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SAMOS/Université de Paris 1, 90 rue de Tolbiac, 75634 Paris Cedex 13, France

G. PIRIOU

IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France

J. YAO
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Abstract. In image motion analysis as well as for several application fields like daily pluviometry data modeling,

observations contain two components of different nature. A first part is made with discrete values accounting for

some symbolic information and a second part records a continuous (real-valued) measurement. We call such type of

observations “mixed-state observations”. In this work we introduce a generalization of Besag’s auto-models to deal

with mixed-state observations at each site of a lattice. A careful construction as well as important properties of the

model will be given. A special class of positive Gaussian mixed-state auto-models is proposed for the analysis of

motion textures from video sequences. This model is first explored via simulations. We then apply it to real images

of dynamic natural scenes.
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1. Introduction

It is of common understanding that the type of any

observation data is either continuous or discrete. The

situation, where a measurement presents continuous

values sometimes and discrete values at other times,

is rarely considered in statistical literature. However,

such situations are frequent in applications. For ex-

amples, daily pluviometry time series at a given site

records many zeros when the rain is absent, followed

by periods with positive rainfall values (see e.g. [1]).

Similar phenomena also occur in speech recordings

where, interchanges are permanent between absences

and presences of the signal. Another example arises

in the motion analysis problem from image sequences

considered in this paper. Typically, the histograms of

local motion measures present a composite picture. An

important peak appears at the origin accounting for

regions where no motion is present, while a large con-

tinuous component encompasses actual motion mag-

nitudes in the images. It then raises the question to find

accurate models for this type of data—we shall call

them observations with mixed states, collected from

the image lattice.

From a mathematical point of view, we are searching

for models for a random field {Xs} with the constraint
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that the marginal distributions of the Xs’s are com-

posed with a discrete component and a continuous com-

ponent. In its most general form and for the discrete

component, we may take any distribution with support

on a countable set {e1, . . ., ek, . . .} of symbolic values,

while for the continuous component any standard dis-

tribution could be considered. However in this work,

we will restrict our attention to distributions with one

atomic value, typically {0}, and a continuous compo-

nent supported on the interval (0, ∞). The state space,

called a mixed-state space, is then E = {0} ∪ (0, ∞)

with the point 0 playing a special role.

Markov random fields (MRF) models are now a stan-

dard tool in image analysis, see e.g. [4]. However,

up to our knowledge, the existing models deal with

either continuous variables, or discrete variables, but

never with variables that can take continuous as well

as discrete values. Furthermore, the discrete compo-

nent could not be simply neglected, because -as it will

becomes clear in the motion analysis application ad-

dressed below-, these symbolic values as well as their

spatial correlations convey important pixel-wise and

contextual information. On the other hand, such dis-

crete phenomena are usually taken into account by

introducing a label process Ls where, in our case,

Ls = 1 if no motion is present at pixel s, i.e. Xs = 0,

and Ls = 2 when a positive motion measurement is

recorded, i.e. Xs > 0. However, the label process is

a hidden process and the resulting statistical inference

methods need in general a restoration of the hidden

process (i.e., segmentation). This classical approach is

then possible only upon the cost of a generally huge

computation effort.

The approach we propose is different. We aim at

giving a model which automatically deal with the

two types of observations, without introduction (and

then the inference) of a hidden process. The main

idea is then to introduce mixed-state distributions

in a random field set-up. More precisely, we will

follow J. Besag’s construction of auto-models [3]

by introducing necessary adaptations for mixed-state

variables.

In Section 2, we first recall some backgrounds on

motion computation in an image sequence. This will

also give a precise description of the data we have

at hand, and in particular their mixed-state nature.

In Section 3, we introduce a new class of random

field models, named mixed-state auto-models. The con-

struction, their basic properties as well as estimation

methods will be given. A special specification based

on positive Gaussian distribution for the continuous

component is introduced. Then in Section 4 we ex-

plore the basic properties of the proposed auto-model

via several simulation experiments. Next in Section 5,

we carry out an application to the analysis of motion

textures from real image sequences of dynamic nat-

ural scenes. Finally, concluding remarks are given in

Section 6.

2. Motion Analysis from Image Sequences

The data we are dealing with are local motion measure-

ments from video sequences. For the definition and the

computation of these measures, we follow the approach

developed in [12, 13], where several meaningful appli-

cations are also given. Here, we briefly recall the basics

of their computation.

2.1. Motion Decomposition and the Residual
Motion

The aim of motion computation is to obtain dense mo-

tion measures that can be easily and reliably computed

from any image sequence (e.g. videos) and that in-

form on the dynamic content of the depicted scene.

The motion information in an image sequence is com-

pletely captured by the optical flow. However, methods

for estimating optical flow remain complex and time

consuming if general video content has to be handled,

while not always ensuring accurate and reliable mea-

surements. As a consequence, motion measurements

we will analyze in the sequel are related to normal flow.

On one hand, they supply a partial motion information

only since they correspond to the motion component

parallel to the spatial image gradient. On the other hand,

they can be locally computed in a straightforward way.

In case of a static camera, these motion measures are di-

rectly related to the scene motion. More precisely, it is

image motion conveyed by spatio-temporal photomet-

ric variations and related to the projection of the scene

motion. If the camera is moving, we have first to cancel

the camera motion. In that case, we will compute local

motion features related to the so-called residual normal

flow. More precisely, we first estimate the dominant im-

age motion which can be assumed (in most cases) due

to the camera motion. The following 2D-affine motion

model (which is a usual choice, a 8-parameter quadratic

model could be considered as well) is considered:
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Figure 1. Two images of sports video segments (involving respectively, a zoom combined with an upward-tilt camera motion, and a right

panning motion) and their corresponding maps of the estimated dominant image motion fields wξ̂ and of residual motion measurements vres

(white = 0; black = maximum value).

wξ (p) =
(

a1 + a2x + a3 y

a4 + a5x + a6 y

)
, (1)

where ξ = (ai , i = 1, . . . , 6) is the model parameter

vector and p = (x, y) is an image point. This simple

motion model can correctly handle different camera

motions such as panning, zooming, tracking. Different

methods are available to compute such a motion model

and to get the parameter estimate ξ̂ . We use the robust

real-time multi-resolution algorithm described in [13].

Then, the residual motion measurements vres(p, t)
we consider, are defined as the weighted local mean of

the normal residual flow magnitudes |vn|, the weights

being given by the square of the magnitude of the

spatial intensity gradient. This allows us to smooth out

the noise attached to the computation of the normal

flow and to enforce the reliability of the motion mea-

surements. We get the following expression:

vres(p, t) =
∑

q∈F(p) ‖∇ I (q, t)‖2.|vn(q, t)|
max(η2,

∑
q∈F(p) ‖∇ I (q, t)‖2)

, (2)

with vn(q, t) = [I (q, t) − I (q + wξ̂t
(q), t + 1)]/‖∇ I

(q, t)‖. Here, F(p) is a local spatial window centered

in pixel p (typically a 3 × 3 window), ∇ I (q, t) is the

spatial intensity gradient of pixel q at time t and η2 is a

predetermined constant related to the noise level. This

class of local motion measurements have already been

proved useful for motion detection [11, 12] and for

motion recognition [8]. Figure 1 displays two images

of sports videos with the corresponding maps of the

estimated dominant motion vectors and those of resid-

ual motion measurements vres . These examples show

that the camera motion is reliably captured even in case

of multiple moving elements in the scene. It also indi-

cates that the scene motion is correctly accounted by

the residual motion measurements. From Eq. (2), it can

be straightforwardly noted that we only get information

related to motion magnitude, and consequently, we lose

the motion direction. However, under the general ob-

jective of motion characterization, we aim at address-

ing issues such as detecting similar motion contents,

grouping “qualitative” motion classes, or recognizing

predefined motion classes. As demonstrated by the re-

sults reported later, these goals can be attained using

this type of motion information.

2.2. Motion Textures, Histograms and Mixed States

The above motion computation principle has been ap-

plied to various video sequences. In this paper, we are

mostly concerned with motions of natural dynamic
scenes such as views of moving grass, moving foliage,

sea waves, rivers, fire, steam, smoke, etc. As motivated

in Section 5, we will call motion textures the resulting

local motion measurements {vres}. Figure 2 gives a set

of sample images from six different types of videos

including grass, foliage, sea-waves, trees and turbulent

rivers, respectively. The corresponding motion fields

{vres} are displayed in Fig. 3. As a matter of fact, these
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Figure 2. Sample images from different videos of natural dynamic scenes. Top to bottom: moving grass, foliage, sea-waves, trees and rivers.

videos were acquired with a static camera; therefore,

the {vres} are computed with wξ ≡ 0 in (2). As illus-

trated in Fig. 3, the normal flow magnitudes can be suf-

ficient to reveal the intrinsic space-time arrangement of

dynamic textures and then to properly model and char-

acterize them, even if they supply a partial motion in-

formation only (local motion direction is not involved

as pointed out before). An advantage is that we have

to deal with scalar motion fields. Besides, local motion

directions do not convey really pertinent information

by themselves in case of dynamic textures.

In Fig. 4, we have displayed several typical his-

tograms from motion textures {vres}. As explained in

Introduction, these histograms are of mixed-state type

with a prominent peak at the origin accounting for re-

gions where no motion is present, and a continuous

component reporting the magnitudes of actual mo-

tion in the images. This can also be inferred from



Mixed-State Auto-Models and Motion Texture Modeling 391

Figure 3. Sample motion measures {vres} from the videos of Fig. 2. Top to bottom: grass, foliage, sea-waves, trees and rivers (white = 0;

black = maximum value).

the examples of normal flow magnitudes of Fig. 3

which typically exhibit heterogeneous content of

mixed static and moving points in a more or less ran-

dom way.

3. Mixed-State Auto-Models for Motion Textures
{vres}

Our main purpose is to construct a random field model

for the (residual) normal flow magnitudes fields {vres},

introduced in Section 2, which are mixed-state obser-

vations. Indeed we need to consider a general class

of random field models called multi-parameter auto-
models. Such a theory is exposed in Section 3.1. Using

this theory we then introduce in Section 3.2, a positive
Gaussian auto-model with mixed states in {0}∪ (0, ∞)

for modeling motion textures. A specification for the

four nearest-neighbours system is proposed in details in

Section 3.3. Such positive Gaussian auto-models will

be used in Section 5 to analyze motion textures {vres}.
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Figure 4. Sample histograms of motion measures {vres}. Top to bottom, and left to right: grass, foliage, trees and sea-waves.

3.1. A General Theory of Multi-Parameter
Auto-models

Consider a general system of real random vectors

{Xi , i ∈ S} indexed by a finite set S = {1, . . . , n}.
For a site i , let

μi (xi |·) = μi (xi | x j , j �= i) ,

the probability density of Xi given the event {X j =
x j , j �= i}. A classical approach in stochastic model-

ing consists in specifying the family of all these condi-

tional distributions {μi (xi |·)}, and then to determine a

joint distribution μ of the system, which is compatible

with this family, i.e. the μi ’s are exactly the conditional

distributions associated to μ. We refer to the seminar

paper [3] which presents general results including a

summary of earlier results about the “nearest neigh-

bours systems” from [2, 15].

In this paper, we focus our attention on the auto-

models introduced by [3]. A characteristic property of

these auto-models is that the local conditional distri-

butions belong to a one-parameter exponential fam-

ily, such as exponential distribution or Poisson dis-

tribution, giving the auto-exponential model and the

auto—Poisson model, respectively. Note also that these

auto-models belong to the wider class of Gibbs field

models (or Markov random field models).

To handle mixed-state observations addressed in

this paper, we first need to extend the above one-
parameter auto-models to a multi-parameter setting.

Let us specify some notations. We are given a mea-

surable state space (E, E, m) where E is a subset of

Rd . The field X is taking values in a configuration
space � = E S, equipped with the product struc-

ture (E, m)⊗S . A random field on S is specified by a

probability distribution μ on �. We will always as-

sume that μ has a everywhere positive density P with

respect to the product measure ν = m⊗S . In other

words,

μ(dx) = P(x)ν(dx), P(x) = Z−1 exp Q(x), (3)

where Z is a normalization constant. The positivity

condition implies that at each site i , the conditional

distribution (Xi |X j = x j , j �= i) has a positive density

μi (xi |·) with respect to m(dxi ).

Our construction of multi-parameter auto-models

are based on the following three conditions:
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[A] The potentials involve at most two points i.e.

Q(x) =
∑
i∈S

Gi (xi ) +
∑
{i, j}

Gi j (xi , x j ) .

[B] For each site i , the conditional distribution

μi (xi |·) belongs to a multi-parameter exponential
family:

log μi (xi |·) = 〈Ai (·), Bi (xi )〉 + Ci (xi ) + Di (·) ,

Ai (·) ∈ Rd , Bi (xi ) ∈ Rd .

[C] The family of sufficient statistics {B(xi )} is reg-
ular in the sense that

for all i ∈ S, Span{Bi (xi ), xi ∈ E} = Rd .

We have then the following theorem (for a proof, see

[10]).

Theorem 1. Assume that the random field probability
distribution μ of and its energy function Q(x) satisfy
Conditions [A]–[B]–[C]. Then, there are for all i, j ∈
S, i �= j , a family of vectors αi ∈ Rd and a family of
d × d matrices βi j satisfying βi j = βT

ji , such that

Ai (·) = αi +
∑
j �=i

βi j B j (x j ) . (4)

Consequently the set of potentials is given by

Gi (xi ) = 〈αi , Bi (xi )〉 + Ci (xi ) , (5)

Gi j (xi , x j ) = BT
i (xi )βi j B j (x j ) . (6)

A model satisfying the assumptions of the theorem is

called a multi-parameter auto-model. For a practical

use of Theorem 3.1 as in Section 3.2 below, one starts

by specifying a family of local conditional distribu-

tions {μi } satisfying Conditions [B]–[C]. The extra-

condition that need to be checked is that the associated

“energy” function Q(x) is admissible in the sense that:

∫
�

exp Q(x)ν(dx) < ∞. (7)

3.2. Mixed-State Auto-Models for Motion Textures

We aim to construct auto-models for mixed-state ob-

servations {vres} on the state space E = {0} + (0, ∞).

3.2.1. The Positive Gaussian Mixed-State Distribu-
tion Let us first define a family of distributions on

E which will be used below for modeling local condi-

tional distributions of motion textures {vres}. A variable

X of this family, called positive Gaussian mixed-state
variable, is constructed as following: with probability

p ∈ (0, 1) we set X = 0, and with probability 1− p, X
follows the distribution of the module of a zero-mean

normal distribution with variance σ 2:

gs(x) = 2

σ
√

2π
e− x2

2σ2 = gs(0)e−sx2

.

Here we have set s = (2σ 2)−1. Note that gs(0) =
2(2πσ 2)−1/2 = 2(s/π )1/2.

It is worth noticing that this positive Gaussian distri-

bution for the continuous component is a natural choice

regarding the sample histograms of motion textures as

displayed in Fig. 4. We now compute the density func-

tion of this distribution. Let the space E be equipped

with a “mixed” reference measure

m(dx) = δ0(dx) + λ(dx) ,

where δ0 is the Dirac measure at 0 and λ the Lebesgue

measure on (0, ∞). Let us define the indicator function

δ(x) = 1{0}(x) and its complementary function δ∗(x) =
1 − δ(x). Then, the above random variable X has the

following density function, w.r.t. m(dx),

fθ (x) = pδ(x) + (1 − p)δ∗(x)gs(x)

= exp

[
− δ∗(x) log

p

(1 − p)gs(0)
− sx2 + log p

]
= exp[〈θ, B(x)〉 + log p] (8)

where we have set

θ = (θ1, θ2)T =
(

log
(1 − p)gs(0)

p
, s

)T

,

B(x) = (δ∗(x), −x2)T .

In other words, this distribution belongs to an ex-

ponential family and the dimension of its parame-

ters θ (or of its sufficient statistic B(x)) is two. We
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also have the following one-to-one correspondence

between the natural parameter θ and the original pa-

rameters s and p:

s = θ2 , p = gs(0)

gs(0) + eθ1
= 2(s/π )1/2

2(s/π )1/2 + eθ1
.

This distribution, called positive mixed-state Gaus-
sian distribution, will be denoted by Gm(p, s).

3.2.2. Mixed-State Auto-Models for Motion Textures.
To construct auto-models for mixed-state observations

{vres}, we start by assuming that the family of con-

ditional distributions μi (xi |·) belongs to the family

of positive Gaussian mixed-state distribution fθi (·)(xi )

given in (8). Here the parameter θi (·) is a function of

neighbouring configuration (·) = (x j , j �= i). In other

words, we assume that

log μi (xi |·) = 〈θi (·), B(xi )〉 + log pi (·) (9)

with B(x) = (δ∗(x), −x2).

By Theorem 1, there are a family of vectors αi =
(ai , bi ) ∈ R2 and 2 × 2 matrices

βi j =
(

ci j di j

d∗
i j ei j

)
,

satisfying βi j = βT
ji , such that

θi (·) = αi +
∑
j �=i

βi j B(x j ) . (10)

Moreover, the associated energy function is given by

Q(x1, . . . , xn) =
∑
i∈S

[
aiδ

∗(xi ) − bi x
2
i

]
+

∑
{i, j}

(
δ∗(xi ), −x2

i

)
βi j

(
δ∗(x j ), −x2

j

)T
.

(11)

Let us describe in more details the local conditional

distributions {μi }. By construction, at each site i , the

conditional distribution μi (xi |·) is Gm(pi (·), si (·)) with

parameters

θi (·) = αi +
∑
j �=i

βi j B(x j )

=
[

log

(
[1 − pi (·)]si (·)

pi (·)
)

, si (·)
]T

.

More explicitly

θi,1(·) = ai +
∑
j �=i

[
ci jδ

∗(x j ) − di j x
2
j

]
, (12)

θi,2(·) = bi +
∑
j �=i

[
d∗

i jδ
∗(x j ) − ei j x

2
j

]
. (13)

We have in particular

si (·) = 1

2σ 2
i (·) = θi,2(·) ,

pi (·) = 2[si (·)/π ]1/2

2[si (·)/π ]1/2 + eθi,1(·) .

It follows that necessarily for all i and its possi-

ble neighbouring configuration (·) = (x j , j �= i), the

variance parameter si (·) = 1/[2σ 2
i (·)] of the Gaussian

component must be positive, i.e.

si (·) = 1

2σ 2
i (·) = bi +

∑
j �=i

[
d∗

i jδ
∗(x j ) − ei j x

2
j

]
> 0 .

As x is arbitrary, this is equivalent to require the

Conditions [D]:
(i) for all {i, j}, ei j ≤ 0.

(ii) for all i and any subset A ⊂ S\{i},
bi +

∑
j∈A

d∗
i j > 0 (in particular bi > 0).

It turns out that these necessary conditions are also

sufficient for the admissibility (7) of the energy func-

tion Q given in (11) The next proposition is important:

it defines precisely the set of parameter values cor-

responding to a valid definition of positive Gaussian

auto-models.

Proposition 1. Under the conditions [D], the energy
function Q is admissible. Consequently, the associated
positive Gaussian auto-model is well-defined.

Proof: We need only prove the admissibility of the

energy function Q, since the last conclusion follows

from Theorem 3.1.

For any subset A ⊂ S and a configuration x , we

denote by xA the trace of x on A: xA = (xi , i ∈ A).

The configuration space � can be decomposed as

� =
∑
A⊂S

�A
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with

�A = {x : xi > 0, i ∈ A ; xi = 0, i /∈ A} .

Moreover for x ∈ �A,

Q(x) = φA(xA) :=
∑
i∈A

[
ai − bi x

2
i

]
+

∑
{i, j}⊂A

(
1, −x2

i

)
βi j (1, −x2

j )
T .

Therefore∫
�

exp Q(x)ν(dx) =
∑
A⊂S

∫
�A

exp Q(x)

n∏
i=1

{δ0(dxi )

+λ(dxi )}
=

∑
A⊂S

∫
(0,∞)|A|

exp φA(xA)
∏
i∈A

λ(dxi ) ,

where we have set |A| = card(A). As

(1, −x2
i )βi j

(
1, −x2

j

)T = ci j − di j x
2
j − d∗

i j x
2
i + ei j x

2
i x2

j ,

and ei j ≤ 0, we have for some constant C > 0,

C−1φA(xA) ≤ −
∑
i∈A

bi x
2
i −

∑
{i, j}⊂A

(
di j x

2
j + d∗

i j x
2
i

)
.

By the symmetry property d∗
i j = d ji , the second sum

in the r.h.s is exactly∑
i∈A

∑
j∈A, j �=i

d∗
i j x

2
i .

Hence

C−1φA(xA) ≤ −
∑
i∈A

(
bi +

∑
j∈A, j �=i

d∗
i j

)
x2

i .

By Conditions [D], bi + ∑
j∈A, j �=i d∗

i j > 0, so that

∫
(0,∞)|A|

exp φA(xA)
∏
i∈A

λ(dxi ) < ∞ .

The proof is then complete. �

3.3. A Specification for the Four-Nearest-Neighbour
System

We describe in this section a particular positive

Gaussian auto-model using the four-nearest-neighbour

system. Recall that the set of sites is S = {1, . . . , n} =
[1, M] × [1, N ] and the neighbour system is to be

completed with usual correction on the boundary. We

denote by {ie = i + (1, 0), io = i − (1, 0), in =
i + (0, 1), is = i − (0, 1)} the four neighbours of i .

Furthermore, we assume that the field is homoge-

neous in space, i.e., the parameters are the same for all

sites. Moreover we will allow possible anisotropy be-

tween the horizontal and vertical directions. Under all

these considerations and by the previous results, there

exist a vector α = (a, b) and two 2 × 2 matrices β (1)

and β (2) such that ∀i, αi = α, and for ∀{i, j}, βi j = 0

unless i and j are neighbours where

βi,ie = β (1) =
(

c1 d1

d∗
1 e1

)
= βT

io,i ,

βi,in = β (2) =
(

c2 d2

d∗
2 e2

)
= βT

is ,i ,

The model has then 10 parameters (a, b, c1, d1, d∗
1 ,

e1, c2, d2, d∗
2 , e2). However, for the application devel-

oped in Section 5, we need to further constrain the

parameters dk, d∗
k and ek , k = 1, 2 to be zero, since

otherwise with dk > 0, d∗
k > 0 or ek < 0, the corre-

lation between neighbouring sites becomes negative,

i.e., the field is repulsive and neighbouring sites are

“in competition” (note this is also typical for classical

auto-models of [3], see also [10] for more details). This

is clearly not suited for homogeneous motion textures

we intend to analyze here.

Finally, this auto-model with four-nearest-neighbour

system has four parameters, namely φ = (a, b, c1, c2).

The admissibility condition [D] is reduced in the

present case to the unique simple condition

b > 0 .

It is useful to note that the parameters of the local

conditional distributions μi = Gm(pi (·), si (·)) at a site

i take the form

θi,1(·) = a + c1

[
δ∗(xie

) + δ∗(xio

)]
+ c2

[
δ∗(xin

) + δ∗(xis

)]
. (14)

θi,2(·) = b
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Notice that the effect of a non null value x j from neigh-

bouring sites depends on the indicator value δ∗(x j )

independently of its magnitude |x j | (the squares x2
j

are absent in the above formula).

In case we impose the equality c1 = c2 = c, we get

an isotropic model with three parameters φ = (a, b, c).

This model will also be used in Section 5 to test the

existence or not of a spatial isotropy.

As for the estimation of the parameter φ, we

use the pseudo-likelihood method by maximizing the

pseudo-likelihood (in fact its logarithm)

L(x ; φ) =
∑
i∈S

log μi (xi | x j , j �= i) . (15)

This method has good consistency properties for

classical one-parameter auto-models, see e.g. [9]. We

conjecture that it is still the case for multi-parameter

auto-models considered here, although we are not

aware of any proof of such consistency.

4. Simulation Experiments

In this section we propose some simulation experi-

ments to explore the basic properties of the auto-model

with the four-nearest-neighbour system defined in Sec-

tion 3.3. Our approach is analogous to [5] for the anal-

ysis of spatial intensity textures.

First, Fig. 5 presents two realizations of the

model on a 128× 128 lattice with parameter values

(a, b, c1, c2) = (0.6, 3, 0.5, 0.5) and (a, b, c1, c2) =
(0.6, 0.5, 0.5, 0.5), respectively. The simulations are

produced with 100 scans of the Gibbs sampler where

the initial configuration is chosen at random.

Figure 5. Realizations of size 128 × 128 by the Gibbs sampler of the auto-model with the four-nearest-neighbour systems. (a). (a, b, c1, c2) =
(0.6, 3, 0.5, 0.5). (b). (a, b, c1, c2) = (0.6, 0.5, 0.5, 0.5).

Recall that our figures use a reversed gray color-map

so that the white color corresponds to the null value of

the field. Note also that this model has four parameters

and in particular, the variance parameter σ 2
i (·) of the

Gaussian component of the conditional distributions is

a constant independently of neighbouring configura-

tions. Furthermore, this conditional variance becomes

smaller for larger value of b so that the values of the

field is more concentrated near the origin and the figure

looks whiter.

We observe also that the contrast is generally low on

these figures. As a consequence and to have a better vi-

sual judgment, we will display simulations on a binary

basis in the sequel: all non null values are printed with

an unique black color, while the white color is kept to

identify the null value of the field.

Next, we explore the different roles played by the

remaining parameters a, c1 and c2.

4.1. Influence of the Parameter a

Figure 6 displays two realizations both with

(b, c1, c2) = (1, 1.5, 1.5) but with different values of

a = 2.9 and a = −2.9, respectively. When a increases,

the conditional probability to have a non null value of

the field becomes higher. Therefore a controls the den-

sity of non null values of the field.

4.2. Texture Granularity

Figure 7 displays two realizations which share the same

parameter values (a, b) = (−2.9, 1) but with interac-

tion parameters c1 = c2 = 1.6 and c1 = c2 = 3

respectively. As one can see, a higher value of the
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Figure 6. Influence of the parameter a. Common parameter values are (b, c1, c2) = (1, 1.5, 1.5) and the different one is (a) a = 2.9, (b)

a = −2.9.

ck’s produces finer white grains corresponding to points

with the symbolic value 0.

4.3. Texture Orientations

Figure 8 displays two realizations both with (a, b) =
(−2.9, 1) but with interaction parameters (c1, c2) =
(3, 0) and (c1, c2) = (0, 3) respectively. The opposite

signs in the ck’s produces a well-organized orientation

in the textures.

In the last simulation experiment, we aim at checking

the consistency of the pseudo-likelihood estimator.

We then simulated 200 realizations of the model

with (a, b, c1, c2) = (0.6, 3, 0.5, 0.5) and computed

the parameter estimates from these realizations. The

average estimates from these 200 estimations are

(0.6177, 2.9971, 0.4945, 0.4960) with respective

standard deviations (0.1502, 0.0807, 0.0828, 0.0896).

Figure 7. Texture granularity. Common parameter values are (a, b) = (2.9, 1) and the different ones are (a) c1 = c2 = 1.6, (b) c1 = c2 = 3.

Therefore the pseudo-likelihood estimator is clearly

consistent although the standard deviation of the

parameter a seems slightly higher than the others.

5. Applications to Motion Texture Analysis

As mentioned in Section 2, temporal textures (or

dynamic textures) designate video contents involving

natural (almost stationary) dynamic phenomena such

as rivers, sea-waves, smokes, steams, fires, fountains,

moving grass or foliage, etc. No tractable 3D kine-

matic models can be exhibited to account for these

motions and to allow the derivation of relevant and ef-

ficient image motion models. Therefore, the analysis of

dynamic textures is a challenging issue while of practi-

cal interest for various applications. This problem has

been mainly investigated by considering these image
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Figure 8. Orientation of the textures. Common parameter values are (a, b) = (−2.9, 1) and the different ones are (a) (c1, c2) = (3, 0), (b)

(c1, c2) = (0, 3).

sequences as visual signals only, that is by modeling

the time-varying intensity function only. In the early

work by [14] on temporal texture modeling, a spatio-

temporal auto-regressive model was introduced which

was also causal in the spatial domain and could handle

a restricted range of motion contents only. A signifi-

cant extension has been then designed by [6] exploiting

ARMA models and system identification tools. Issues

of modeling, learning, recognizing, compressing or

synthesizing dynamic textures were addressed with this

modeling framework. Recently, multi-scale AR mod-

els have been applied to this problem by [7], along with

a closed-loop linear dynamic system by [16]. However,

these methods present two main limitations: they con-

sider linear models only and they operate on the pixel

intensities.

Mixed-state auto-models allow us to specify non-

linear models, to take into account the spatial context,

and to introduce both symbolic information (no mo-

tion) and continuous motion values, which is of great

interest to handle dynamic textures. Furthermore, we

do not model the time-varying intensity function but the

motion measurements themselves. Thus, the designed

models are intrinsic to the motion content of the video.

Consequently, we prefer to use the term “motion tex-

ture” in that context.

We report hereafter a set of preliminary results on the

modeling of motion textures. All experiments of this

section are made with the positive Gaussian mixed-

state auto-model introduced in Section 3.3.

5.1. Isotropy and Anisotropy

We first examine how the introduced auto-models can

account for a fundamental characteristic of a homo-

geneous texture, namely spatial isotropy or spatial

anisotropy when applied to real motion textures. For the

positive Gaussian auto-models used here, see Eq. 14

for instance, the isotropy occurs if (and only if) c1 = c2.

Test experiment 1: The first dynamic texture we con-

sider represents motion from trees. Such a sample im-

age and the associated motion texture {vres} are shown

in Fig. 9. Moreover, this test motion texture from trees

is believed to be spatially isotropic.

We have estimated the full positive Gaussian model

using one {vres} map of the tree sequence. The

pseudo-likelihood estimates of the 4 parameters φ =
(a, b, c1, c2), as defined in (15), are reported in Table 1.

From Table 1, we see that the parameters c1 and

c2 are almost identical (with regard to standard devia-

tions of these estimates we have computed from sim-

ilar motion texture maps computed at other instants

of the same tree sequence). Therefore, spatial isotropy

is well reflected here by the equality between the pa-

rameters {ck}. This statement is further confirmed by

the estimated isotropic positive Gaussian model with

three parameters φ = (a, b, c). The corresponding es-

timates are given in the bottom row of Table 1. Clearly

the value of c is very close to the ck’s found above for

the full model.

Table 1. Parameter estimates: the full model (top row) and

the isotropic model (bottom row)

Full model a b c1 c2

−5.8049 3.0435 3.0568 2.9541

Isotropic model a b c

−5.7813 3.0441 3.0000
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Figure 9. Sample image of “tree” sequence and the associated map of local motion measures (white = 0; black = maximum value).

Figure 10. Sample image of the “sea-waves” sequence and the associated normal flow magnitudes map.

Test experiment 2: We next consider a motion tex-

ture from a video sequence involving sea-waves. Since

these waves are clearly oriented, we should have an

anisotropic motion texture in presence. A sample image

and the associated motion measures {vres} are given in

Fig. 10.

As in Experiment 1, we have estimated the full posi-

tive Gaussian auto-model. The parameter estimates are

given in Table 2. Clearly, the difference between c1 and

c2 is significant. Therefore, by these differences, the fit-

ted model is able to reflect the spatial anisotropy of the

considered motion texture.

5.2. Spatial Stationarity

Here, we propose to analyze another characteristic fea-

ture of motion textures, namely the spatial stationarity.

To this end and for a given texture, we divided the mo-

Table 2. Parameters of the full model for motion from

sea-waves.

Full model a b c1 c2

−7.9412 0.3697 5.7920 1.4219

tion map into 12 disjoint blocks of size 65 × 65 pixels

each. We then fit the full positive Gaussian auto-model

to each of the blocks.

Test experiment 3: We process here sea-waves im-

ages. Figure 11 shows the blocks B1 . . . B12 extracted

from a motion map {vres} at a given time instant of the

video sequence.

The estimates of the parameters for these blocks are

given in Table 3, where the standard deviations for

these 12 sets of estimates are also computed (bottom

row).

From Table 3, we can see that the 12 sets of pa-

rameters are nearly the same, taking into account the

associated standard deviations. This then confirms the

spatial stationarity believed in motion textures from

sea-waves.

Test experiment 4: We have conducted a similar ex-

periment with a motion texture from a video depicting

a river (Fig. 2). Sample blocks B1 . . . B12 of motion

textures are illustrated in Fig. 12.

The estimates of the parameters for these blocks are

given in Table 4, where the standard deviations from

these 12 sets of estimates are also computed (bottom

row).
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Figure 11. Sea-waves sequence: Set of disjoint blocks of local motion measures of size 65 × 65 at a given time instant of the sequence. Top

to bottom and left to right: B1 . . . B12.

Figure 12. River sequence: Set of disjoint blocks of local motion measures of size 65 × 65 at a given time instant of the sequence. Top to

bottom and left to right: B1 . . . B12.

An overall impression from Table 4 is that these 12

sets of parameters are significantly different, resulting

in much bigger standard deviation values as compared

to Table 4 in the previous experiment. This difference

is particularly clear between 3 block lines (of 4 blocks

each). Therefore, we can reasonably assert that the

non-stationarity of the river motion texture is correctly

reflected by different parameter estimates of the pro-

posed positive Gaussian mixed-state auto-model over

the blocks.
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Table 3. Sea-waves: Estimates of the full model for 12

blocks at a same time instant of a motion texture from

a sea-waves video. The standard deviation of these 12

sets of estimates are given in the bottom row.

a b c1 c2

B1 −9.30205 0.29694 5.87898 2.13676

B2 −9.39952 0.32878 5.46864 2.72478

B3 −9.04816 0.34152 7.23150 1.14051

B4 −9.60199 0.32897 7.33581 1.36095

B5 −8.91001 0.37100 5.65410 2.04668

B6 −7.35726 0.39963 5.74128 1.10768

B7 −7.57434 0.43946 5.24632 1.71629

B8 −7.47818 0.58794 5.08877 1.85792

B9 −8.30468 0.36271 6.36993 1.18090

B10 −7.61364 0.30174 6.41590 0.70918

B11 −8.86299 0.28625 7.59329 0.65160

B12 −8.87836 0.32870 5.83942 1.85034

st. d. 0.8220 0.0830 0.8403 0.6203

Table 4. River-sequence: Estimates of the full model for

12 blocks at a same time instant of a motion texture from

a river video. The standard deviation of these 12 sets of

estimates are given in the bottom row.

a b c1 c2

B1 −10.02623 0.36189 4.76893 3.48537

B2 − 8.39303 0.44575 5.71362 1.93230

B3 − 7.10429 0.69088 3.51732 3.46525

B4 − 5.69048 0.87768 3.22945 2.40213

B5 17.13015 0.11962 21.95125 10.82028

B6 8.17958 0.11417 13.38513 7.91897

B7 8.27053 0.10669 13.18007 8.31032

B8 8.18484 0.12814 13.56948 8.01166

B9 −11.78903 0.11195 9.79198 1.06964

B10 8.04156 0.07512 13.68093 7.89088

B11 − 3.50982 0.09938 11.51522 −4.15503

B12 −12.91980 0.11302 4.74714 5.13039

st.d. 10.1118 0.2690 5.6741 4.1530

6. Conclusion

For analysis of mixed-state observations such as mo-

tion measurements in an image sequence, we have in-

troduced a new class of random field models, namely

mixed-state auto-models. This approach is made pos-

sible by extending Besag’s one-parameter auto-models

to the multi-parameter case. We have provided a care-

ful construction of these models as well as a detailed

discussion about their basic properties.

We have proposed a special mixed-state auto-model

relying on a positive Gaussian distribution for the con-

tinuous component. This model was first explored via

several simulation experiments where the model is

proven to be able to reproduce important texture char-

acteristics such as density, contrast, granularity or spa-

tial orientation. The performance of the model is further

experimentally validated by analyzing different motion

textures from real images of natural scenes.

Although the adopted positive Gaussian model

(with the four-nearest-neighbour system) of Sec-

tion 3.3 seems somewhat crude, our experiments

proved that important texture characteristics like

spatial isotropy or anisotropy, as well as spatial sta-

tionarity or non-stationarity can be correctly reflected

by the model parameters.

There are several unanswered questions which need

further investigations. First, from a theoretic point

of view, the convergence of the pseudo-likelihood

estimators has to be established. Also, some effi-

cient Monte-Carlo simulation algorithms of mixed-

state auto-models have to be designed in the vein of

the theory of Markov random fields.

Secondly, as for the analysis of motion textures we

proposed here, it is clear that the adopted positive

Gaussian model need to be improved. A first possibility

is to enrich spatial correlations with a larger neighbour

system, typically a eight nearest-neighbours system. A

second possibility that we are currently considering is

to include non zero-mean Gaussian or non-Gaussian

distributions for the continuous component of mo-

tion measurements. Such richer family of distributions

would probably further improve model fits for various

motion textures. In particular, spatial correlation be-

tween continuous motion values will be taken into ac-

count as well. Furthermore, it is worth mentioning the

possibility to adapt the mixed-state modeling to other

type of motion measurements like the signed normal

flow {vn(p, t)} or the dense optical flow{�v(p, t)}.We

will also exploit this non-linear modeling framework

to investigate issues such as the classification or the

segmentation of motion textures in videos.
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Gwenaëlle Piriou was born in 1976. She received the Ph.D. degree

in signal processing and telecommunications from the university

of Rennes, France, in 2005. She is currently an assistant professor

with the computer science department of university of Rennes. Her

main research interests are probabilistic motion modeling in image

sequence, recognition and detection of dynamic content and temporal

textures.

Jian-feng Yao recieved the Ph.D. degree in Applied Mathematics
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