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Abstract - This paper is concerned with the develop-
ment of information processing for robust detection
of target maneuvers. Indeed, the price to pay for
having good performance for target maneuver detec-
tion is to accept that the event that a target maneu-
ver will be falsely detected will be not so infrequent.
Classical remedies exist and perform satisfactorily
like the test based on consecutive exceeds. It is proved
here that this test is robust and emphasis is put on
performance analysis via Markov chain analysis. It
is then possible to derive general method for opti-
mizing the test so as to satisfy operational require-
ments.
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1 Introduction
The detection of target maneuvers is far to be a new
subject, and has been widely investigated [1], [2]. Not
surprisingly, "elementary" detection of target maneu-
vers will rely on classical methods. By "elementary",
we mean here a test directly based on filter outputs
(i.e. innovations). However, operational requirements
lead to consider a specific problem. The probability
that a target maneuver be falsely detected, throughout
a certain duration, must be bounded above.
This has a fundamental importance, especially for
surveillance applications where the observer (e.g.
a plane) has to monitor a large geographic area,
including a considerable number of targets in its field
of view. Only a few of them are maneuvering, so it is
necessary to develop a system ensuring both a good
maneuver detection and a low level of false target
maneuver detection at the system level.

A comparison of performances of four maneuver
tests show us the good performance of a simple test
based on consecutive threshold exceeds. This test
is clearly defined at an information processing level,
since inputs are the outputs of a test, itself designed
at a signal processing level. This comparative study
shows that this test is robust and reliable. Robustness
is essentially inherited from the level of elementary
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Pfa required at the signal processing level. Thus, it
is no longer necessary to use dubious assumptions
about the tail distribution, a definite advantage for
our problem. The success of this architecture is based
on exploitation of elementary detection trends (see
[3]).
In order to analyze the performance of this test, a
Discrete Time Markov Modeling (DTMC) is def-
initely the convenient framework [3]. It is then
possible to take benefit of classical DTMC results
for investigating the temporal behavior of this test
(e.g. occupancy time-distribution, inter-visit times)
and, thus, to adjust (signal processing) parameters
(Pfa) so as operational requirements be satisfied. Not
surprisingly, this is a very general setting which can
lead to numerous extensions, briefly described here.

This paper is organized as follows. The
state/observation modeling is presented in section 2,
followed by a section devoted to hypotheses testing.
The aim of section 4 is to analyze the behavior of mul-
tiple exceeds tests via DTMC behavior. Some exten-
sions are presented in section 5.

2 State/observation space mod-
elings and filtering

Throughout this paper, the following state-observation
modeling will be considered:

Xk+1 = Fk Xk + Uk +vk
Zk = Hk xk +Wk.-

(1)

Thus xk is the system state "at time-period k" xk =

(rXk,ryk, VXk, vyk)T, which represents the target rela-
tive (Cartesian) position and velocity. The vector Uk
represents the target controls, while Vk is a small dif-
fusion noise (cov(vk) = Qk ). The transition matrix is
simply:

F = (1 ) @ Id2 . (2)

The matrix Hk links the state xk with the observation
zk, while Wk is the measurement noise (white Gaussian
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noise, coV(Wk)= Rk). Here, we have:

Hk xk = (rXk, ryk )T , ( Hk = H), (3)
which means that the target position is completely ob-
served. Let us also briefly recall the Kalman filter equa-
tions:

STATE EXTRAPOLATION

Xk+lk = F Xklk + UkSC
Pk+lk = F Pklk FT + Qk,
MEASUREMENT PREDICTION

Zk+l1k = Hxk+1k; Rk+1lk =HPk+llkHT
INNOVATION

A
'k+1 = Zk+1- Zk±+1k
cov(Ik+1) = Zk±+11k = H Pk+1lk HT + Rk+1
KALMAN GAIN: Kk+1 = P+1k H (COv(Ik+1) 1
PREDICTED STATE AND ASSOC. COV.
Xk+1lk1 = Xk+11k + Kk+1 k±+1,
Pk+llk+l = P+1k Kk+1 cov(Ik+±) K±+1

(4)
This is the filtering framework we shall use through-
out this paper. However, this is not a strong limitation
since our framework for robust maneuver detection can
be extended to more complex state/observation, in-
cluding non-linear measurement. This would simply
result in changes in the calculation of the transition
probabilities.

3 Testing hypotheses
We restrict here to a test between two hypotheses (say
Ho and H1). The target is not-maneuvering (Ho), or
maneuvering (H1). Let us emphasize that our principal
concern is the evaluation of the probability of falsely
detect a target maneuver, so Ho will be our primary
subject of interest. The tests we shall consider are
presented in the table below.
without alternative with alternative
Windowed X2 test
Forgetting factor test Test with alternative
Test on consecutive exceeds

3.1 Testing without alternative
Let us define the reduced innovation residue k, by:

A
£ IkT (cov(Ik )) 1 Ik (5)

Under the assumption that it is the right state space
model which is used in the Kalman filter, then the
reduced innovation residue k follows a (central) x2 law
with 2 degrees of freedom (the observation dimension).
Temporal variability of this test can be attenuated via
a forgetting factor, i.e.:

A E ak-i
i=i

(6)

where a is a constant (O < a < 1), which represents
the forgetting factor. Alternatively, it is possible to
consider the (sliding) window test, i.e. test for:

ikLAk A E: £(k) >t .

i=k-L
(7)

From previous considerations, we know that Ak is
Chi-square distributed, with 2L degrees of freedom.
Typical values of L are {4, 6, 10}.

Another test is to consider an associated test with
two consecutive threshold exceeds, i.e. a maneuver
is said detected if the following condition is fulfilled
{Ak > t,Ak+l > t}, with L 1 (or another value).
This test is important from an engineering viewpoint.
In this setting, temporal trends of elementary maneu-
ver "detections" are considered [3] and we shall see that
"despite" its simplicity, it has very interesting features.

3.2 Testing with alternative
Assume now that the target is maneuvering at the
time period m, then an additional (deterministic)
input (say u) is added in the state equation (see eq.1).
Let us consider two filtering hypotheses. For, the first
one (Ho) there is no target maneuver (state noted x),
while for the second (H1) a maneuver has occurred
(notation: xv). For the two hypotheses, the Kalman
filter makes the assumption that the target does not
maneuver. This is justified since our aim is target
detection, not input estimation [2].

Considering the difference of innovations (noted
Ai I), associated with these two target models, classical
calculations yield:

A
AI(m+ 1) I(m+ 1)- IV(m+ 1),

H(m + 1) u(m),
and more generally:
\I(m + n)

n -n-j
H , FiF (Id -K(m + I)H)) u(mT+ 1)

j=l L1=1
(8)

Considering this alternative, we see that it is neces-
sary to detect the target maneuver as soon as possible.
So we have to manage two conflicting objectives: de-
lay the decision for maximizing the probability of de-
tection, reduce the delay for avoiding divergence [10].
The compromise between these antagonist objectives
will now be analyzed via elementary statistics.
First, consider a sliding window of size L, the sum of
the associated innovations is:

k

DL (k) = 1(j).
j=k-L+1

(9)
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Under Ho, DL (k) is normally distributed, i.e.
k

V(0,ZL (k)), with EL (k) = E (jj- 1). Un-
j=k-L+l

der H1, DL(k) has the same covariance, but its mean
is different:

AE [DL(k)~Hl] =VL(k) -E AI(j),
j=k-L+1

and standard deviation (or). Sampling from f-(x) is
done via a classical method, i.e.

1) -sample from U[0, 1]{yIQ)},
2) -if y(Q) < I- draw with: JV(m, r),
3) -if y(%) > 1-y draw with: ( 2 exp( x-m)

(14)
So, measurements are simulated via this algorithm,
for various values of the iy parameter.

where AI(j) is given by eq. 8. Elementary calculations
yields the general form of the alternative test:

H1
2VL4j(k) EL (k) DL(k) VL (k) EL (k) VL(k) >

Ho
(11)

where t is a threshold. Furthermore, the probabilities
of false alarm (Pfa) and detection (Pd) are easily cal-
culated, i.e.:

Pd =erf(6k )

wh{ Sk T(k) L1(k) VL (k) (12)

The above formulas allow us to compute ROC curves.
In general, inputs are unknown though they are used
in the alternative test (see eq. 8). Inputs are deduced
from a constant load turn modeling. The unknown
parameter is the radius of the turn, itself depending of
the type of ship (400 to 1000 m). So, the turn model
can be adapted or not. However, simulation results
prove that this does not affect greatly the alternative
test.

3.3 Simulation results

We are now using the previous calculations for inves-
tigating the behavior of the maneuver tests. Since our
principal concern is test robustness, we shall clearly
focus on this aspect. Actually, the Gaussianity of the
innovation 'k is questionable. So is our assumption
about the x2 distribution of the residue E, (see eq.5).
This is not too important as far we are not considering
thresholds on the tail, but it may be a fundamental
concern for "traditional" tests. So, heavy tails seem
a realistic measumrenert modeling. To that aim we
consider the following (tail) density modeling:

The probability to falsely detect a maneuver

We have considered various scenarios (see fig. 1),
differing only by target parameters. The target is not
maneuvering.

speed range
large ships 18 knots 70 -50 n.m.
medium ships 18 knots 40 -25 n.m.
fast ships 35 knots 30 -20 n.m.

Figure 1: The general target-observer scenario

The value of the state noise variance is 5 10-4
rn/s2. Our aim is to investigate the threshold values
in order to have an empirical probability to falsely
detect a maneuver (epfd): 0.009 < epfd < 0.011, for
1000 independent trials. So, in the following table, it
is the value of the elementary Pfa which is presented1.

__0 jy 0.1
large ships
Alternative test L = 6 1.10-4 7.5 10-5
X2 L = 6 7.5 10-5 X

Two consec. exceeds 5 10-3 3.7 10-3
fast ships
Alternative test L = 6 1.8 10-4 1.5 10-4
X2 L = 6 3.2 10-4 1. 10-5
Two consec. exceeds 11. 10-3 6. 10-3

Values of the elementary Pfa

f-a(x) = (1-') F(m,T)--ay ( ) exp (- r)
(13)

In the above equation, the 'y parameter represents a

contamination factor (e.g. 0.1, 0.5), and for a given
value of the parameters m' and or are adjusted so

that f- (x) remains a density with prescribed mean (m)

The results of the forgetting factor test are not
presented in this table, since it is impossible to find
an acceptable value of Pf,a whatever the forgetting
factor a. We note also the lack of robustness of the
x2 test, opposite to the alternative test. Finally,

1X means that it is impossible to find an acceptable value of
Pf a
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the two consec. exceeds test is robust and have the
definite advantage to require only large value of
the elementaryPfa for assessing the required global
performance level. This will motivate incoming
developments.

Under the same conditions, the detection per-
formance is analyzed via the delay for detecting
the target maneuver. Results are summarized in
the following table. We note that the perfor-
mance of the two consec. exceeds test can com-
pete with the best one (the adapted alternative test).

ay 0 T 0.1
large ships
Alternative test L = 6 29.05 s. 29.5 s. s
Two consec. exceeds 34.5 s. 37.3 s.
fast ships T 1
Alternative test L = 6 21.0 s. 20.5 s.
Two consec. exceeds 21.5 s. 22.6 s.

Delay for target maneuver detection

4 Modeling the detection-
confirmation process

In this section, we shall consider the
detection/confirmation process i.e. maneuver de-
tection based on multiple threshold exceeds. First let
us briefly recall principal definitions of Markov chains.

4.1 Discrete time Markov models
(DTMC)

We consider a random process, indexed by time
{Xn, n > 0}, defined on a finite space S. This pro-
cess has the Markov property if it fulfills the following
(Markov) property:

Wix C S2,
P (Xn+i = j|Xn = i: Xn-i: .. Xo) = P (Xn+i = VXn

(15)
Such process is called a Discrete Time Markov Chain
(DTMC). An homogeneous DTMC satisfies further-
more:

P (Xn+i jX = i) P (Xi ;j ) n > 0 .

(16)
A

For an homogeneous DTMC, we simply define Pi,j=
P(Xn+l = Xn= i) (Vn > 0) as the probability of
transition from state i to state j. These transition
probabilities are represented by a square matrix P,
called the transition matrix:

P

P1,1

P2,1

PNJ

P1,2
P2,2

PN,2

P1,N
P2,N

PN,N

(17)

For the problem we have in mind, we first restrict to
a 4-dimensional state (N = 4) and adopt the following
notations:

A
Pt : Pt P(En > t) : probability of threshold exceeding,
[0] event: {£ < t} under threshold,
[1] event: {E, > t} over threshold,

(18)
where n is a time index. The random variable X can
take 4 states, according to a certain threshold t:

state: (1): [0,0] event: {£ < t, E±+ < t}
two consecutive non-detections,
state: (2) : [0,1] event: {£ < t, Ei+ > t}
a non-detection followed by a detection,
state: (3): [1,0] event: {£ > t:,E+ < t}
a detection followed by a non-detection,
state: (4) : [1,1] event: {£ > t, E±+ > t}
two consecutive detections.

(19)

This detection/confirmation process is illustrated on
fig. 2. In the above definition the terms detection

6, I Ithreshold t

time (n)

Figure 2: The one-level
detection/confirmation process

threshold exceeding

is quite "freely", used instead of threshold exceeding
(non-detection instead of under threshold). Note that,
under the Ho hypothesis and thanks to the Kalman
Afiil)r. properties, the sequence {fE} is i.i.d. [8]. The
transition diagram of this DTMC is illustrated by fig.
3, while the associated 4 x 4 transition matrix P2 stands
as:

I

P2 =
0

1O

Pt Pt 0 0
0 1- Pt Pt

Pt Pt 0 0
0 1- Pt Pt/

(20)

Considering fig. 3 and the transition matrix P2,
we see that this Markov chain is aperiodic and irre-
ducible, ensuring existence of a stationary distribu-
tion [5]. State 4 is especially relevant for our analy-
sis. It corresponds to two consecutive detections (i.e.
event: { E > t, E+i > t}). As the elementary prob-
ability of detection Pt is directly depending on the
threshold t, our main concern will be to adjust t so
that have an acceptable rate of false detection. A sim-
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Similarly, let us consider the (asymptotic) stationary
distribution 7r, then 7r is a solution of the balance equa-
tion:

1r = r P2

Not surprisingly, it is easily shown that:

7r = ((1 Pt)2, Pt (1 Pt), Pt (1 Pt), P2)

(26)

(27)

We are now in position for studying the behavior of this
detection/confirmation setup. To that aim, we shall
recall and use general results about renewal theory for
DTMC [5], [7].

Figure 3: The DTMC diagram

ple calculation shows that:

/)(1 Pt Pt) Pt Pt) pt
2 (1 pt)2 pt( pt) Pt Pt) Pt

2 =p(1(pt)2 Pt ( Pt) Pt Pt) P2

pt)2 Pt( Ptt -Pt) P2
(21)

The structure of the matrix P22 is quite particular and
is a characteristic feature. Indeed, we see (from eq.
21), that:

P2 =[1Pt) 21, Pt lpt) 1, Pt(1Pt) 1, pt21
where: 1 (1,1,1, 1)T

(22)
Clearly, P21 is a rank one matrix for n > 2. Thus, P22
admits the following factorization:

P22 = V WT,
where:
V= (- Pt) 1,
WT = (1 -Pt, Pt, Pt, p/(1 Pt

Furthermore, it is easily shown that WT P2
Thus, we have:

P23 = (V WT) P2,

= V (WT P2)
= (V WT) = P22.

And more generally, whatever n > 4 we have P212
P22 p2n-22 P24 = P22, yielding the following result:

Proposition 1 Whatever n > 2, the followwing equal-
ity holds true:
Dn _D2P2 P22.

So, whatever the initial distribution XO, described by
the row vector XO = (X1, X2,X3, X4), we have (Vn > 2):
X0 (n) = Xo p2 = Xo p22

(Xo V) WT,
(1 -Pt) (Xo 1) WT

=1

(25)

(1 -Pt) WT,

( (1 _ Pt)2 *Pt (1 -Pt), Pt (1-Pt')P )

4.2 Behavior of the detection/ confir-
mation process

We are now investigating the behavior of the
detection/ confirmation process via renewal analysis.
First, let us define the occupancy time. Let Nj(n) be
the number of times the DTMC visits state j over the
time span {0,1,... , n} and let:

Pi,Aj(n) = E (Nj (n) Xo = i ,

M (n)-A( /pi,j (n) ) l<i<4, 1<j<4 -
(28)

Then, the following classic property is insightful.

Proposition 2 (Occupancy Times f5I,f7I) Let a time-
homogeneous DTMC, with transition probability P.
Then, the mean occupancy times matrix is given by:

n

M(n) = E pr
r=O

(29)

(23) This result is upsettingly simple, as is its proof that
we recall here only for the sake of completeness. Fix i
and j, and define the r.v. Zn as an indicator function;

WT. i.e. Zn = 1 if Xn = j and Zn = 0 if X1 :t j. Then
Nj(n) = Zo+ Z, + * * * + Z, hence we have:

(24)
Hi,j (n)

n

E (Zr X0
r=O
n

E: P (Xr IXo
r=O

i) (30)

i) (31)

n

r=O

Thus, for our application, we have simply 2:

M(n) = Id + P2 + (n -1) P22
so, that we have:

11,1(n) = 2 -Pt + (n- 1)(1 Pt)2
/14,4((n) = l+pt + (n -1)p2t
/11,2(1n) = Pt + (n -I)Pt(I -Pt),
/11,4((n) = (n1) (1 pt)2, etc.

2Id: identity matrix

(32)
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From eq. 32, we see that the ,u,i (i 1, , 4) are the
predominant terms, while U4,4 is quite smaller, as far
as Pt is relatively small. To complete this analysis, let
us consider now the stationary distribution of Nj(n).
To that aim, we define the occupancy of state j, by:

Axli E (Nj (n)) .(3
n ,oo n +1

Then the following property is especially relevant:

Proposition 3 Occupancy distribution If the oc-
cupancy distribution wr exists, it satisfies

ki S 7Fi Pi,j and: j (34)

So, for an irreducible DTMC, occupancy distribution
and stationary distribution are identical. For instance,
we have here 7F4 = pt.

Another important concern is the study of the mean
first passage time, which is simply defined by [5]:

T =min {n> 0: Xn= N },
mi=E (TXo =i),

Let us emphasize the consequences of these elemen-
tary calculations. For instance, assume that we can
tolerate a false detection rate of say 15 min. (900
sec.), then Pt (900)-1/2 0.0033. Then, under the
non-maneuvering assumption we have seen that the
normalized innovation In follows a central Chi-square
distribution with two degrees of freedom. An adapted
threshold value is easily found by inverting the cumu-
lative density function of this Chi-square distribution,
yielding t = 6.8. We see that the adapted threshold is
not situated on the tail of the Chi-square distribution,
which means that the two consecutive detection test
is quite robust.

Consider now a slight modification of the DTMC. If
a maneuver is detected, then the DTMC remains on
(the absorbing) state 4. This is illustrated on fig. 4.
The associated transition matrix P2 reads:

[0]

(35)

where the DTMC states are indexed from 1 to N.
Then, the following result holds true.

Proposition 4 ( Expected First Passage Times /51)
The mean first passages times mi , 1 < i < (N -1)
satisfy the followwing set of equations:

N-1

Tni=I+ E pij T1j <i<N
j=l

1. (36)

Solving eq. 36, for N = 4, yields:

1
ml = m3 = 2- M2

Pt
(1 + Pt)

2Pt

P2 ( °
1(37)

Figure 4: The DTMC diagram: state 4 absorbing

Pt Pt
0

Pt Pt
0

0
1
0
0

0
Pt Pt

0
1

(40)

Thus, we note that m1, m2 and m3 are similar and
rather important for small values of Pt. This analysis
has the real advantage to be quite simple, while pro-
viding insightful result. However, it cannot be adapted
to the inter-visit time ( mN ) which is is clearly zero,
from its definition. So, we have to turn to another
classical result.

Proposition 5 (Mean Inter- Visit Times /51, /41) As-
sume the DTMC is irreducible and let 7r its stationary
distribution, then:

1
j,j = ,1< 'j<N.

Thus, we have here:

1 1
m4,4= 2 -

74 Pt

(38)

The aim of this modeling is to investigate the proba-
bility that the system be at least one time in state
4. However, this chain is obviously reducible, so that
a stationary distribution does not exist. State 4 is ob-
viously an absorbing state. Admitting an initial state

distribution, say Xo, we have to calculate XnXoP=2.
In order to obtain an explicit expression, the following
block-factorization is especially useful:

p (Q v 1P2 (T Ii)
where Q is a 3 x 3 matrix, and yields:

pn =
Vn

2 - oT I

(41)

(42)

If we are able to provide an explicit expression of Qn,
(39) there is no need to calculate the vector v, since the
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matrix P' is stochastic. The eigensystem of the Q
matrix is quite simple, i.e.:

eigenvalues
A1 =0

A2 =1-Pt
A3= 1 1-Pt
d (1+2pt-

+ 2
-3 P)

eigenvectors
UT = (-1Pt I1,O

UT = i (1 Pt) 1

u T = i1 ( APt),1

From which the following equality is deduced3:

Q =2 (u2u2 )+A3 (U3u ) (44)

Therefore, the coefficient P2 (1, 4) is simply:

Pn (1,4) 1 An (eTu2) (u 1) , (45)

_3n (el U3) (U3 1
el = (1, O, 0)

Consequently, admitting an initial distribution X
(1, 0, 0, 0) of the system state, the probability that the
state 4 has been attained at least at one time within
the temporal interval [0, n] is:

Pn (1, 4) I -An+l (2A2 + 1
12 2 +((I-

+An+l ( 2 3 + 1
3 2A + (I

Pt
, (46)Pt)

- Pt

Pt)

5 Extensions
We shall consider now some extensions of the
detection/confirmation process. The first one is to con-
sider that detection/confirmation is based on multiple
consecutive threshold exceeds. In the second one, we
shall consider a multi-level detection/confirmation pro-
cess.

5.1 Detection/confirmation based on
multiple consecutive threshold ex-
ceeds

Let us now consider a test based on three consecutive
threshold exceeds. The probability Pt is again the prob-
ability of exceeding the threshold t. The events [0] and
[1] are similarly defined. The random variable X can
take 8 states, according to a certain threshold t:

state: (1) : [0, 0, 0] state: (5) : [1, 0, 0]
state: (2): [0,0,1] state: (6): [1,0,1]
state: (3) : [0,1,0] state: (7) : [1,1,0]
state: (4) : [0,1,1] state: (8) : [1,1,1]

(49)

while the associated 8 x 8 transition matrix P3
stands as (block-matrix):

Q/Q 0'

P3= Q' 0

k0 Q'J (50)
with:

A second order expansion give us P' (1, 4)
(n + 1)p2 + P'. Coming back to the previous
results, we take Pt 0.011. Then, we obtain
P400 (1, 4) 0.012,a value which corresponds to the
second order expansion and our previous simulations.

Furthermore, let us denote Na the number of visits
to the transient states, before visiting the absorbing
state (state 4 here), then we have:

P(Na = n) = XO Qn-1 (Id -Q) 1, n > 1. (47)
Hence, the expected number of visits to the absorbing
state is simply:

Q)-l 1ER(Na ) = ,: n> nP(Na = n) = XO (Id
with:
(Id -Q)- 1 = (1+Pt 1 l+Pt)

(48)
As Pt is rather small for our application, we thus have
E(Na) 1, whatever the initial distribution of the
transient states.

3after normalization of the u2 and U3 vectors

Q ° Pt Pt 0 0

0 1 -Pt PtJ

and 0 is a 2 x 4 matrix composed of 0. By the same
way, it is proved that:

P3 [ (1pt)31,(1 pt)2 ptl,(1 pt)2 ptl

(1-pt)p21,(1 pt)2ptl, (1 pt)p21,

(1-pt)pt2,pt3
(51)

Thus, it is again a rank 1 matrix. So, the reasoning we
have used for analyzing P2' can be straightforwardly
extended for investigating the properties of P3'.
Not surprisingly, we obtain that P3n= En+2 > t, what-
ever the value of n > 3. More generally, and within the
same detection/confirmation process4, we have.

Proposition 6 Whatever the value of the integer q
(q consecutive detections), the followwing property holds
true:

V n > q: Pqn = pqq, (52)

4Which means that a target maneuver is said
detected/confirmed if q consecutive detections have occurred
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and the matrix P q is a rank one matrix whose station-
ary distribution is given by its first row; i.e. :

ir [(I q (1p_t)q-Pt, (1- pt)ptq , pt]
(53)

State q corresponds to q consecutive detections (i.e.
event: { n+1 > t, n+2 > t, £n+q > t}). Consid-
ering the properties of the Pq matrix, the mean inter-
visit time for this state is calculated by the same way,
yielding:

mq,q Ptq (54)
So, we see that the threshold can be considerably low-
ered by considering greater values of q, which could be
interesting for improving early maneuver detection.

remarkable property. More precisely, we have:

P4 = [(1_ p)2 1,pi(I p) 1,P2(I -p) 1,
PP(I-P) l,P2(I-P)1,pP2 1
PP2(I -P2) 1, PlP2 1,P2 1

(59)

Thus, P4 is again a rank 1 matrix, admitting the fac-
torization P4 = V WT. Remarkably, we have also:

WT p W.
so, that: (60)
P5 = (V WT) P = V (WTP) = p4

Considering eq. 60, we see that the sequence Pn is
stationary for n > 4, which allows us to straightfor-
wardly extend the previous results to this multi-level
detection/confirmation modeling.

5.2 Multi-level detection/confirmation 6 Conclusion
Consider now that the threshold exceeding is quantized
on multiple levels [10]. For instance, we consider two
thresholds t, and t2 (tl < t2) and define the following
events:

[0| 0 < E, < ti ; [1] tl<E <t (55)[2] t2 <.

Dealing with two consecutive threshold exceeds, we
model the detection/ confirmation process by a 9 states
DTMC, as described below:

state:
state:
state:
state:
state:

(1) : [0, 0] state: (5) : [2, 0]
(2) : [0, 1] state: (6) : [1, 1]
(3) : [0,2] state: (7) : [1,2]
(4) : [1, 0] state: (8) : [2, 1]
(9) : [2, 2]

State 9 may be viewed as previously, but states (3)
or (7) may have a specific meaning. For instance, these
states may be associated with various levels of prealerts
which may be useful for tasks like sensor management
or threat evaluation. Knowing the distribution of E,
under Ho and considering that they are i.i.d. under
this hypothesis, the following probabilities are easily
calculated:

A

Pi P({t < En < t2}) P([1]),
P2 P( {t2 < n ) P([2]), pAP1 +P2

(57)
With this definition, the DTMC transition matrix P is
easily calculated yielding (first row):

f P(1, 1) 1-P1-P2 P(1,2) P1
l P(1, 3) = P2 P(1, 4) = = P(1, 9) = 0 .

(58)
Other rows are calculated in the same way. More im-
portantly, the powers of the matrix P still exhibit a

A novel architecture for detecting target maneuvers
has been presented. This architecture is defined at
the system level and can use any tracking approach.
Main advantages are robustness and satisfaction of op-
erational requirements. It basically exploits temporal
trends in threshold exceeds. The DTMC framework is
the backbone of our analysis and is sufficiently general
to handle a variety of extensions.
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