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Abstract - This paper addresses the problem of
optimizing the navigation of an intelligent mobile
in a real world enviroanment described by a map
The map is composed of features representing nat-
ural landmarks in the environment. The vehicle is
equipped with a sensor which allows it to obtain
range and bearing measurements from observed land-
marks durinq the execution. These measurements
are correlated with the map to estimate its position.
The optimal trajectory must be designed in order to
control a measure of the performance for the filter-
ing algorithm used for the localization task. As the
mobile state and the measurements are random, a
well-suited measure can be a functional of the ap-
proximate Posterior Cramer Rao Bound. A natural
way for optimal path planning is to use this mea-
sure of performance within a (constrained) Marko-
vian Decision Process framework. However due
to the functional characteristics, Dynamic Program
ming method is generally irrelevantt To face that, we
investigate a learning approach based on the Cross-
Entropy method.

Keywords: Markov Decision Process planning estima-
tion, Posterior Cramer Rao Bound, Cross Entropy method.

1 Introduction
In this paper we are concerned with the task of finding
a plan for a vehicle moving around in its environment.
That is to say, reaching a given goal position from an
initial position. In many application, it is crucial to be
able to estimate accurately the state of the mobile dur-
ing the execution of the plan. So it seems necessary to
couple the planning and the execution staues. One way
to achieve that aim is to propose trajectories where
the performance of the localization algorithm can be
guaranteed. This problem have been well studied and
in most approaches the environment is discretized
and described as a graph whose nodes correspond
to particular area and edges are actions to move
from one place to another. Some of these previous
contributions address the problem within a Markov
Decision Process (MDP). Such approaches also use a
graph representation of the mobile's state space and
provide theoretical framework to solve it in some cases.
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strained MDP framework, as in[ ]. Our optimality
criterion is based on the Posterior Cramer-Rao bound.
However the nature of the objective function for path
planninu makes it impossible to perform complete
optimization of MIDP with classical means Indeed,
we will show that the reward in one stage of our
MIDP depends on all the history of the trajectory.
To solve the problem, the Cross-Entropy originally
used for rare-events simulation seemed a valuable tool.

The paper is organized in hve parts. In the second
section we introduce the problem in details. Section
three deals with the Posterior Cramer-Rao bound and
its properties. We also derive its formulation for our
problem and the criterion for the optimization. In sec-
tion four, we make a short introduction of the Cross-
entropy and show how to apply it to our needs. Fi-
nally, in section five the results of a first example are
discnssed.

2 Problem statement
Let Xk, Ak and Z respectively denote the state of
the vehicle, the action and the vector of observations
at time k. We consider that the state vector Xk is the
position of the vehicle in the x-axis, y-axis, so that
Xk A (k,yk). The action vector Ak (ax, ay) is
restricted to the set {-d, 0,+d x -d, 0,+d} with
d C R+ given constant.
So, the state {Xk} motion is governed by a dynamic
model and an initial uncertainty, given by

X07 =o- A(Xo, PO)
Xk+1 = f(Xk, Ak) +Wk Wk A(O, Qc)

where {wLk} is a white noise sequence and the symbol
means distiributed according to

The known map M is composed of Nf features
(Tni)r <i<N, with respective position (x, yi) C R2
At time k, due to the sensor capabilities, only a
few landmarks can be observed. So, the observation
process depends on the number of visible features.
Moreover, we do not consider data association and
non detection problem for the moment. That is to
say, each observation is made from one landmark
represented in the map. If we denote Iv (k) the indexes

In the present paper, we will also use the con- LThe sylnbol A. mealis nornial
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of visible landmarks at time k, the measurement
vector received at time k is :

Zk = kZk(j)}jI,(k)
with V C 1, (k)

Dk())zk_

(x a ) + (Yk Yj)2 kf )Tr j

arctan( Yj, .A-) Ok + (J)X£-X 3

where Ok is the global mobile orientation, k(j)}
and {k(j)} are considered as white Gaussian noise
and mutually independent. Nevertheless, a more com-
plex modelinc must be considered if we want to take
into account correlated errors in the map or observa-
tio3tilons

Fiaure 1: MDP grid with states (red crosses).
jectories with (solid line) and without(dashed

E 1]constrained headings change.-44

2.1 A Markov Decision Process model
with constraints

As in [ , we hirst formulate the problem within the

Markov decision Process framework. Generally, a

Mlarkov Decision Process is dehined by its state and ac-

tion sets, the state transition probabilities and reward
functions. In our case, the state and action spaces are

discrete and finite. Indeed the map is discretized in
N -N x N locations and one action is dehned as

a move between two neighbor points (fiaure 1), where
VK, and Vy are the number of grid points in both axis.

At each point, the mobile can choose one action among
N,0. So we can model the process with:

* S- {1 N the state space.

-A 1, N0} the action space.

T1 (a) Pr(sk -I = Sk s, ak a) the tansi-

tion function
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The actions are clockwise numbered from 1 ( go up

and right") to 8 ("go up"). The above matrix
indicates that if action 1 is chosen at time k, only
actions 1, 2, 3, 7 and 8 can be selected at time k + 1.
Vloreover, the mobile orientation Ok is restricted to

8 values directly linked with the orientation of the
elementary displacements

*R,, (a) the reward or cost function, associated

with transition from state s to state s', for an

action a.

Finding the optimal path between two states si and

sf is equivalent to determine the best sequence of ac-

tions or decisions Va = (a*,..., a*) allowing to simul-
taneously connectina them and optimizing a (global)
criterion. In our application, we consider only 8 possi-
ble actions for one state (figure 1). Each of them can

be selected except for the points located on the border
of the map and in places where obstacles can be found.
Moreover, we take into account operational constraints
on the mobile dynamic between two following epochs
as in It is possible to do that by defining one au-
thorized transition matrix 6(ak, ak 1 ) which indicates
actions that can be chosen at time k according to the
choice at time k -1. For example, if only [- 2 2]
headings controls are allowed, such a matrix can be
expressed as below:

2e.g. Markov Random Fields
3e.g. colored noise or biases

In the Markov Decision Process context when
the reward is completely known, optimal policy can

be computed usina Dynamic Programming technique
or similar algorithms such as Value Iteration and

Policy Iteration [ ]. They are based on the principle
of optimality due to Bellman. However, applicability
of this principle implies some basic assumptions of

the cost functional. It is not the case in our context
where the criterion of optimality depends on the
Posterior Crame'r Rao Bound (PCRB) matrix which
is introduced in next section. Indeed, as shown in [ ],
any cost functional must satisfy the "Matrix Dynamic
Programming Property" to guarantee the principle of
optimality. For the "determinant" functional used in
our work, this property is not verified [ ].

3 Poster'ior Crame6r-Rao Bound

3.1 Definition

In this section, we briefly remind the properties of the
Crame'r-Rao bound for estimation problem. Let X(Z)
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be an unbiased estimator of an unknown random vector
X c Rd based on random observations Z. The PCRB
is given by the inverse of the Fisher Information Matrix
(FIM) F and measures 4 the mimimum mean
square errors of X(Z)

E{(X(Z) -X)(X(Z) X)T} S F- (X, Z) (1)
where "A _ B" means (A -B) is positive semi-

dehinite and*

F-E AZx log (Px (X, Z))j

* is the second-order partial derivatives operator.

* p, is the joint probability density of (X, Y).
For the ltering case, it can be shown that

E X,

TVk
Xk v 11k Il(Vk)f-k a

with Xk the state at time k, k Xk(Z(l k)7 V )
the estimate based on Z(i k) all measurements observed
until time k and Vak = {a,,..., ak} the sequence of cho-
sen actions until time k.

3.2 T'ichavsky PCRB recurs'ion
A remarkable contribution of Tichasky et al was to
introduce a Ricatti like recursion for computing Jk:

Jk+l D22 -D21(j D)-D12kl=Lk - k tJ k J k (2)

where

D12
k

D21
k

D22k

Ef-AX'109 (P(Xk+ SXk))I
F _AXk log(P(Xk+lXk))t Xk ° PA+l),

[D 12jTLk

EF{_ AXk 7log P(Xk+lXX)}+

Ef _AXk+ log (P(Zk+l Xk+ 1) }

The relation iS valid un er the assumptions that the
mentioned second-order derivatives, expectations and
matiix inveises exist. The initial information matiix
Jo can be calculated from ito. The measurements only
contribute through the D22 term. The dynamic being
linear, the following equations are easily derived:

Jo
Dkl
D12

PO-, (8)

where

a
k j) aZk (j)
k K

a9Xk aYk

(9)

and Rk+1 is the covariance matrix of the combined
visible observations. We assume that this matri only
depends on the current position. Obviously, there is no
explicit expression for Jk+l (Z) because the observation
model is nonlinear Consequently it is necessary to
resort to Monte Carlo simulation to approximate it

. draw NV (Xi)i<l<N,, according to r0,

* until I = ddraw (X/ I)i<I<N,, from (X)i
ccording to the prediction euuation 1)I
afor each X compute Io eX 1

H(X j) I(Xk+lJan k+l

1<N

then

For our observation model the matrix H(Xk,j) is as
follows:

H(Xk,j)
'Xk

G

y y
dk-

(Yk-Yj )
d k;

(Yk -Y) \

d' /
(10)

where dk = (Xkj )2 (X yj 2 . The approximation
can then be obtained

I
Jk+l rl- E EJkk

tYi

3.3 A criteron for pathplann1ing

We are interested in huding one or more paths con-

nectiue two points which minimize a functional 0 of

the PCRB along the trajectory We consider two

functionals which depend on the determinant of the
history of approximated PCRB {J0, Jj}. The
determinant is linked to the volume of the error ellipse
of the position estmate -

* minimizing a weighted mean volume along the tra-

jectory

K

1(JOK) Ewk det(J 1)

k=O

* minimizing the final error of estimation

[Q JliT

The observations contribution Jk+ (Z) is given by
the following expression

Jk(Z) = EHk{ , (Xk j) H(Xk
jI (Xk+ )

4Actually, this is a lower bound which rnay be reasonably
acctirate

02 (JO:K)= det(Jki )

In fihure 2, 90% error ellipses are computed and drawn
along two trajectories of the same length. The size of
the ellipses decreases rapidly for the trajectory which
goes towards the area with landmarks.
Since a classical optimization method is irrelevant, we
propose to investigate a learning approach based on
the innovative Cross Entropy (CE) method developed
by Rubinstein et al. I ].

T 1H(X'1+1J) R- H(X"k k+l k+10
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Fieure 2. example of 90% error ellipses for 2 trajecto-
ries of the same length (features are in black (o))

4 Cross Entropy algorilthm
In this section we briefly introduce the Cross Entropy
algorithm The reader interested in the C E method
and its conver&ence properties should refer to

4.1 A short introduction
The Cross Entropy method was first used to estimate
the probability of rare events. A rare event is an event
with very small probabilities. It was then adapted for
optimization assumrinc that sampling around the opti-
mum of a function is a rare event.

4.1.1 Simulation of rare event

Let X a random variable on a space X, p its probabil-
ity density function (pdf) and 4f a function on X Sup-
pose, we are conteirned with estmtinrctrrr 1-y the prob-
ability of the event F, {x X p3(x) > y} with 7y
RP F- is a rare event if 1(7) is very small. An unbiased
estimate can be obtained via Crude Monte Carlo sim-
ulation. Given a random sample (XI, aXv) drawn
fro,m px thit estirmateisbilit~f -Yth ntF 0rCXlAt >-d it

it1

Minimizing D(q, 7T, A)) is equivalent to maximize
qxq*(x) In 7r(., A)dx which implies:

A* E ar max E (I j4r)
A A y] ln (x, A)) (11)

Th6Pecomutatiuonof te exctxapttiui i 11i us also
be done using importance sampling. So we need a
change of measure q drawing one sample (l XN)
from q and estimate A as follows:

N

A c arg max L 1 (xi
i=1

Px(xi) ln F(xi,A))q(xi)X
(12)

The family {f( A) A lAl must be chosen to eas-
ily solve equation Na.Natural Exponential Families
(N E F) are especially adapted. however, q is not
known in equation 12. The C.E algorithm tries to
overcome this difficulty by constructing adaptively a
sequence of parameters ( Yt > 1) and (A t 1) such
as .

* F is not a raire event.

* F',+ 1is not a rare event for 7(, At).

More precisely, given p 0, 1
* choose A0 such as 7r(., Ao) p,.

* draw (XIt xN) from F(., At-,).
* sort in increasing order (O(XI), ,(XN)) and

evaluate the I p)) quantile -yt

* compute At as

IV

i= I

~~1 liiirQ17Q Ax )n
7T(x:i At-,)

,A))

*if ,t< y set t = t + I and go to step 2. Else
estimate the probability of F with

I 1 IC1V
I (-0 =- 1 10(xi)

i=l

Y
Px (,i)

-F(xi,7At )

For rare event, the variance of I(-y) is very high and
it is necessary to increase N to improve the estima-
tion. The estimate properties can be improved with
vcariance minimization technique such as importance
sampling where the random sample is drawn from a
more appropriate probability density function q. It
can be easily shown that the optimal q* pdf is given
by I [f(x) > y]p(x)/(y). Nevertheless, q* depends
on 1(y) which needs to be estimated. To get round this
difficulty, it can be convenient to choose q in a family
of pdfs {7 (., A)\A C A}. The idea is to find the optimal
parameter A* such as D(q*, 7(., A)) is minimized where
D is the Kullback-Leibler "pseudo-distance":

D(p, q) = Epln J p(x)ln p(x)dx-J (x)ln p(x)dx

This is the main C.E al&orithm but other versions can
be found in [ ].

4.1.2 application to optimization

The C.E. was adapted to solve optimization problem.
Consider the optimization problemrr

maxOWLXe
(13)

The principle of C.E for optimization is to translate the
problem 13 into an associ'ated stochastic problem and
then solved it adaptively as the simulation of a rare
event. If -y* is the optimum of 0, F* is generally a rare
event. The main idea is to define a family n (., A))A c A

5pdfs fA () = c(A)eA t(x) l()

'1'1

1 0-

8~

6i

2 3 4 5 6 7 8 9 1 0 1 1

OX * )
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and iterate enough the C.E algorithm snch as -yt
-y* to draw samples around the optimum. Moreover,
one has to notice that unlike the other local random

search alcaorithm such as simulated annealina which

used the assumption of local neighborhood hypothesis
dtGeCEmetlhud tries t,o solve globally tlhe optlilmzatilon
problem.
To apply the C.E approach, we need to.

dehine a selection rate p.

choose a well-snited fanily of pdf ( A) A

* define a criterion to stop the iteration.

Once these elements are given the algorithm for the

optimization proceeds as follows

1. Initialize A = A

2. Generate a sample of size N (xt)l<iv from

r(.,At), compnte (0(xtiv1<N and oidei them

nllalzet--A

from smallest to biggest Estimate y as the (1 -p)

sa3mnple ercentile

3). update At with :

I '

At+, =arg max -Z LtSI;Tr[O(A NL
i=1

](in1(4A)
(14)

4. repeat from step 2 until convergence.

5. assume convergence is reached at t = t*, an op-

timal value for can be done by drawing from

7(., At*)J-
(,A

4.2 Appllcatlon to the path plann,ing
task

In this part we deal with the application of the CE
methods to our task. First of all, it is necessary to

define the random mechanism (T(., A)SA c A) to gener-
ate sample of trajectories More precisely we want to
generate sample which.

* start from si and end at sf.

* respect the authorized matrix 6(ak, ak+1), Vk.

* have whole length less than Tmaw

One way to achieve that is to use a probability matrix
Psa = (Psa) with s {1,..., N} and a {1,...,Na}
defining the probability of choosing action a in state s.

Psa is a NS x Na matrix (in our case Na = 8).

I

Psa =

\\PNS P,

91L2 ... P1L7 P18

Nv2 ..PN 7 PNvs8)

with Vs the s5h row P, () is one dimensional discrete
probability such as:

8

P,(i) =p j,i i, ,8withEpsi = I

i=1

So, to solve our problem we are concerned with the

optimization of the Nl\l Nla parameters (p, I) usina the
C.E. algorithm.

4.2.1 Trajectory generation

At each iteration of the G.E algorithm, we want to

generate from P,sa N trajectories of length T T1mal
starting from si and endina within sf and drawn in acT

cordance with the authorized transition rmatrix 6. Let
hrst introduce .

A(§' ak_1 Sk , (ak =a,aCk- I 1}

* Pf(.) such as,

Va A( P)ak P-7 k-1:Psa - <
k-1

CIsc Psa = 0;

A(s, ak iS the admissible actions at time k in state6)
li . .S

Sk knowing that a was chosen at time k - I

and P (.) is the normalized restriction of P5(.) to
A(s 'k

We proceed as follows for one iteration for the G.E.

Table 1 Path aeneration principle

4.2.2 Updating the Psa matrix

At each iteration t of the Cross Entropy algorithm,
given the N trajectories (X(j)) <j<N (startina from si
to sf and respecting to the matrix 6) generated via the
algorithm described in table 1, we can evaluate each
one by calculatina the PCRB sequence and applying
our functional Ok (k c {1, 2}). Then the parameter t
can be evaluated. One can update Psa by solving 14.
Let x0U) = (si,ai 4S, a&, ..., Si a4 Sf ) be one tra-
jectory, we have:

k-1

ln r(j)x Psa) I {X(j) Xsaa}l lnPsa (16)
i=O

while ( N)
k 0, set S si
generate one action ai according to
PSO and apply it.
set k = + I anldT 1
until Sk -sf do

- compute A(s, )k-Wk-1EJ;2k-f

ifA(s~a4k_ 0
k~~~~~~~~~- generate one action ak c A(sk ak k-

according to Pk and apply it.
else stop and set
- setk = k T I and T T 1.
if T > Ta stop and setj j
else ietrn

x(j) (sj,a aaC Sf)a
1 1
a -1,k-. J

jjl
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where I is the indicator unction and f

means that the trajectory contains a visit to state s

in which action a is taken. Since for each s, the row

P, (.) is a discrete probability, 14 must be solved under
the condition that the rows of Psa sum up to 1. This
yields to solve the followincg problern usinLg LagranLge
multipliers t l< s>N1

N

max LImin(k))>tXlTt7>(x Psa) (17)
Psa ,--- VN,

.j=1
Oa/ =8

1tIvU 2. (Psa
s=l a=l

1))

with in 7r( (j) Psa) given in 1 We can derive after

differentiation with respect each parameter P

{1I Ns a C {1, , 8}) the following equation.

-1-ts Psa
N

7tTZ -1 [Ok(XJ)) _- 7t] -1[fXJ sa 1
j=1

After summing over a =1, , 8 and applying the con-
.. 8dition LaiP a 1, we can obtain j, and the final

updating formula.

N

uST k(X( )) -)t] {Jx( XSJ (18)

J=1

EN f k(X(A)<) t}1 I {x(j) C X 1a
Psa r s =z.

NI {Ok(XT(J) < -Yt} *1 {X(j) E Xs}
(19)

where {x(E) Xs } means that the trajectory con-

tains a visit to state s. For the first iteration, vs, PSW
is a uniform probability density function.

5 S'imulat'ion results

The algorithm has not been widely tested and only
one simple scenario is introduced in this paper. In
this example the map is defined on -2 12 x -2 12
with 6 mj point features (figure 3). The state space

is discretized in NV = 15 X 10 states. The initial and

terminal states are respectively in positions (0, 0) and
(10 10).

mn0 m= .2 m m4 f25
x 1.6 2.3 3.7 4.2 5.2 7.6
y 0.8 5.1 6.4 7.8 8.7 8.2

Table 2: the features of the map.

For the mobile dynamic model, the elementary dis-
placement d is equal to 1 and the noise process covari-
ance is defined by:

PO = 22,

Fi&ure 3: The maximum likelihood optimal solution
after the first iteration of the CE. Starting and terminal
states ( ) and map features ()

The mobile can only apply 2' 2 j headings controls
at each time. Thus the 6 rnatrix is exactly the same
defined as in section 2. Only trajectories with length
T < 30 are admissible.

For the observation model, a landmark nij is visible at
time k provided that.

<k(4rmin kr (J 'amax
I < Omax

with rmn = 0.001, rma 2 and maw =40 de&.

The noise variance cr on the range and cr on the bear

ing are the same for all features and are time indepen-
dent

or 1. 5 10-3i o-@ 0.5 deg.

The computation of the PCRB matrices was

performed with N u1000 to estimate the observation
term Jk(Z). For the optimization step, the Cross
Entropy aluorithm was implemented with 1000 itera-
tions, N = 5000 admissible trajectories and a selective
rate p = 0.1. That is to say, the 50 best samples
are used for updatinl the psa probabilities Figure 4
show the optimal trajectory found by the alcorithm
at iteration 1000 for the performance function

Qk = T-22Vk >

where 22 is the identity matrix of size 2 x 2 and o72

0.05.
Figure 4: The most likely optimal trajectory found by
the algorithm for 1.
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5.1 Analys'is

As expected (fi&ure 4) the mobile is guided toward the
area with landmarks in order to improve its perfor-
mance of localization. Mloreover, it operates to keep
the landmarks visible while the maneuvers (6) and the
time constraints (TMaJx) allow it. We can also notice

that the aluorithrn con,verge rapidly to a solution. To
illustrate that we present in the next figure the evo-

lution of parameters and the minimum value of 03
(or the maximum of i) at each iteration of the CE
algorithm (figure 5).

Fi&ure 5: Evolution of (solid line) and the minimum
value of the functional (dashed line).

When we look at precisely after convergence the den-
sities (P (.f) for all s in the optimal trajectory we can

notice that some of them are not a dirac probability
law. In some state, The "most likely trajectory" opti-
mal trajectory is composed of 30 states, only 23 have
their associated P equivalent to a dirac probability
law . Table 3 shows the probability density functions
for the others (see figure 6) In these states the al-

3 9 16 18 20

1 0.4179 0 0 0 0.8134
2 0 0.4329 0.5903 0.7988 0

3 0 0.5671 0 0 0

4 0 0 0 0 0.1866
5 0 0 0 0 0

6 0 0 0.4097 0 0

7 0 0 0 0 0

8 0.5821 0 0 0.2012

Table 3: probability densities functions.

gorithm converge toward a multi-modal density. Two
actions can be chosen but with different probability.
We can notice that this behavior are concentrated on

state where maneuvers can be done to increase the time
to observe the landmarks.

12

10

-2 0 2 10 12

Figure 6. state (squares) with pdf different from a dirac
after converuence.

6 Conclus'ions and perspect'ives
In this paper, we presented a framework to solve a path
planning task for a mobile with the . The problem was
discretized and a MIarkov Decision Process with con-

straints on the mobile maneuver was used Our main
oal was to find the optimal trajectory accordinu to a

measure of capability of estimating accurately the state
of the mobile during the execution. Functionals of the
Posterior Cramr-Rao Bound was used as the criterion
of performance. The main contribution of the paper
is the use of the Cross Entropy algorithm to solve the
optimization step as Dynamic Prouramminu could not
be applied. This approach was tested on a simple first
example and seems to be relevant

Future work will first concentrate on the complete im-
plementation of the algorithm and applications to more
examples. More analysis on the probability has to be
made. We will also investigate a continuous approach

and try to approximate the computation of the obser-
vation contribution to the PCRB, which is time con-

suming. The tuning of the Cross-Entropy to our spe-

cific task was not studied, some experiments have to
be carried out based on device given in Finally, we
want to consider more complex maps such those used
in Geographical Information Systems and take into ac-

count measurement models with data association and
non detection problem

References

[1] S. Paris, J-P. Le Cadre Planninu for Terrain-
Aided Navigation, Fusion 2002, Annapolis (USA),
pp 1007-1014, 7-11 Jul. 2002.

[2] J.-P. Le Cadre and 0. Tremois , The Matrix
Dynamic Programmting Property arnd its Imnplica-
tions.. SIAM Journal on Matrix Analysis, 18 (2):
pp 818-826, April 1997.

16 N/ /k°

- > r + 18 + 0
O0

~~+ t + + 2p

__0 + + + + t

0

-0.05

-0. 1_

-0.15 _

-0.2

-0.25 ._

-0.3;.

-0.35 ._

-0.4

-0.45 L = max(-¢1)

-0.5 j- j j j0 100 200 300 400 500 600 700 800 900 1000

II~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I I I I I I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

8

6

4

2

0

-2

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 12:48 from IEEE Xplore.  Restrictions apply.



[3] R. Enns and D. MIorrell, "Terrain-Aided Navi-
uation Using the Viterbi Aluorithm," Journal of
Guidance, Control, and Dynamics, vol. 18, no. 8,
pp. 1444-1449, November-December 1995.

[4] P. Tichavsky, C.H. Muravchik. A. NehoraiPoste-
rior Cramer-Rao Bounds for Discrete-Time Non-
linear Filtering,IEEE Transactions on Signal Pro-
cessing, Vol. 46, no. 5, pp. 1386-1396, May 1998.

[5] R. Rubinstein,D. P. Kroese The Cross-Entropy
method. An unified approach to Combitnatorial
Optimnization, Monte-Carlo Simulation, and Ma-
chine Learning, Information Science & Statistics,
Sprin&er 2004.

[6] de-Boer,P. Kroese, D. Mannor and R.Rubinstein
A tutorial on the cross-entropy method., 2003.
http://www.cs.utwente.nl/ ptdeboerJcec

[7] S. Mannor, R. Rubinstein, Y.Gat The Cross En-
tropy method for Fast Policy Search, Proc.of the
201h L.C on M4achine Learning, 2003

[8] R. S. Sutton and A.G.Barto, Reinforcement
Learning. An Introduction. A Bradford book,
2000.

[9] H.L. Van Trees, Detection, Estimation and Mod-
ulation Theory, New York Wiley, 1968.

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 12:48 from IEEE Xplore.  Restrictions apply.


