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Abstract. We present a method for segmenting moving transparent
layers in video sequences. We assume that the images can be divided
into areas containing at most two moving transparent layers. We call
this configuration (which is the mostly encountered one) bi-distributed

transparency. The proposed method involves three steps: initial block-
matching for two-layer transparent motion estimation, motion clustering
with 3D Hough transform, and joint transparent layer segmentation and
parametric motion estimation. The last step is solved by the iterative
minimization of a MRF-based energy function. The segmentation is im-
proved by a mechanism detecting areas containing one single layer. The
framework is applied to various image sequences with satisfactory results.

1 Introduction

Most of the video processing and analysis tasks necessitate an accurate compu-
tation of image motion. However, classical motion estimation methods fail in the
case of video sequences involving transparent layers. Situations of transparency
arise for instance when an object is reflected in a surface, or when an object lies
behind a translucent one. Transparency may also be involved in special effects
in movies such as the representation of phantoms as transparent beings. Finally,
let us mention progressive transition effects such as dissolve, often used in video
editing. Some of these situations are illustrated on Fig.1.
When transparency is involved, the grayvalues of the different objects super-

impose and the brightness constancy of points along their image trajectories,
exploited for motion estimation, is no longer valid. Moreover, two different mo-
tion vectors may exist at the same spatial position. Therefore, motion estimation
methods that explicitly tackle the transparency issue have to be developed. We
have designed a first method for estimating transparent motion in X-Ray images
in the two-layer case only [1].
This paper deals both with transparent motion estimation and segmentation in
video sequences with possibly more than two transparent layers. The latter is
an original topic to be distinguished from the transparent layer separation task:
a spatial segmentation aims at delimiting the spatial support of the different
transparent objects based on their motions, whereas a separation framework [2]
should allow one to recover the grayvalue images of the different transparent
objects. Motion segmentation is useful for video editing, video compression and
object tracking.



Fig. 1. Examples of transparency configuration in videos. Different reflections are
shown in the top row, three examples of phantom effects in the middle row, and one
example of a dissolve effect for a gradual shot change in the bottom row.

The simultaneous superimposition of three transparent objects being rare, we
consider transparent images that can be divided into areas containing at most
two moving transparent layers. We call it bi-distributed transparency.
This paper is organized as follows. Section 2 describes the joint motion estima-
tion and segmentation method in bi-distributed transparency. Section 3 reports
results on real and synthetic examples. Section 4 contains concluding remarks.

2 Joint parametric motion estimation and segmentation

of transparent layers

2.1 Transparent motion constraint with parametric models

We can distinguish two main categories of approaches for motion estimation in
transparency. The first one works in the frequency domain [3], but it must as-
sume the motion constant over dozen of frames. We therefore follow the second
one, that formulates the problem in the spatial domain using the fundamental
equation introduced by Shizawa and Mase [4], or its discrete version developed
in [5]. The latter states that, if one considers the image sequence I as the super-
position of two layers I1 and I2 (I = I1 +I2), respectively moving with velocities
w1 = (u1, v1) and w2 = (u2, v2), we have:

r(x, y,w1,w2) = I(x + u1 + u2, y + v1 + v2, t − 1) + I(x, y, t + 1)

− I(x + u1, y + v1, t) − I(x + u2, y + v2, t) = 0 (1)

It implicitly assumes that w1 and w2 are constant over time interval [t − 1, t +
1]. We will focus on the two-layer case since more complex configurations are
extremely rare, but it is straightforward to extend our work to n-transparent



layers since an equivalent for Eq.1 exists for n layers [5].
To compute the velocity fields using (1), we have to minimize

J(w1,w2) =
∑

(x,y)∈=

r(x, y,w1(x, y),w2(x, y))2 (2)

where r(x, y,w1(x, y),w2(x, y)) is given by Eq.(1) and = denotes the image grid.
Several methods have been proposed to solve (2), making different assumptions
on the motions. The more flexible the hypothesis, the more accurate the estima-
tions, but also the more complex the algorithm. A compromise must be reached
between measurement accuracy on one hand and robustness to noise, computa-
tional load and sensitivity to parameter tuning on the other hand.
In [6], dense velocity fields are computed by adding a regularization term to
(2), allowing not translational motions to be correctly estimated at the price of
sensitivity to noise and of higher complexity. In contrast, stronger assumptions
on the velocity fields are introduced in [7] by considering w1 and w2 constant
on blocks of the image, which allows fast and robust motion estimation. In [5],
the velocity fields are decomposed on a B-spline basis, so that this method can
account for complex motions, while remaining relatively tractable. However, the
structure of the basis has to be carefully adapted to particular situations and
the computational load becomes high if fine measurement accuracy is needed.
We propose instead to represent the velocity fields with 2D polynomial models
over segmented areas, which can account for a large range of motions, while
involving a few parameters for each layer. We believe that affine motion models,
along with the segmentation method presented in the next subsection, offer an
excellent compromise since they can describe a large category of motions (trans-
lation, rotation, divergence, shear), while keeping the model simple enough to
handle the transparency issue in a fast and robust way. Moreover, our approach
comprises a motion-based segmentation of the image in its different layers that
is an interesting output per se. Our framework could consider higher-order poly-
nomial models as well, such as quadratic ones, if needed.
Hence, the velocity vector at point (x, y) for the layer k is now represented by:

uθk
(x, y) = a1,k + a2,k.x + a3,k.y and vθk

(x, y) = a4,k + a5,k.x + a6,k.y (3)

The function (2) then depends on 6K parameters for the whole image, with K

the total number of transparent layers in the image. We can write now:

J(Θ) =
∑

(x,y)∈=

r(x, y, θe1(x,y), θe2(x,y))
2 with θk = (a1,k, ..., a6,k) (4)

where e1(x, y) and e2(x, y) denote the labels of the two layers present at point
(x, y) and Θ is the set of motion parameter vectors θk, k = 1...K.

2.2 MRF-based framework

An affine motion model is assumed for each transparent layer. We have to seg-
ment the image into regions involving at most two layers to estimate the mo-
tion models associated to the layers by exploiting Eq.4. Conversely, the motion



segmentation should obviously rely on the estimation of the different transpar-
ent motions. Therefore, we have designed a joint segmentation and estimation
scheme based on a Markov Random Field (MRF) modeling. In [8], a relatively
similar problem is addressed and a mechanism is proposed to compute sequen-

tially multiple transparent motions, and their corresponding spatial supports
In contrast, we propose a joint segmentation and motion estimation framework.
Such an approach is more reliable since estimated motions can be improved
with a better segmentation and conversely. It implies an alternate minimization
scheme between segmentation and estimation stage. To maintain a reasonable
computational time, the segmentation is carried out at the level of blocks. Typ-
ically, the 288 × 288 images are divided in 32 × 32 blocks (for a total number
S = 64). We will see in subsection 2.4 that this block struture will also be ex-
ploited in the initialization step.
The blocks will be the sites s of the MRF model. We aim at labeling the blocks
s according to the pair of layers they are belonging to. Let e = {e(s)} denote the
label field with e(s) = (e1(s), e2(s)). Let us assume that the image comprises
a total of K transparent layers. To each layer is attached a motion model of
parameters θk (six parameters). As introduced above, let Θ = {θk, k = 1, ..., K}.
The global energy function is defined by:

F (e, Θ) =
∑

s∈S

(

∑

(x,y)∈s

ρ
(

r(x, y, θe1(s), θe2(s))
)

− µ.η(s, e1(s), e2(s))
)

+ µ
∑

<s,t>∈C

(

(

1 − δ(e1(s), e1(t))
)(

1 − δ(e1(s), e2(t))
)

+
(

1 − δ(e2(s), e1(t))
)(

1 − δ(e2(s), e2(t))
)

)

(5)

The first term of Eq.5 makes Eq.1 be verified on each block s with two affine mo-
tion fields of parameters θe1(s) and θe2(s) respectively. We use the robust Tukey
function ρ(.) to discard outliers. The function η(.) is introduced to detect single
layer configurations and will be discussed in subsection 2.3. The second term
enforces the segmentation to be reasonably smooth, δ(., .) being equal to 1 if the
two labels are the same and equals to 0 otherwise. The µ parameter weights the
relative influence of the terms.
In other words, a penalty µ is added when introducing a region border involving
a change in one layer only, and a penalty 2µ when both layers are different. Ac-
cording to the targeted application, µ can be set to favour data-driven velocity es-
timations (small µ), or to favour smooth segmentation (higher µ). We have deter-
mined µ in a content-adaptive way: µ = meds∈S

∑

(x,y)∈s ρ
(

r(x, y, θe1(s), θe2(s))
)

.

The energy function (5) is minimized iteratively. When the labels are fixed, we
need to minimize the first term of Eq.5, which involves a robust estimation that
can be solved using an Iteratively Reweighted Least Square technique [9]. When
the motion parameters are fixed, we use the ICM technique to label the blocks:
the sites are visited randomly, and for each site the labels that minimize the
energy function (5) are selected. However, difficulties arise if some blocks belong
to one single layer only. This issue is addressed in the next subsection.



2.3 Detection of a single layer configuration

Over single layer areas, Eq.1 is satisfied if one of the two estimated velocities
(for instance wθe1(s)

) is close to the real motion whatever the value of the other

motion (wθe2(s)
). Thus, we propose an original criterion to detect these areas.

If the residual value ν(θe1(s), θe2(s), s) =
∑

(x,y)∈s r(x, y, θe1(s), θe2(s)) varies only

slightly for different values of θe2(s) (while keeping θe1(s) constant), it is likely
that the block s contains one single layer only, corresponding to es(1). Formally,
to detect a single layer corresponding to θe1(s), we compute the mean value ν̄ of
the residual ν(θe1(s), ., s) by applying n motions (defined by θj , j = 1, ...n,) to
the second layer. To decide if ν̄ is significantly different from the final residual
provided in the previous ICM iteration ν(θe∗

1 (s), θe∗

2(s), s), we consider the mini-
mal residual obtained over S and given by med

s∈S
ν(θe∗

1 (s), θe∗

2(s), s). (This assumes

that motions have been correctly estimated on at least half the image).
Then, we set η(s, e1(s), e2(s)) = 1 in relation (5) if:

∣

∣

∣

1

n

n
∑

j=1

ν(θe1(s), θj , s) − ν(θe∗

1 (s), θe∗

2(s), s)
∣

∣

∣
< med

s∈S
ν(θe∗

1 (s), θe∗

2 (s), s) (6)

(and then e1(s) = e2(s)), and η(s, e1(s), e2(s)) = 0 otherwise. This way, we
favour the monolayer labeling (e1(s), e1(s)). The same process is repeated to
test for θe2(s) as the motion parameters of a (possible) single layer.

2.4 Initialization of the overall scheme

Such an alternate iterative minimization scheme converges if properly initialized.
To this end, we resort to a transparent block-matching technique that tests every
possible pair of displacements in a given range [7].
To extract from these computed pairs of displacements the underlying layer mo-
tion fields, we apply the Hough transform on a three-dimensional parameter
space (i.e., a simplified affine motion model, with two translational and one di-
vergence components), considering that this model allows us to roughly estimate
the layer motion while maintaining the transform efficient. The Hough transform
allows us to cluster the motion vectors, yielding a first evaluation of the number
of layers K. Then, the label field is initialized by minimizing the first term of
Eq.5 only (i.e., we consider a maximum likelihood criterion).

2.5 Determination of the number of transparent layers

To fix the number K of transparent layers, we resort to two mechanisms. On
one hand, two layers whose motions models are too close (typically, difference
of one pixel on average over the velocity fields) are merged. On the other hand,
based on the maps of weights generated by the robust affine motion estimation
stage, we propose a mean to add a new layer if required.
The blocks where the labelling and associated motion estimates are not satis-
fying should be assigned low weight values for the corresponding pixels in the



robust estimation stage. More formally, we use as indicator the number of weights
smaller than a given threshold. The corresponding points will be referred to as
outliers. To learn which number of outliers per block is significative, we compute
the median value of outliers over the blocks, as well as its median deviation. A
block s is considered as mis-labeled if its number No(s) of outliers verifies:

No(s) > No + λ.∆No with No = med
s∈S

No(s) and ∆No = med
s∈S

|No(s) − No| (7)

In practice, we set λ = 2.5. If more than 5 blocks are considered as mis-labeled,
we add a new layer. We estimate its motion model by fitting an affine field on
the motion vectors computed from the initial block-matching step, and we run
the joint segmentation and estimation scheme on the whole image again.

3 Experimental results

We have tested our method on real transparent image sequences. Fig.2 shows ex-
periments carried out on a lab video of bi-distributed transparency. A cornflakes
box is reflected on a mirror covering a painting, some large areas around it be-
ing in a single layer configuration. We present the final segmentation in Fig.2.a,
where pink blocks correspond to the monolayer labeling (1, 1) and cyan blocks to
(1, 2) label. From the obtained segmentation, we can easily infer the boundaries
of the different layers (overprinted in Fig.2b in the original image). We observe
that the support of the corn-flakes box is somewhat bigger than the real object.
This results from the block-based framework. We also display the images of the
displaced frame difference computed with respect to the motion of one of the two
layers. They show that the motions (plotted in Fig.2c) are correctly estimated
since their corresponding layers disappear in each case (Fig.2d-2e).
Fig.3 reports experiments conducted on a sequence extracted from a movie, pic-
turing a couple reflected on an appartment window. The reflection superimposes
to a panorama of the city. The camera is undergoing a smooth rotation, making
the reflected faces and the city undergoing two apparent translations with dif-
ferent velocities in the image. At some time instants, the real face of a character
appears in the foreground but does not affect the proposed method because of
its robustness. The obtained segmentation and motion estimation are satisfying.
Finally, Fig.4 contains a synthetic example of bidistributed transparency. Two
portraits (one in translation, the other undergoing zooming) are moving over a
landscape in translation. The final segmentation is given in Fig.4a. The obtained
label map is plotted in Fig.4b. Pink refers to the labeling (1, 1) (landscape), cyan
to (1, 2) (landscape and Lena), red to (1, 3) (landscape and Barbara) and green
to (2, 2). This last configuration appears on the little textured sky of the land-
scape. Though the image involves several types of textures, the segmentation
method correctly recovers the structure of the image. The estimates are excel-
lent: we get an error of 0.11 pixel on average on the velocity fields.
The framework runs in 15 seconds with a PC 2.5MHz, 1Go of memory, on
288× 288 images.



Fig. 2. Processing of an image sequence depicting a corn-flakes box reflected on a mirror
covering a painting. From left to right and top to bottom: a) final labels (pink blocks
correspond to the monolayer labeling (1, 1) and cyan blocks to (1, 2)), b) superposition
of the image with the layers boundaries, c) velocity fields given by the estimated affine
motion models, d,e) difference images compensated with respect to the motion of one
of the two layers, respectively the cornflakes box and the painting layer.

4 Conclusion

We have presented an original and efficient method for segmenting moving trans-
parent layers in video sequences. We assume that the images can be divided into
areas containing at most two moving transparent layers (we call this configu-
ration bi-distributed transparency). The proposed method involves three steps:
initial block-matching for two-layer transparent motion estimation, motion clus-
tering with a 3D Hough transform and joint transparent layer segmentation
and parametric motion estimation. The last step is solved by the iterative min-
imization of a MRF-based energy function. The segmentation is improved by a
mechanism detecting areas containing one single layer. The framework has been
applied to various image sequences with satisfactory results. It seems mature
enough to be used in video applications such as video structuration, content
analysis, video editing, etc.
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