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ABSTRACT

This paper describes a method for separating moving objects
from temporally varying background in time-lapse confocal
microscopy image sequences representing fluorescently tagged
moving vesicles. A temporal linear model is considered for
background modeling whose parameters are robustly estimated
using asymmetric M-estimators combined with a bias-variance
trade-off criterion. Furthermore, we propose an original ap-
proach for automatically detecting moving objects in the im-
age sequence. Experimental results demonstrate the interest
of this proposed method which can be relevant for biological
studies from image sequences.

1. INTRODUCTION

Time-lapse confocal microscopy is now a popular technol-
ogy in biomedicine and biophysics for the analysis of small
moving objects at sub-cellular or molecular levels. Several
applications in biology are concerned with the acquisition of
sequences of 2D images or 3D volumes representing small
fluorescently tagged particles with highly variable velocities.
Objects of interest can be vesicles moving in the cell medium.
Even if the medium is not directly tagged with fluorescent
proteins, (undesirable) large structures belonging to the back-
ground are still visible in the image sequence. Accordingly,
several tasks such as detection or tracking of moving vesi-
cles require to distinguish the tagged particles from the back-
ground.

In video image sequence analysis, the detection of moving
objects is usually easier if a background subtraction procedure
is applied [1, 2]. However, in the case of images showing
fluorescently tagged particles, the global image intensity can
vary slowly along time. This can be due to several physical
phenomena such as photo-bleaching or diffusion of fluores-
cent proteins within the cell. Therefore a stationary model
for the background is too restrictive and the moving particles
(e.g., vesicles) would not be successfully detected. However,
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we have conducted some experiments showing that the inten-
sity variation w.r.t. time can be captured by a linear model
for each pixel, since we are dealing with sequences of lim-
ited length. This modeling provides a compact representation
of a background intensity dynamics. It can be described by
two maps representing the parameters of the linear model for
each spatial location. In addition, the involved parameters are
spatially correlated and this must be taken into account in the
estimation process. Let us mention that the proposed method
could be applied to non linear intensity models as well.

In contrast to Bayesian methods our method is local and
follows a point-wise adaptive estimation framework [3, 4].
We do not either model the objects as usually done, but we
only assume that they correspond to bright spots against the
background.

The remainder of the paper is organized as follows. In
Section 2 the image model is introduced. The proposed esti-
mation method is then described in two steps. In Section 3,
we first address the problem of estimating background lin-
ear model considering separately temporal signals. An adap-
tive asymmetric estimator is proposed especially in order to
take into account the form observed signal. In Section 4, the
spatial coherence of the temporal linear models is introduced
into the estimation process through the bias-variance trade-off
criterion. In Section 5, we present how we select the points
belonging to the background. In Section 6, we report exper-
imental results which demonstrate that we can separate the
moving vesicles from the slowly varying background. This
method has been applied to the analysis of the influence of
the Rab6 proteins on the intra-cellular traffic. Fluorescently
tagged proteins allow the localization of vesicles propelled by
motor proteins along with a network of microtubules.

2. IMAGE MODEL

The following image sequence model is considered
f(x, y, t) = a(x, y) + b(x, y)t + u(x, y, t) + ε(x, y, t) (1)

where f(x, y, t) denotes the intensity observed at pixel (x, y)
and time t, the two coefficients a(x, y) and b(x, y) varies with
the spatial image position pi = (x, y). u(x, y, t) is a positive



function that describes the intensity of moving vesicles and
ε(x, y, t) is an additive white Gaussian noise. In the sequel,
we will use the subscript i to denote the spatial position pi,
and accordingly (1) can be stated as

fi(t) = ai + bit + ui(t) + εi(t). (2)

3. PIXEL-WISE ESTIMATION OF THE
BACKGROUND MODEL PARAMETERS

We first deal with the estimation of parameters ai and bi for a
single temporal 1D signal. Let us point out that that this esti-
mation has to be performed several millions of times (for each
image point). Accordingly, the estimation procedure must be
very fast. Moreover, vesicles have an erratic behavior and
sometimes stop for a long time. Then, prior motion detection
can not be used here to extract the objects from the back-
ground. Our background estimation will then be based on the
image intensity only. Since we must not be affected by the
presence of moving vesicles, we will resort to a robust esti-
mation framework.

3.1. Robust estimation

The two parameters ai and bi are estimated by minimizing a
robust error function:

E(ai, bi) =

n
∑

t=1

ρ (fi(t) − (ai + bit)) , (3)

where n is the number of signal samples, ri(t) = fi(t)−(ai+
bit) is the residuals and ρ(.) is a robust norm function. A local
minimum is obtained by using the iterative re-weighted least
squares (IRLS) procedure.

The choice of the robust function ρ is usually driven by
the noise probability density function [5]. In our case, the
overall noise is the sum of two components: ui(t) and εi(t)
as defined in Section 2. To take into account that ui(t) usually
takes high positives values (vesicles appear as bright spots in
the images), we adopt an asymmetric robust function (Leclerc
estimator [6, 7]) plotted in Figure 1a and defined by:

ρ(z) =

{

1 − exp(z2/λσ1) if x ≤ 0,
1 − exp(z2/λσ2) otherwise. (4)

The scale σ2 factor can be estimated by applying a robust least
trimmed squares (LTS) estimator to the pseudo-residuals de-
fined as [8] : si(t) = (fi(t + 1) − fi(t))/

√
2, where the co-

efficient 1/
√

2 insures that E[si(t)
2] = E[fi(t)

2]. The scale
factor σ1 is estimated by using the variance of the residuals
given by the least mean squares estimator obtained at the ini-
tialization. We just point out that, in region where there is no
moving vesicles, σ1 and σ2 are found almost equal. Finally,
λ is chosen in the range [1, 3].

As a matter of fact, the proposed estimator is biased [7]
but the bias is small and simulations proved that the L2 risk is
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Fig. 1. (a) Asymmetric Leclerc robust function. (b) Regres-
sion using an asymmetric robust function in the case of a real-
istic simulation. Comparison with a symmetric Leclerc func-
tion. The asymmetric estimator (red) fits perfectly the ground
truth (green) while the symmetric function provides biased
result (dotted line).

smaller when an asymmetric cost function is used and when
the data are corrupted by an additive positive signal. Figure 1b
shows that the proposed estimator is able to deal with heavily
contaminated data and outperforms the symmetric Leclerc M-
estimator.

3.2. Confidence matrix

An accurate estimation of the confidence matrix for the es-
timated parameters is needed for the subsequent steps de-
scribed in Section 4. We use the approximation proposed in
[5] to compute the estimation covariance matrix:

Ĉi =
P

n
t=1

wi,t(ri(t))ri(t)
2

P

n
t=1

w2

i,t(ri(t))

(
P

n
t=1

wi,t(ri(t)))2
×

(
∑n

t=1 wi,t(ri(t))
∑n

t=1 wi,t(ri(t))t
∑n

t=1 wi,t(ri(t))t
∑n

t=1 wi,t(ri(t))t
2

)−1

(5)
where ri(t) = fi(t) − (ai + bit) and the weights are given
by w(z) = ρ′(z)/z. Unlike the expression given in [9], the
approximation given by Eq (5) is not asymptotic and yields a
better estimation of the covariance matrix when n is small.

4. ESTIMATION OF THE BACKGROUND MODEL
PARAMETERS WITH SPATIAL COHERENCE

We now introduce spatial coherence to design a regularized
estimation of the parameters ai and bi. This can be accom-
plished by adopting the bias-variance trade-off framework [3,
10, 11, 4]. Instead of using just one temporal intensity sig-
nal at pixel pi to estimate the parameters of the background
intensity model as described in Section 3, a set of temporal
1D signal, collected in a neighborhood of the pixel pi is now
exploited in order to take into account the spatial coherence
of the parameters. We will define a content adaptive specifi-
cation of the neighborhood considered at each point pi. For
this purpose, a set of nested space-time tubes is introduced
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Fig. 2. (a) Set of nested tube {Ti,k}k=1,··· ,3. (b) Bias-variance
trade-off principle. When the diameter of the tube increases,
the bias increases and the variance decreases. The optimum
is achieved when the bias and the variance are of the same
order.

as plotted in Figure 2(a), by taking the pixels in a growing
square spatial neighborhood of pi. Each tube Ti,k at pi can be
parametrized by its diameter φi,k, k ∈ [1, .., K]:

Ti,n = {f(xj , yj , zj) : |xi − xj | + |yi − yj | < φi,k} (6)
In order to select the optimal diameter of the space-time tube,
we propose to minimize the point-wise L2 risk of the para-
metric estimator defined as E[(θ̂i − θi)

2] where θi = (ai, bi)

is the true parameter pair and θ̂i its corresponding estimator,
at position pi. The L2 risk can be decomposed into two parts:
squared bias and variance. As shown in Figure 2b, while the
diameter φi,k increases with k, the bias increases too. This
can be explained by the fact that, the data cannot be described
any longer by a unique model. By taking more and more data
points, the variance decreases. This behavior, also called bias-
variance trade-off [3], is exploited to detect the minimum of
the point-wise L2 risk which is equal to the sum of square
mean and variance.

For each diameter φi,k , new estimates of the background
model parameters θ̂i,k and the associated covariance matrix
Ĉi,k are computed with the same procedure as the one de-
scribed in Section 3 but using all the data from the considered
neighborhood. It can be shown that the bias variance trade-off
can be expressed with the following test [4] (here a vectorial
version is given):

n − 2 + 1

2n

(

θ̂i,k − θ̂i,k′

)>

Ĉ−1
i,k′

(

θ̂i,k − θ̂i,k′

)

< η (7)

for every 0 ≤ k′ < k, the diameter of the tube is increased and
the estimation process is continued. It can be demonstrated
that the threshold η can be defined as a quantile of a Fisher
distribution of parameters 2 and n − 2 − 1.

5. BACKGROUND/OBJECT SEPARATION

In this section, we propose a method to decide which pixels
belong to the background. It can be considered as an indi-
rect but effective way to detect the objects of interest in the

image sequence. We follow the approach described in [12]
and which was applied the differential analysis of micro-array
data. It is based on a penalized likelihood criterion that aims
at estimating the mean and the variance of a Gaussian vector
assuming some of the components are zero. We suppose that
the number of zero components as well and their positions are
unknown. In our problem, the zero components are associated
to the background while the other components represent the
objects. Formally, we have:

Z = m + e, e ∼ N (0, Σ), (8)

where Z is the vector of n residuals defined by z(t) = fi(t)−
(ai + bit), assumed to be independent, and e is an Gaussian
white noise of variance τ 2In. The expectation E[Z] = m =
(m1, .., mn)> and the variance τ2 are unknown. Moreover,
k0 component of m are assumed to be non zero. The data are
re-ordered such that |zj | > |zj+1| and the following model
collection M = {M1, ..., Mn} is considered:







M1 = (z1, 0, ... , 0)>

M2 = (z1, z2, 0, ... , 0)>

Mn = (z1, z2, z3 ... , zn)>
(9)

The selected model is the one minimizing the following pe-
nalized likelihood criterion [13]:

J(Mj) =
n

2
log(τ̂2

j ) + n

(

c1 log(
n

kj

) + c2

)

kj

n − kj

(10)

where τ̂2
j = (

∑n

k=j z2
k)/n is the plugged-in maximum like-

lihood estimator of τ2
j . The two universal constants c1 and

c2 were calibrated in [12] and found as c1 = 2 and c2 = 4.
This method provides the set of points belonging to the back-
ground, and by taking the complementary set, we have a sim-
ple mean to detect the vesicles.

6. EXPERIMENTAL RESULTS

The described method has been applied to real image sequences
representing small GFP-tagged vesicles moving into the cell.
As a preprocessing step, a denoising procedure has been first
applied to the image sequences (Fig. 3a). The estimated back-
ground is then compactly represented by three maps. The
first one shown on Fig. 3b corresponds to the map of coeffi-
cients ai’s of the model. It represents the shape of the back-
ground at t = 0. The second one is the map of the linear
coefficients bi’s which capture the local variations of inten-
sities (Fig. 3c). The dark regions corresponds to decreasing
intensity and white the ones correspond to increasing intensi-
ties. These maps can help the biologist to analyze the dynam-
ical content of the video-microscopy image sequence. Fig. 3d
shows the maps of residuals ri(t) at time t = 75. It clearly
enhances the vesicles. Each point of Fig. 3e represents the
lowest non null absolue value |zk0

| corresponding to the back-
ground model Mk0

selected at point pi as defined in Eq (9).



(a) Denoised sequence (t = 75) (b) Map of coefficient ai’s (c) Map of coefficient bi’s

(d) Residuals ri(t)’s (t = 75) (e) Map of |zk0
| (f) Detected vesicles (t = 75)

Fig. 3. Results of the background estimation.

If ri(t) is lower than value |zk0
| at point pi, pi is considered

as belonging to the background. Consequently, the detected
vesicles are formed by the points which do not belong to the
background (Fig. 3f). The computation time on a standard re-
cent PC (3Ghz/1Go RAM) is 6 minutes for a sequence of 150
images of size 348× 260.

7. CONCLUSION
We have designed a model of image sequence for fluores-
cence microscopy. We have proposed an original and effec-
tive method to estimate the model parameters. It involves an
asymmetric robust M-estimator and the spatial coherence of
the parameters is introduced through the bias-variance trade-
off principle. Reported results demonstrates that our method
is able to decompose the sequence in two components: back-
ground and moving vesicles. The proposed framework is not
restricted to a linear temporal evolution but can be easily to
extended to other evolution models (e.g. exponential) and fi-
nally kernel regression would be able to take into account any
kind of background evolution model [7]. The decomposition
of the sequence into objects and background is promising for
the automatic analysis of the dynamical content of time-lapse
confocal microscopy image sequences.
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