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Abstract— Image sequence analysis in video-microscopy for
life sciences now has gained importance since molecular biology
is presently having a profound impact on the way research is
being conducted in medicine. However, the image processing
techniques that are currently used for modeling intracellular
dynamics are still relatively crude. Indeed, complex interactions
between a large number of small moving particles in a complex
scene cannot be easily modeled, which limits the performance
of object detection and tacking algorithms. This motivates our
present research effort which is to develop a general estima-
tion/simulation framework able to produce image sequences
showing small moving spots in interaction and with variable
velocities, corresponding to intracellular dynamics and trafficking
in biology. It is now well established that spot trajectories can play
a role in analysis of living cell dynamics and simulate realistic
image sequences is then of major importance. We demonstrate
the potential of the proposed simulation/estimation framework
in experiments, and show that this approach can be also used to
evaluate the performance of object detection/tracking algorithms
in video-microscopy.

I. INTRODUCTION

A. Context in biology

The development of system biology is characterized by the
settlement of new techniques and technologies producing a
vast amount of data of different types or origins. Only auto-
matic approaches for analysis and interpretation of complex
and massive data will allow researchers to face this new
challenge. This is already well established for a number of
biological fields such as DNA sequence analysis, expression
data analysis, DNA micro-arrays analysis, ... Also, in dynamic
imaging of biological samples substantial amount of work is
necessary to overcome conceptual and technological obstacles.
This motivates our present research effort which is to develop
novel techniques based on recent techniques in computer
vision and signal processing to analyze information from 4D
data related to intracellular dynamics and trafficking.

In video-microscopy, methods that estimate trajectories of
small objects (chromosomes, vesicles, ...) of interest may
encounter difficulties if the number of objects is large and the
signal-to-noise ratio is low. Moreover, the tracked objects are
not always visible in the sequence when tagging molecules
separate suddenly from the target objects. Yet, most of the
time the complexity of the dynamic processes involving many
objects or groups of objects interacting, cannot be easily
modeled. Finally, the corpus of data to be considered for a
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comparative analysis in an experiment, formed by multiple im-
age series acquisitions, is also massive. Nevertheless, it is now
clear that the localization and spatio-temporal conformation
of a large number of molecular constructions within the cell,
their dynamic response to diverse chemical, physical or bio-
molecular perturbations, are key elements for understanding
the basic function mechanisms in life sciences. Typically,
motion information and trajectories have to be extracted in
order to analysis the dynamic response of the cell to the
different perturbations and experimental conditions.

Then, we propose a simulation/estimation framework go-
ing in this research direction, able to model complex data
corresponding to interactions between moving particles/spots
with variable velocities. The idea is to propose parsimonious
models of fluorescence microscopy image sequences, able to
summarize complex data into a low dimensional set of parame-
ters. These models will be exploited to generate artificial image
sequences that mimic dynamics observed in real sequences.

B. Needs for simulation tools

In many application fields such as medical imaging or
astronomy, simulations are required for validating physical
models and understanding recorded data. In this section, we
give the rational behind the idea of simulation methods for
video-microscopy.

First, realistic simulations of dynamical processes usual-
ly give a qualitative representation of the observed spatio-
temporal biological event. Simulation can be then consid-
ered as a computational tool that can help to understand
some mechanisms of interanl components within the cell.
By interacting with the control parameters, an expert can
artificially simulate processes close to the reality provided
the dynamical models are known; this philosophy has been
successfully exploited to understand dynamics of microtubule
networks [1], [2]. By minimizing the difference between a
set of descriptors computed from a real image sequence
and the same set of descriptors computed from a simulated
sequence, the parameters of the simulation method can be
tuned to obtain an artificial sequence that reveals the same
dynamical characteristics than the observed sequence. This
set of estimated control parameters can be then considered
a parsimonious representation of the underlying process.

Moreover, dynamical information extraction usually relies
on tasks such as object detection, optical flow estimation or
object tracking [3], [4]. These tasks cannot be done manually,
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and they must be fast, reliable and reproducible. Furthermore,
comparing object tracking results to a ground truth is the more
straightforward method to assess performance of the applied
method. Accordingly, simulation of a reliable ground truth is
an important and challenging task especially in biomedical
imaging. We point out that benchmarking data sets are for
instance widely used to compare methods for image restoration
[5] and optical flow estimation [6]. In video-microscopy, the
photometric and dynamic characteristics of benchmarking data
sets actually are not able to describe complex interactions
between objects observed in real image sequences; in the case
of tracking vesicles within the living cell in video-microscopy
image sequences, random walks combined with parametric
models are used for validation [3], which does not completely
describe the movements of real moving objects in videos.

C. Our approach

In this paper, we then propose a powerful benchmarking
method for simulating complex video-microscopy image se-
quences. We propose a realistic image sequence modeling
framework describing the dynamical and the photometric
contents of video-microscopy image sequences. Unlike the
biophysical approach which aims at describing the underlying
physical phenomena [1], [2], the proposed approach is only
based on the analysis of original image sequences. While
being quite general, the described method has been designed
for analyzing the role of fluorescence-tagged proteins moving
around the Golgi apparatus and participating to the intra-
cellular traffic. These proteins are embedded into vesicles
whose movement is supposed to be dependent on a micro-
tubule network. These vesicles propelled by motor proteins
move along these polarized “cables”. This mechanism explains
the observed high velocities which could not be accounted by
basic diffusions.

The remainder of this paper is organized as follows. In
Section II, we give the properties that a simulation framework
should satisfy to be performant. We adopt a two-step scheme:
in Section III, a dynamical background model is described
and a method is proposed to estimate the model parameters; in
Section IV, a photometric and dynamical model is described to
represent moving spots in video-microscopy image sequences.
In Section V, several experimental results are reported to
demonstrate the potential of the proposed approach.

II. SIMULATION FRAMEWORK AND PROPERTIES

In this section, we discuss the properties that a simulation
method should respect:

1) Two computational approaches can be proposed for
simulation: data-driven modeling and physically-based
modeling. The physics-based approach exploits the
physical properties of the scene and the optical char-
acteristics of the imaging system for image modeling.
The main advantage is that the model parameters are
given by physics. Moreover, they are easy to interpret
because they directly correspond to the real world. In
return, the complexity of scenes and models is usually an
obstacle to this approach and the inverse problem cannot

be easily solved. The data-driven modeling aims at
describing the image sequence through statistical models
learned from real images [7]. This approach can mimic
dynamical processes but is not always able to describe
physics of real scenes. Data-driven and physically-based
approaches can be also combined to model the main
components of the image. In video-microscopy, these
components are mainly the moving objects, background
and noise.

2) A simulation method must be also controllable [8]. This
means that the representation must be parsimonious,
which can help in the interpretation for an expert.
In most cases, the parameters are related to physical
properties of the system but also to image properties
such as scale or velocity of the objects. By using a such
representation, the simulation method becomes more
interactive and allows the expert to bring some a priori
knowledge or to plan a set of experiments by editing
the simulation. For example, an expert can indicate the
location of source and destination point of the vesicles
and by varying the position of these points we can
observe the evolution of the simulated intra-cellular
traffic. Finally, the expert feedback can be used to set
up a realistic simulation.

In the proposed simulation/estimation framework, we shall see
that these properties are mostly satisfied.

III. DYNAMICAL BACKGROUND MODEL

In this section, we propose a statistical framework for
dynamical background modeling and estimation.

A. Image model

Large structures within the cell like the Golgi apparatus
appear as nearly static during the observation time interval.
In the case of images showing fluorescently tagged particles,
the global image intensity is proved to vary slowly along time.
This can be due to several physical phenomena such as photo-
bleaching or diffusion of fluorescent proteins within the cell.
Therefore, it is appropriate to propose a model able to describe
the slowly spatially and temporally varying background since
a stationary model would be too restrictive. The modeling of
more complex dynamical small objects with variable velocities
will be discussed in Section IV.

First, we have conducted experiments showing that the
intensity variation with respect to time can be captured by a
linear model for each pixel of the image sequence, mainly
because we are dealing with sequences of limited length.
This crude modeling provides a compact representation of
the background intensity dynamics and the background can
be described by two maps corresponding to the two spatially
varying parameters of the linear model obtained for each pixel.
Nevertheless, the involved parameters are spatially correlated,
which will be taken into account in the estimation process.
Note that the proposed method could be adapted to non-linear
intensity models if required.
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Fig. 1. Asymmetric Leclerc robust function.

Formally, we propose the following image sequence model
for the background�����
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where
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denotes the intensity observed at pixel
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	��$�

and time
�
, the two coefficients

����
	����
and

�%���
	����
varies with

the spatial image position & ' �(����	����*)
. The function

�����
	�� 	����
is a positive function that describes the intensity of moving
vesicles if any, and

"+���
	�� 	����
is an additive white Gaussian

noise. In the sequel, we will use the subscript , to denote
the spatial position & ' , and accordingly Eq. (1) can be more
compactly re-written as� ' ��������� ' ��� ' �!��� ' ��������" ' ������- (2)

This model is able to describe the background intensity of the
whole image sequence with only two maps . � '*/ and . � '0/ with
the same size as an image of the temporal sequence. In the
next section, we propose a method to estimate the maps . � '*/
and . � ' / that describe the dynamical background model.

B. Pixel-wise estimation of the background model parameters

We first deal with the estimation of parameters
� ' and� ' for a single temporal 132 signal. Let us point out that

this estimation must be performed several millions of times
(for each image point). Accordingly, the proposed estimation
procedure must be very fast. Besides, in our target application,
vesicles have an erratic behavior and sometimes stop for a long
time. Consequently, prior motion detection cannot be used here
to extract the objects from the background. The estimation
of the dynamical background will be then based on image
intensities. Alos, since the background estimation must not be
corrupted by the presence of moving vesicles, we will also
resort to a robust estimation framework.

1) Robust M-estimation: The two parameters
� ' and

� ' are
estimated by minimizing a robust error function4 ��� ' 	5� ' �6�879 : ;�<>= �?� ' ������@A�B� ' ��� ' �����	 (3)
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Fig. 2. Regression using an asymmetric and symmetric robust Leclerc
function. The asymmetric estimator (red) fits perfectly the ground truth (green)
while the symmetric function provides biased results (dotted line).

where C is the number of samples in the 1+2 signal and = �*-D� is
a robust function. A local minimum of

4 �B� ' 	E� ' � is commonly
obtained by using the iteratively re-weighted least squares
(IRLS) procedure.

The choice of the robust function = is usually guided by the
noise probability density function [9]. In our case, the overall
noise is the sum of two components

� ' ����� and
" ' ����� . In order to

take into account that
� ' ����� usually takes high positive values

(vesicles appear as bright spots in the image), we choose
an asymmetric robust function (Leclerc estimator [10], [11])
plotted in Figure 1 and defined as

= �BFG�H� IJJK JJL 1 @NMPO$QSR!@ FGTU T+V T<XW if
�ZYA[�	1 @NMPO$Q R @ FGTU T V TT W otherwise

- (4)

The scale
V T factor can be estimated by applying a robust

least-trimmed squares (LTS) estimator to the pseudo-residuals
defined as [12] : \#' �����]�^�B� ' ���_� 1 �6@�� ' ��������`ba c , where the
coefficient 1 ` a c ensures that E d \+' ������TPe>� E d � ' �����*Tfe . The scale
factor

V < is estimated by using the variance of the residuals
given by the least-mean squares estimator and obtained at the
initialization. Let us point out that, in regions where there are
no moving vesicles,

V < and
V T are found almost equal. Finally,U

is chosen as usually in the range dg1 	�h�e .
As a matter of fact, the proposed estimator is biased [11]

but the bias is small. Simulations proved that the i T risk is
smaller when an asymmetric cost function is used and when
the data are corrupted by an additive positive signal. Figure 2
shows that the proposed estimator is able to deal with heavily
contaminated data and outperforms the symmetric Leclerc M-
estimator.

2) Confidence matrix: An accurate estimation of the con-
fidence matrix for the estimated parameters is needed for
the subsequent steps described in Section III-C. We use the
approximation proposed in [9] to compute the estimation
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� < (5)

where
y ' �������^� ' ������@��B� ' ��� ' ��� and the weights are given

by w ��F���� =�� ��F���`%F . Unlike the expression given in [13], the
approximation given by Eq. (5) is not asymptotic and yields
a better estimation of the covariance matrix when C is small.

C. Spatial coherence for background estimation

We now introduce spatial coherence to regularize the maps. � ' / and . � ' / . This can be accomplished by adopting a bias-
variance trade-off framework [14], [15], [16], [17]. Instead of
using a single temporal signal for each pixel &' to estimate� ' and

� ' , a set of temporal 132 signals is first collected in
a neighborhood of the pixel &' . This collection of signals is
then analyzed in order to take into account the desired spatial
coherence of the parameters. In practice, a set of nested space-
time tubes is considered (see Figure 3) by taking the pixels in
a growing spatial square neighborhood of & ' . Each tube � '�x � at& ' can be parametrized by its diameter � '�x � where ����dg1 	f-�-�	E�Se
denotes the iteration:� '�x � � . ��������	��#��	EFP�3���� � ' @������f��� � ' @����G��� � '�x � / - (6)

In order to select the optimal diameter of the space-time
tube, we propose to minimize the point-wise i T risk of the
parametric estimator defined as E d � u� ' @�� ' �*T�e where

� ' ���� ' 	5� ' � is the true parameter pair and
u� ' its corresponding

estimator, at position &' . The i T risk can be decomposed into
two parts: squared bias and variance. As shown in Figure 4,
while the diameter � '�x � increases with � , the bias increases
too. This can be explained by the fact that, the data cannot
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Fig. 4. Bias-variance trade-off principle. When the diameter of the tube
increases, the bias increases and the variance decreases. The optimum is
achieved when the bias and the variance are of the same order.

be described any longer by a unique model. In contrast, by
taking more and more data points, the variance decreases. This
behavior, also called bias-variance trade-off [14], is exploited
to detect the minimum of the point-wise i T risk which is
nearly equal to twice the variance (see Fig. 4).

For each diameter � '�x � , new estimates of the background
model parameters

u� '�x � and the associated covariance matrixuv '�x � are computed with the same procedure as the one de-
scribed in Section III-B but using all the data taken in the con-
sidered neighborhood. It can be shown that the bias-variance
trade-off can be expressed with the following test [17] (here
a vectorial version is given):C @�c�� 1c C   u� '�x � @ u� '�x ��¡?¢ ) uv � <'�x ��¡   u� '�x � @ u� '�x ��¡?¢ �A£

(7)

for all 1 Y � � � � . While this inequality is satisfied, the
diameter of the tube is increased and the estimation process
is continued. It can be proved that the threshold

£
can be

defined as a quantile of a Fisher distribution of parameters
c

and C @�c¤@ 1 .
In this section, we have proposed a spatially and temporally

varying background and a statistical estimation framework
to estimate the involved parameters in the modeling. In the
second part of the paper, we propose a simulation framework
to produce dynamics corresponding to moving small spots in
the image sequences.

IV. SPOT MODEL

In video-microscopy, vesicles appear in many image se-
quences as small bright spots. The object diameters theoret-
ically ranges from ¥ [ nm to 1+¦ [ nm. The resolution of the
microscope is about 1 hb[ | 1 hb[ | h�[b[ nm. Then, the diameters
of spots are often below this resolution. However, the point
spread function of the video-microscope make them appear
as larger structures even if a deconvolution process [18] is
applied. Furthermore, when the density of objects increases,
vesicles gather together and constitute small rods.

These vesicles are also known to move along microtubules,
that is along long protein polymers that have an exceptional
bending stiffness and can be easily fit by smooth curves.
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Microtubules are conveyor belts inside the cells. They drive
vesicles, granules, organelles like mitochondria, and chromo-
somes via special attachment proteins using molecular motors.
It is also established that molecular motors form a class
of proteins responsible for the intra-cellular transport within
the cells. The dynein and kinein proteins are two classes of
motors associated with microtubules. It has been shown that
the concentration of these molecular motors influences the
structure and the dynamics of the microtubule network. In
stable conditions, the speed of these motors is constant. This
explains why the observed velocity of vesicles is constant if
they move along the same microtubule.

In our target application, vesicles move along the micro-
tubule, leaving a donor organelle and reaching an acceptor
organelle, e.g. the Golgi apparatus to the Endoplasmic Retic-
ulum. In the proposed simulation method, we do not simulate
the dynamics of the microtubules like in [2] but we rather
aim at describing video-microscopy image sequences using a
data-driven approach.

A. Photometric model

In most cases, vesicles are represented by anisotropic Gaus-
sian spots with variances related to the spot size ranging from¥ [ nm to 1#¦ [ nm. Then, the size of the vesicles in the image is
close to the pixel size. The size of the spots will be estimated
on image sequence as described in the Section IV-C.

Now, the covariance matrix is a function of the velocity
direction in order to get the major axis of the ellipse corre-
sponding to the displacement of the vesicle. The ellipticity is
also a function of the velocity. In Fig. 5, we can see how the
covariance matrix of the Gaussian function allows to modify
the orientation of the spot according to the direction of the
microtubule.

In addition, the spots can merge and split and the ellipticity
of the spots allows to easily simulate rods. These rods are
made of a collection of spots which use the same path. In the
resulting image sequence they seem to describe a single object
since they have the same velocity while they are on the same
microtubule.

B. Dynamical model

1) Network modeling: A physics-based simulation of the
self-organization of the microtubule network can be found
in [19]. It is based on the interaction between the motors (e.g.
kinesine) and microtubules, and explains some characteristic
conformations such as mitotic spindle. It takes into account
the dynamical behavior of the microtubules. However, this
computer simulation only describes the behavior of the mi-
crotubule network in-vitro and is not adapted for the more
complex in-vivo case in which the microtubules interact with
other organelles of the cell. In addition, the observation time
intervals are usually short compared to the dynamics of the
network itself. Accordingly, we propose to adopt a static model
for the network.

In order to produce a synthetic but realistic microtubule
network, we exploit real image sequences as inputs for the

vesicle

direction of displacement

microtubule location

Fig. 5. Gaussian spot oriented in the direction of the microtubule. The
covariance matrix of the Gaussian function is defined as a function of the
velocity of the vesicle and the simulated vesicles are then elongated along
with the motion direction.

modeling. The network could be tagged with Green Fluo-
rescence Protein (GFP) but this network is too complex and
individual microtubules cannot be easily extracted. However,
the microtubule network can be also crudely computed from a
maximum intensity projection map wrt time, that is from the
paths used by the tagged objects. Figure 6 shows the maximum
intensity projection map of a sequence made of

h�[�[
images.

This simple method allows to select a subset of paths mainly
used for the intra-cellular trafficking leading to network with
low complexity; this approach has been successfully used for
the construction of kymograms [20]. However, as shown in
Fig. 6, all the paths are not complete, especially if the sequence
duration is too short. The gaps are then completed by using
a painting software. Furthermore, the positions of the roads
are extracted from the network image using the unbiased line
detection algorithm described in [21]. Finally, each road is
finally described by its length, its width and its source node
and its destination node.

2) Selection of source/destination nodes: In the proposed
simulation, vesicles are going from one point to an other.
Typically, they leave a donor organelle and move toward an
acceptor organelle. Once the network has been computed, the
expert needs to specify the source and destination nodes on
the network. In order to take into account the lack of priori
information on the organelle and their function, a node can be
both a source and a destination while the other nodes represent
the intersection points of the network and are only used for
the routing. Source-destination pairs are important cues for the
simulation and corresponds to a birth/death map as described
in [8]. These labels are actually related to the locations and
relationships of specific organelles within the cell.

In Fig. 8, the source and destination nodes have been
manually selected. The destination nodes labeled in red cor-
respond to end-points while the source nodescorresponding to
the membrane of the Golgi apparatus are labeled in green.
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Fig. 6. Maximum intensity projection map computed from an image
sequence. The paths used by the vesicles appear as bright filaments. The
maximum intensity projection imap has been simplified using the algorithm
described in [17].§§¨
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Fig. 7. Representation of a realistic synthetic network. This network is based
on a maximum intensity projection map and has been manually simplified.
This network is composed of

�*óPô
nodes and

��ô�õ
bi-directional links which

correspond to ö ��õ directional edge in the graph associated to the network.

In this simulation, vesicles are only going from the Golgi to
the end-points located at the periphery of the cell. Thus, the
retrograde transport from end-point to the Golgi is prohibited
for simplicity.

In our approach, the paths defined as the minimal paths
between the source and the destination nodes are computed by
using the Dijkstra algorithm. In that case, the weight associated
to each edge can be defined as a function of the length of
the corresponding road but it can also take into account other
parameters. Note that the speed associated to edges can be
also used to estimate the shortest path. Finally, as expected,
the vesicles move along the estimated roads with velocities
given by the speed-limits of the roads. At each time step, the
vesicle is then displaced along the microtubule of a distance
which is a proportional to the velocity.

C. Estimation of the model parameters (detection of spots)

Object detection in image sequences is an important task
in video-microscopy but generally ground truth is not always

available. In this section, we propose a method to decide which
pixels belong to the image background. Furthermore, the un-
supervised approach is applied to really and artificially image
sequences obtained from the modeling framework described
in the paper.

In our detection method, a penalized likelihood criterion is
introduced to estimate the mean and the variance of a Gaussian
vector and by assuming some of the components are zero. We
suppose that the number of zero components as well and their
positions are unknown. In our problem, the zero components
of the signal are associated to the background while the other
components are related to the moving objects. Formally, we
define ÷ �ùøú��û 	üûþý ÿ ��[ 	 � �P	

(8)

where

÷
is the vector of C residuals given by

F �����^�� ' �����¤@ �B� ' � � ' ��� , assumed to be independent, and
û

is a
Gaussian white noise with variance � T�� 7 . The expectation
E d ÷ e!�ùø � ��� < 	f-�-�	�� 7 ��) and the variance � T are unknown.
Moreover, �	� components of

ø
are assumed to be non zero.

The data assumed to be independent, are then re-ordered such
that

� F � ��
 � F ��� < � . Now, we consider the following model
collection  � .�� < 	3-�-�-�	 � 7 /IK L � < � �BF < 	 [ 	 -�-�- 	�[G�*)

� T � �BF < 	 F T 	 [�	 -�-�- 	�[G�*)
� 7 � �BF < 	 F T 	 F�� -�-�- 	�F 7 �*)6- (9)

The selected model corresponding to object/background la-
beling, is the one that minimizes the following penalized
likelihood criterion [22], [23]

� � � � �H� C c������ � u� T� �
� C R�� < ���	� � C� � �
� � T W � �C @ � � (10)

where
u� T � � C � < 79� ; � F T� is the plugged-in maximum likelihood

estimator of � T� . The two universal constants
� < and

� T were
calibrated in [23] and found to be

� < ��c
and

� T ���
.

Once a model � ��� � & ' � has been estimated, which amounts
to select an optimal threshold

� ��� � & ' � for each point & ' in
the image, a minimal threshold is

�! ' 7 calculated in order to
take into account the fact that no object passed through some
points of the image. We decide that these points belong to the
background during the whole image sequence. Then, we apply
the same thresholding method based on penalized criterion
to the spatial threshold map. Thus, this method provides a
set of points belonging to the background, and by taking the
complementary set, we detect the moving vesicles.

V. EXPERIMENTS

In this section, we describe two experiments that demon-
strate the potential of the proposed simulation method. First, a
simulation of a synthetic image sequence based on real image
sequence is described. Besides, we describe a synthetic image
sequence whose parameters have been manually determined to
test a denoising procedure as well as the estimation procedure
for the background model described in Section III.
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Fig. 8. Illustration of the selection model principle applied to a synthetic
signal ( "$# ��õ�õ�õ

). The number of samples corresponding to the background
is about 800. The X-axis represents the length of the model %'& ; the left
ordinate corresponds to the value ( )*&+( associated to the model %,& labeled in
blue; the right ordinate represents the value of the cost function -/.0%'&21 .

A. Realistic image sequence simulation

We first propose to use a real image sequence in order to
simulate a sequence with similar photometric and dynamical
contents. The original sequence is shown in Fig. 9(a) and
represents vesicles moving from the Golgi apparatus to the
Endoplasmic Reticulum. The parameters of the dynamical
background are first estimated as described in Section III.
The two maps o . � ' / and . � ' / are respectively shown in
Fig. 9(e) and in Fig. 9(f). Once these parameter maps have
been estimated, the background is subtracted from the original
image in order to obtain the sequence of residuals shown
in Fig. 9(g), which is a noisy representation of the moving
spots. The paths mainly used by vesicles during the 150
frames of the real sequence can be observed on the maximum
intensity projection map in the time direction, of residuals as
shown in Fig. 9(b). We propose also to enhance the maximum
intensity projection map using optimal steerable filters [24]
(see Fig. 9(c)). The unbiased line detection algorithm [21]
is then applied to the enhanced image in order to estimate
the positions of the roads shown in Fig. 9(d). Finally 1+¦ [
vesicles are generated and moved along the estimated network.
The velocities of the vesicles are tuned so that the simulated
sequence provides the same visual effect than the original se-
quence. It is confirmed by experts that the proposed simulation
method provides a very realistic image sequence both from the
photometric point of view as well as from the dynamical point
of view.

B. Benchmarks

In order to evaluate the quality of the proposed background
estimation method, we have simulated a 1 c	3 | 1 c43 | 1+¦ [ image
sequence. This simulation is composed of a

c%[
vesicles moving

along a network shown in Fig. 10(a). The two maps . � '*/
and . � '�/ for the background model are shown in Figs. 10(b)
and (c). By adding to these three images, the photometric

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 9. Simulation of a video-microscopy image sequence from a real image
sequence. (a) one frame of the maximum intensity projection sequence wrt) axis (depth) computed from an original ö65 +time image sequence; (b)
maximum intensity projection

� 5 map wrt time 7 ; (c) results of steerable
filtering; (d) results of the un-biaised line detection; (e) map j98 l p ; (f) mapj9: l p ; (g) residual map; (h) image reconstruction from estimated parameters.

characteristics of the spots, we get the set of parameters that
controls the simulation.

To generate the background model, we have manually
designed the shape of the background shown in Fig. 10(b).
Then, we have computed the image shown in Fig. 10(c) for
a duration equal to twice the duration of the simulation, to
obtain a uniform background. Three frames of the noise free-
simulated sequence are shown in Fig. 10(d,e,f). A Gaussian
noise of standard deviation

V �<;
has been also added to these

frames and the results are shown in Fig. 10(i,j,k). The intensity
of the vesicles are assumed to follow a Gaussian distribution
with mean

h�[
and standard deviation

h
.

Now, we apply the algorithm described in [25] to denoise
the image sequence artificially corrupted by a Gaussian white
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Z>Z>ZZ>Z>Z[>[>[[>[>[ Source/destination

(a) (b) (c)

(d) (e) (f)

(i) (j) (k)

Fig. 10. Simulation of a synthetic video-microscopy image sequence. (a)
network map; (b) map j98 l p corresponding to the background; (c) mapj9: l p corresponding to the variation of the background; (d,e,f) three frames
extracted from the noise-free synthetic image sequence; (i,j,k) three noisy
frames corresponding to a signal-to-noise ratio of

� ö�\ ô^] : .
noise of variance

;
which correspond to a signal-to-noise

of 1 h - ¥�_�` . By using the pointwise adaptive space-based 3Dh | h | patch based approach with ¥ iterations, The mean
squared error of the recovered image is finally 1 - h ¦ , which
corresponds to a signal-to-noise ratio of

hb[�- [ _a` (decibels).
The noise is then drastically reduced (see Fig. 11) and, visually
the sequence looks similar to the original artificial sequence
and no vesicle has disappeared.

In order to estimate the performance of the proposed
estimation method for the dynamical background model, we
have applied the estimation procedure in order to recover the
simulation parameters. The two estimated maps . � ' / and . � ' /
are shown in Fig. 11. The mean squared error between the
original map . ��b' / and the estimated map . u� '�/ is 1 - ¦ [ and
the signal to noise ratio is

h 1 - �	� _�` . The signal-to-noise ratio
calculated from the original map . � b' / and the estimated map. u� ' / is

hbc$-dc�[ _�` .

VI. CONCLUSION

In video-microscopy, tracking methods that estimate trajec-
tories of small objects (particles) may encounter difficulties
if the number of objects is large and the signal-to-noise
ratio is low. Moreover, the tracked objects are not always
visible in the sequence and data association is problematic. To
evaluate the performance of the object tracking algorithms in
video-microscopy, we have presented a simulation/estimation
framework to artificially produce image sequences that can
mimic mostly moving spots observed in video-microscopy.
This new computational tool can be also used by an expert

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 11. Estimation of a synthetic video-microscopy image sequence.
(a,b,c) three frames of the denoised image sequence; (d) maximum intensity
projection map; (e) estimated map j+e8 l p ; (f) the estimated map j e: l p ; (g,h,i)
residual maps after background subtraction; (j,k,l) detection maps using the
described method.

for inspecting real image data. In that case, the user adapts the
simulation parameters to the observed data, and then determine
a set of parameters that can be considered as a parsimonious
representation of the image sequence contents. For future
works, we plan to better validate this approach in collaboration
with expert-biologists.
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