(x)ln p(x)dx-J (x)ln p(x)dx
Minimizing D(q*, (., A)) is equivalent to maximize
qxC*(x) ln wQ(., A)dx which implies:

A* e arg max Ep (I [q(x) > -y] ln 7(x, A)) (10)

The computation of the expectation in 10 must also be
done using importance sampling. So we need a change of
measure q, drawing one sample (xi,... XN) from q and
estimate A* as follows:

A C argrnax, (I[Xi) > '71 P1n7r(i,A)j (11)

However, q is still not known in equation 11. The C.E
algorithm tries to overcome this difficulty by construct-
ing adaptively a sequence of parameters (/t it > 1) and
(At t > 1) such as

* F-1 is not a rare event.

* F 1+, is not a rare event for 7(., At).

* limt__ ) 't=y.
More precisely, given p ]O, 1 [:

* choose Ao such as 7(., Ao) px.
* draw (xl,. , XN) from 7(., At-,).
* sort in increasing order (O(x1), , (XN)) and eval-

uate the (1 -p)) quantile at

* compute At as

N,

4.1.2. application to optimization

The C.E. was adapted to solve optimization problem. Con-
sider the optimization problem:

q(x ) = = maxq5(x)xCEX (12)

The principle of C.E for optimization is to translate the
problem 12 into an associated stochastic problem and then
solved it adaptively as the simulation of a rare event. If -y*
is the optimum of b, F* is generally a rare event. The
main idea is to define a family 7w(., A) A C A and iterate
enough the C.E algorithm such as at i* to draw samples
around the optimum. Unlike the other local random search
algorithm such as simulated annealing which used the as-
sumption of local neighborhood hypothesis, the CE method
tries to solve globally the problem.
Given a selection rate p, a well-suited family of pdf
7w(., A)SA e A, the algorithm for the optimization proceeds
as follows:

1. Initialize At = A0
2. Generate a sample of size N (Xt)l<i<N from Q(., At),

compute (0(xt)) 1<i<N and order them from smallest
to biggest. Estimate at as the (1 -p) sample percentile.

3. update At with:

N

At+, = argmax 1: [O(xit) > at] in7(xt, A)

4. repeat from step 2 until convergence.

5. assume convergence is reached at t = t*, an optimal
value for A can be done by drawing from 7(., At* ).

4.2. Application to the path planning task

In this part we deal with the application of the CE methods
to our task. First of all, it is necessary to define the ran-
dom mechanism (7w(., A) A C A) to generate path examples.
More precisely we want to generate sample which:

* start from si and end at sf.
A AtSA (jI [(xi) > A l)lfl(X7, A)A) * respect the authorized matrix 6(ak, ak+l), Vk.

i=1

* if -~< -y, set t =t + 1 and go to step 2. Else estimate
the probability of F, with:

I (<Y) = N :; I [(xi) > -d P

N
i=1 7~~(xi, At)

This is the main C.E algorithm but other versions can be
found in [5].

* have whole length less than Tmax.

One way to achieve that is to use a probability matrix Psa =
(Psa) with s C {1, ..., Ns} and a C {1, ..., Na}(in our case
Na = 8).

P11 P12 ... P17 P18

Psa =

PNS 1 PNS 2 PNS 7 PN88

(13)
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with Vs, P, (.) is a discrete probability law such as:

8

Ps(a== psi i=1... 8withI:Psi
i=1

1

So, to solve our problem we are concerned with the op-

timization of the N5 x Na parameters (Psa) using the C.E.
algorithm. Let introduce:

* A(s, a)k_1 = {a sk = s, 5(ak = a, ak1 = a) = 1}

* P, (.) such as,

Va c A(s,a)k,

else

s(
PsaGA(sd)kP0;

Psa = O;

A(s, a)k_1 is the admissible actions at time k in state Sk =

s knowing that a was chosen at time k -1 and P5 (.) is the
normalized restriction of P5 (.) to A(s a)k_l. Paths can be

generated as described in table 1.

Table 1. Path generation principle

4.2.1. Updating the Psa matrix

At step t of the C.E algorithm, given N admissible paths
(X(j))1<j<N, we can evaluate each one by calculating the
PCRB sequence and applying q and then estimate the pa-

rameter at. One can update Psa by solving 3.
Let:( ) = (si,aJ :Si,al,... Si ,a- pSf) beapath, we
have :

where I is the indicator function and {x(j) c Xsa} means

that the trajectory contains a visit to state s in which action
a is taken. Since for each s, the row P, (.) is a discrete
probability, 3 must be solved under the condition that the
rows of Psa sum up to 1. This yields to solve the following
problem using Lagrange multipliers (pl ) { 1<s<N } :

>'y ] ln 7F(x(j), Psa) (15)
N

Psa,ulviMN N ET [Ok (X ( )) -

J71

Ns

+1
s=l

(a=8

PHs 1: (Psa
a=l

.1))

After differentiation with respect to each Psa and applying
Za1 Psa= 1, we can obtain ,u5 and the final updating
formula:

Psa
=1 I [{¢)k (X(A)) > -Yt}] * I [{X(j) C Xsa}]

N1 ' [{q5(x(j)) > -Yt}] * I [{X(j) C Xs}]
(16)

where {x(j) e X,} means that the trajectory contains a

visit to state s. For the first iteration, Vs, P5 (.) is a uniform
probability density function.

5. RESULTS

The algorithm has not been widely tested, and only one

simple scenario is introduced in this paper. In this exam-

ple, the map is defined on [-2,12] x [-2,12] with 6 mj
point features (figure 3). The state space is discretized in
N5 = 15 x 15 states. The initial and terminal states are re-

spectively in positions (0, 0) and (10, 10). For the dynamic
model noise process,we consider the same error on both axis
(o2 = 0.05).

ln 7w(x(j), Psa)
k-1

I [{X(j) C Xsa}]1nPsa (14)
i=O

Fig. 3. The best solution after convergence of the CE. si
and sf states (o) and map features (o).
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j O
while (j < N)

k O, set SO Si
generate one action ai according to
PSO. and apply it.
set k = k + I and T = 1
until Sk = Sf do

-compute A(s,a)k1
if A(s,a)k_l 0
- generate one action ak c A(sk, ak)k 1
according to Psk and apply it.
else stop and set j j
- set k = k + I and T T + 1.
if T > Tmax stop and setj j
else return

cj)j+1(s ,ai Si a, Si a_ Sf)
j=+1

12 t t t t t t t t t t t t t t t

10 -+t t t t t t t t t + t t -
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The mobile can only apply [- 2; 2 ] headings controls at
each time and Tmax < 30.
For the observation model, a landmark mj is visible at
time k provided that zjj) < 2 and z(j)' < 40 deg.
with the noise characteristics or = 1.5.10-3 (range) and
o= 0.5 deg. (bearing) for all features.
The computation of the PCRB matrices was performed

with N, = 1000 to estimate Jk(Z). For the optimization
step, the Cross Entropy algorithm was implemented with
1000 iterations, N = 5000 admissible paths and p = 0.1.
That is to say, the 500 best samples are used for updating
the Psa probabilities. Figure 3 shows the optimal trajectory
after convergence.

5.1. Analysis

As expected the mobile is guided toward the area with land-
marks in order to improve its performance of localization.
Moreover, it operates to keep the landmarks visible while
the maneuvers (d matrix) and the time constraints (Tmax)
allow it. We can also notice that the algorithm converges

rapidly toward a solution. To illustrate that we present in
the next figure, the evolution of parameters -i and the maxi-
mum value of at each iteration of the CE algorithm (figure
4).

Fig. 4. Evolution of 'y (solid line) and the minimum value
of the functional (dashed line).

When we look at precisely after convergence the densities
(P5 (.)) for all s in the optimal trajectory we can notice that

some of them are not a dirac probability law. For instance,
in position point 16 (see figure 3) the probability density
function is bimodal indicating that the mobile hesitates be-
tween "go directly on the right side" and "make a cycle".
Such behaviors are concentrated on states where maneuvers

can be done to keep the landmarks visible as far as possible.

6. CONCLUSIONS AND PERSPECTIVES

In this paper, we presented a framework to solve a path plan-
ning task for a mobile. The problem was discretized and
considered as a sequential decision process. Our main goal

was to find the optimal trajectory according to a measure of
capability of estimating accurately the state of the mobile
during the execution. A functional of the PCRB was intro-
duced as the criterion of performance. The main contribu-
tion of the paper is the use of the Cross Entropy algorithm to
solve the optimization step as Dynamic Programming could
not be applied. This approach was tested on a simple first
example and seems to be relevant.
Future work will first concentrate on the complete imple-
mentation of the algorithm and application to more exam-

ples. We will also investigate a continuous approach. The
tuning of the Cross-Entropy to our specific task was not
studied, some experiments have to be carried out based on

device given in [5].
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