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Abstract - In this paper, we investigate the problem of the com-
putation of the Posterior Cramér-Rao Bound (PCRB) in the con-
text of Bearings-Only Tracking (BOT) for a manoeuvering tar-
get. The PCRB provides a lower bound on the mean square er-
ror. In a recent paper, Hernandez et al have proposed a new
approach named Best-Fitting Gaussian (BFG) model to calcu-
late the bound for Jump Markov Linear filtering problems with
a linear measurement equation. Thanks to the linear property of
the measurement equation, an exact formula for the PCRB asso-
ciated to the BFG model can be obtained via a classical Riccati-
like recursion. However, in the BOT framework, the measure-
ment equation is non linear so that we do not have a closed-form
formula. Consequently, the BFG-PCRB must be approximated
using Monte-Carlo methods. This implies a high computational
burden. We show in this paper that the BFG model associated to
the BOT problem can be computed exactly using another coor-
dinate system named Log Polar Coordinate (LPC) system.

Keywords: Bearings-Only Tracking, Manoeuvring Target,
Posterior Cramér-Rao bound, Best-Fitting Gaussian Distribution,
Performance Analysis.

Notation

BOT: Bearings-Only Tracking,

LP(C): Logarithmic Polar(Coordinates),

x∗ : denotes the transpose of matrix X,

xk: is the target state in the Cartesian coordinate system,

yk: is the target state in the LPC system,

0n: n× n matrix composed of zero elements.

ei: column vector where each component is zero except
component i which is equal to one.

Pi,j : the matrix Pi,j is defined by Pi,j = eie
∗
j

1 Introduction

In many applications (submarine tracking, aircraft
surveillance), a bearings-only sensor is used to collect
observations about target trajectory. This problem of
tracking has been of interest for the past thirty years.
The aim of Bearings-Only Tracking (BOT) is to deter-
mine the target trajectory using noise-corrupted bearing
measurements from a single observer. Target motion is
classically described by a diffusion model1 so that the
filtering problem is composed of two stochastic equations.
The first one represents the temporal evolution of the target
state (position and velocity) called state equation. The
second one links the bearing measurement to the target
state at time k (measurement equation).

As far as performance analysis is concerned, the Poste-
rior Cramér-Rao Bound (PCRB) proposed in [2] is widely
used to assess the performance of filtering algorithms, by
the tracking community ([3, 4, 5, 6]) and in particular in
the bearings-only context ([7, 8, 9]). The PCRB gives
a lower bound for the Error Covariance Matrix (ECM).
More precisely, the PCRB is the inverse of the Fisher
Information Matrix (FIM). A seminal contribution on
performance analysis is the paper from Tichavský et al.
[10]. Here, the authors noticed that only the right lower
block of the FIM inverse was of interest for investigating
tracking performance. This was the key idea for deriving
a practical updating formula for the PCRB through time.
Recently, the PCRB has been used for various sensor
management problems like automating the deployment of
sensors in [11] or determining the optimal sensor trajectory
in the bearings-only context in [12]. Moreover, PCRB
can be used to schedule active measurements in a system
involving active and passive subsystems.

Tichavský’s recursive formula is a powerful result
to compute the right lower block of the FIM inverse.
However, complex integrals without any closed-forms are
involved in this recursion. So, these complex integrals must
be approximated via Monte-Carlo methods. This approach
is quite feasible but induces high computation requirements
which highly reduces its suitability for complex problems

1see [1] for an exhaustive review on dynamic models

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 12:53 from IEEE Xplore.  Restrictions apply.



like sensor management. For instance, the aim of active
measurement scheduling consists in optimizing the time
distribution of range measurements to obtain an accurate
target state estimate. It implies to perform Monte-Carlo
evaluations of the PCRB for each policy, which would
rapidly become infeasible. In the BOT case, Brehard et
al have shown in [13] that the complex integrals required
for calculating the PCRB admit closed-form expressions
if the PCRB is derived in the Logarithmic Polar Coordi-
nate (LPC) system. Remarkably, though this coordinate
system is only a slight modification of the Modified Polar
Coordinate (MPC) system [14], it allows instrumental
simplifications in the calculation of the elementary terms
of the PCRB recursion.

However, at this time, this approach is only convenient
for the simplest diffusion model: the nearly constant
velocity target model. The aim of this paper is to show that
this approach can be extended to assess the performance
of a manoeuvering target modelized by a Jump Markov
linear model. The idea consists in using a general approach
named Best Fitting Gaussian Distribution developed in a
recent paper by Hernandez et al in [15]. In this paper, the
authors investigate the computation of the PCRB for the
Jump Markov Linear Model with a linear measurement
equation. The idea consists in approximating this model
by the best-fitting Gaussian distribution. This approach
has two major advantages. First, this bound is more
consistent with the performances of the Variable Structure
Interacting Multiple Model (VS-IMM) tracker classically
utilized. Second, the simple form of the BFG model and
the linearity of the measurement equation imply that the
Tichavský’s recursive formula becomes a standard Riccati-
like recursion so that the computation burden is small.
In this paper, the BFG approach is applied to the BOT
problem. However the non linearity of the measurement
equation implies that some terms of Tichavský recursive
formula must be approximated by Monte-Carlo methods.
We show in this paper that this problem can be avoided.
More precisely, this bound can be computed exactly and
rapidly using a coordinate system developed by Brehard
et al in [13]. More generally, this result is an extension of
[13] to a more complex diffusion model.

In section 1, the specification of the model is presented
in a general framework. In section 2, the problem of the
computation of the PCRB is investigated. The classical
method as well as the BFG approach used to compute the
bound are presented. In section 3, a closed-form PCRB for
the BFG model in the context of BOT tracking is proposed.

2 Specification of the model
Let xk be the target state at time k. We consider a jump
Markov linear equation given by the following equation:

xk+1 = Fmk

k xk + uk + wmk

k (1)

where wmk

k ∼ N (0, Qrk) and {mk}k∈N is a finite, time-
homogeneous Markov chain with transitions probabilities
πij , P(mk+1 = j|mk = i). Variable mk specifies the

target motion and uk the known relative manoeuvres of the
observer. Otherwise, we note zk the measurement received
at time k. The target state is related to this measurement
through the following equation:

zk = h(xk) + vk (2)

where vk ∼ N (0, σ2
β) and σ2

β is known. Equations (1) and
(2) form a non linear filtering problem. If h is a linear func-
tion, the posterior distribution p(xk|z1:k) can then be esti-
mated using a variable structure interacting multiple model
[6], else a sequential Monte-Carlo method [16] should be
used. The problem of the computation of the PCRB for this
general model is investigated in the following section.

3 How to compute the bound ?

3.1 Tichavský’s formula
The PCRB gives a lower bound for the error covariance ma-
trix:

ECMk , E{(x̂k − xk)(x̂k − xk)∗} (3)
< J−1

k . (4)

where x̂k is the estimate and Jk is the right lower block
of the FIM inverse. This classical result is proved in [2].
To compute Jk, Tichavský et al. have proposed in [10] a
recursive formula:

Jk+1 = D22
k + D33

k −D21
k

(
Jk + D11

k

)−1
D12

k , (5)

where D11
k , D12

k , D21
k , D22

k , D33
k are defined by:

D11
k , E{∇xk

ln p(xk+1|xk)∇∗xk
ln p(xk+1|xk}} ,

D21
k , E{∇xk+1 ln p(xk+1|xk)∇∗xk

ln p(xk+1|xk)} ,

D12
k , E{∇xk

ln p(xk+1|xk)∇∗xk+1
ln p(xk+1|xk)} ,

D22
k , E{∇xk+1 ln p(xk+1|xk)∇∗xk+1

ln p(xk+1|xk)} ,

D33
k , E{∇xk+1 ln p(zk+1|xk+1)∇∗xk+1

ln p(zt+1|xk+1)} .
(6)

Looking at eq.(1),one can remark that the PDF associated to
xk+1 given xk noted p(xk+1|xk) has not a simple form so
that D11

k , D12
k , D21

k , D22
k do not have closed-forms. A clas-

sical solution [6] consists in conditioning on the manoeuvre
sequence m1:k , {m1, . . . ,mk}. Following this approach,
we obtain

MCEk = E{E{(x̂k − xk)(x̂k − xk)∗|m1:k}} (7)
< E{J−1

k (m1:k)} (8)

where J−1
k (m1:k) is the right lower of the FIM inverse con-

ditionally to a motion sequence m1:k. Now, this quantity
can be approximated using Monte-Carlo methods.

E{J−1
k (m1:k)} ≈ 1

m
(i)
1:k

I∑

i=1

J−1
k (m(i)

1:k) (9)

where {m(i)
1:k}i∈{1,...,I} is a set of I motion sequence real-

izations. They are sampled independently using the tran-
sition probabilities πij of the Markov chain m1:k. How-
ever, there are some hard limitations to this method. First,
J−1

k (m(i)
1:k) must be computed for all i. The utilization of
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the Monte-Carlo method implies a high computational bur-
den. Second, Hernandez et al. have shown in [15] that this
bound is over-optimistic because each bound J−1

k (m(i)
1:k)

calculated assumes that the sequence of manoeuvres is
known. Consequently, Hernandez et al. have proposed a
new approach to calculate J−1

k for a manoeuvering target
which avoids these problems, this is the BFG distribution.

3.2 Best-Fitting Gaussian Distribution
The idea of the BFG distribution consists in replacing the
multiple diffusion model given by eq.(1) by a single best-
fitting model so that this model has the same mean and co-
variance under each model. One can show that the best-
fitting model associated to eq.(1) is

xk+1 = Fkxk + uk + wk (10)

where wk ∼ N (0, Qk) with

Fk =
M∑

mk=1

Fmk

k pmk
(11)

Qk = Ck+1 − FkCkF ∗k (12)

and

Ck+1 =
M∑

mk=1

[Fmk

k (Ck + εkε∗k)(Fmk

k )∗ + Qmk

k ]

−Fkεkε∗kF ∗k (13)
εk+1 = Fkεk (14)
pmk

, P(mk) (15)

The proof of this result is given in [15]. The problem is now
to compute the bound for the BFG filtering problem formed
by equations (10) and (2). The idea consists in applying
Tichavský’s formula to this filtering problem. Contrary to
Hernandez et al ’s paper, we assume that the measurement
equation (2) is non linear so that Tichavský’s formula does
not become a simple Riccati-like recursion. Now, this point
is precised. First, thanks to the linear property of diffu-
sion equation (10), D11

k , D12
k , D21

k and D22
k have closed-

forms. However, in eq.(2), h is a non linear function so
that no closed-form can be derived for D33

k . This implies to
use Monte-Carlo methods to approximate this last term and
therefore induces a high computational burden. We show
in the next section that this problem can be avoided in the
BOT context by using another coordinate system.

4 PCRB and Bearings-Only Track-
ing

We show in this section that the PCRB can be computed
exactly for the best-fitting Gaussian model in the bearings-
only context. First of all, let us precise the filtering problem
in the BOT context.

4.1 Bearings-Only Tracking
Historically, BOT is presented in the Cartesian system. Let
us define target state at time k:

xk =
[

rx(k) ry(k) vx(k) vy(k)
]∗

, (16)

made of target relative velocity and position in the x − y
plane. Classically, the jump Markov linear model is com-
posed of two types of diffusion models. The first one is a
nearly constant velocity model (mk = 1) characterized by
the following equation:

xk+1 = F 1
k xk + uk + w1

k (17)

where

F 1
k =




1 0 δk 0
0 1 0 δk

0 0 1 0
0 0 0 1


 (18)

Q1
k = σ2




δ3
k

3 0 δ2
k

2 0
0 δ3

k

3 0 δ2
k

2
δ2

k

2 0 δk 0
0 δ2

k

2 0 δk




(19)

and a constant-turn model (mk = 2) characterized by:

xk+1 = F 2
k xk + uk + w2

k (20)

F 2
k =




1 0 sin wδk

w
cos wδk−1

w

0 1 1−cos wδk

w
sin wδk

w
0 0 cos wδk − sin wδk

0 0 sin wδk coswδk


 (21)

Q2
k = 04 (22)

where δk is the time interval and w the turn rate. The term
04 is defined in the notation sequence. Of course, one can
consider a model with more than one constant turn model.
All the results presented in this paper can be used for an
arbitrary number of models.

Otherwise, zk is the bearing measurement received at
time k. The target state is related to this measurement
through the following equation:

zk = arctan
(

rx(k)
ry(k)

)
+ Vk (23)

where vk ∼ N (0, σ2
β) and σ2

β is known.
We show in this section that a closed-form PCRB for the

best-fitting model in the context of the bearings-only track-
ing problem can be derived. The idea is to use a different
coordinate system named Log Polar Coordinate system. It
has been introduced in [13]:

yk =
[

βk ρk β̇k ρ̇k

]∗
(24)

with

ρk = ln rk (25)

where βk and rk are the relative bearing and range. Let f c
lp

and f lp
c be respectively LPC-to-Cartesian and Cartesian-to-

LPC state mapping functions so that:

xk =
{

f c
lp(yk) if ry(k) > 0

−fc
lp(yk) if ry(k) < 0 (26)
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with

f c
lp(yk) = rk




sin βk

cosβk

β̇k cos βk + ρ̇k sinβk

−β̇k sin βk + ρ̇k cos βk


 (27)

and

yk = f lp
c (xk) =




arctan
(

rx(k)
ry(k)

)

ln
(√

r2
x(k) + r2

y(k)
)

vx(k)ry(k)−vy(k)rx(k)
r2

x(k)+r2
y(k)

vx(k)rx(k))+vy(k)ry(k)
r2

x(k)+r2
y(k)




. (28)

4.2 Calculating the Bound
From now, all the problem is expressed using the LPC sys-
tem. Consequently, we calculate the lower bound for the
covariance error matrix in this framework.

ECMk , E{(ŷk − yk)(ŷk − yk)∗} (29)
< J−1

k . (30)

where ŷk is the estimate and Jk is the right lower block of
the FIM inverse. Tichavský’s formula must also be rewrit-
ten in the LPC system.

Jk+1 = D22
k + D33

k −D21
k

(
Jk + D11

k

)−1
D12

k , (31)

where D11
k , D12

k , D21
k , D22

k , D33
k are defined by:

D11
k ,E{∇yk

lnp(yk+1|yk)∇∗yk
lnp(yk+1|yk}} ,

D21
k ,E{∇yk+1 lnp(yk+1|yk)∇∗yk

lnp(yk+1|yk)} ,

D12
k ,E{∇yk

lnp(yk+1|yk)∇∗yk+1
lnp(yk+1|yk)} ,

D22
k ,E{∇yk+1 lnp(yk+1|yk)∇∗yk+1

lnp(yk+1|yk)} ,

D33
k ,E{∇yk+1 lnp(zk+1|yk+1)∇∗yk+1

lnp(zk+1|yk+1)}.

(32)

We will show that all the terms in (32) allow closed-
forms. There are two reasons for this peculiar prop-
erty. First, the coordinate system includes βk. Conse-
quently p(zt+1|yk+1) = p(zt+1|βk+1) has a simple ex-
pression so that D33

k has a closed-form. Second, we
show in appendix A that gradients ∇yk

ln p(yk+1|yk) and
∇yk+1 ln p(yk+1|yk) are quadratic forms in xk, xk+1. In-
deed, we have:
{ ∇∗yk

ln p(yk+1|yk) = E∗k+1Q
−1
k FkF∗xk

,

∇∗yk+1
ln p(yk+1|yk) = −E∗k+1Q

−1
k F∗xk+1

+ 4e∗2 ,
(33)

where

Ek+1 = xk+1 − Fkxk − uk (34)

and

F∗xk
, ∇yk

{xk} . (35)

The term e2 is defined in the notation section. F∗xk
is the

LPC-to-Cartesian mapping function derivatives at time k (
f c

lp is given by eq.(27)). This term can be expressed using
the Cartesian framework:

F∗xk
=




ry(k) rx(k) 0 0
−rx(k) ry(k) 0 0
vy(k) vx(k) ry(k) rx(k)
−vx(k) vy(k) −rx(k) ry(k)


 (36)

Consequently, F∗xk
is a linear operator.

The linear property is the key point to derive closed-
forms. First of all, one can rewrite

D11
k = E

{F∗xk
F ∗k Q−1

k FkFxk

}
D12

k = E
{F∗xk

F ∗k Q−1
k FFkxk

}−Υ12
k

D22
k = E

{F∗Fkxk
Q−1

k FFkxk

}
+ Ck + Υ22

k

D33
k =




1
σ2

β
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0


 ,

(37)

with

Υ12
k = F∗Exk

F ∗k Q−1
k FExk+1 −F∗Exk

F ∗k Q−1
k FFkExk

,

Υ22
k = F∗Exk+1

Q−1
k FExk+1 −F∗FkExk

Q−1
k FFkExk

,

Ck = E{F∗Ek+1
Q−1

k Ek+1E∗k+1Q
−1
k FEk+1}

− E{F∗Ek+1
Q−1

k Ek+1}4e∗2
− 4e2E{E∗k+1Q

−1
k FEk+1}+ 16e2e

∗
2

Ek+1 = xk+1 − Fkxk − uk

(38)

and

F∗Exk
, (39)



E{ry(k)} E{rx(k)} 0 0
−E{rx(k)} E{ry(k)} 0 0
E{vy(k)} E{vx(k)} E{ry(k)} E{rx(k)}
−E{vx(k)} E{vy(k)} −E{rx(k)} E{ry(k)}




Result (37) is proved in appendix B. First, let us notice that
Υ12

k and Υ22
k can be easily calculated. We can remark that

the latter is zero if uk is zero. If this condition is not veri-
fied, E(xk) is computed for any value of k using E(x0) and
the relation E(xk) = FkE(xk−1) + uk−1. Now using one
more time the linear property of F , we prove in appendix
C that Ck can computed exactly via the following formula:

Ck = g2(Qk)− 4g1(Qk)e∗2 − 4e2g
∗
1(Qk) + 16e2e

∗
2 (40)

where

g1(Qk) =
4∑

i,j=1

I∗i Q−1
k ejQk(i, j) (41)

and

g2(Qk) =
4∑

i1,j1,i2,j2=1

I∗i1Q
−1
k P(j1,j2)Q

−1
k Ii2 (42)

× (Qk(i1, j1)Qk(i2, j2) + Qk(i1, j2)Qk(i2, j1))

where matrices {Ij}j∈{1,...,4} are defined in tab.1 and
{P (i,j)}i,j∈{1,...,4} in the notation section. We derive the
final closed-forms for D11

k , D12
k , D22

k in the three follow-
ing sections. The final algorithm is given by figure 1.

4.2.1 Closed-form for D11
k

We prove in the appendix B that D11
k given by (37) can be

rewritten

D11
k = E

{F∗xk
F ∗k Q−1

k FkFxk

}
(43)

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 12:53 from IEEE Xplore.  Restrictions apply.



Initialization of J1 and Cov(x0)
For k=1,...

1. Computation of Fk and Qk using (11) and (12)

2. Computation of Cov(xk)

Cov(xk) = FkCov(xk−1)F ∗k + Qk

3. Computation of Ck using (40)

4. Computation of Υ12
k and Υ22

k using eq.(38)

5. Computation of

D11
k =

4∑

i=1

4∑

j=1

I∗i F ∗k Q−1
k FkIjE(xk(i)xk(j))

D12
k =

4∑

i=1

4∑

j=1

I∗i F ∗k Q−1
k IjE(xk(i)xk(j))−Υ12

k

D22
k =

4∑

i=1

4∑

j=1

I∗i Q−1
k IjE(xk(i)xk(j)) + Ck + Υ22

k

D33
k =diag(σ2

β , 0, 0, 0)

Remark : constants {I1}1,...,4 and {I1}1,...,4 are respec-
tively given in Tab.1 and 2.

6. Computation of Jk+1 using eq.(31)

End For

Figure 1: Computation of the PCRB

Using the linear property of operator F , we obtain the fol-
lowing decomposition:

Fxk
=

4∑

i=1

Iixk(i) (44)

Constants matrices I1, I2, I3 and I4 given in Tab.1 are de-
rived from the definition of operator F given by eq.(36).
Now D11

k can be rewritten:

D11
k =

4∑

i=1

4∑

j=1

I∗i F ∗k Q−1
k FkIjE(xk(i)xk(j)) (45)

The terms E(xk(i)xk(j)) are the elements of the covari-
ance matrix Cov(xk). This matrix can be obtained using
the recursive formula:

Cov(xk) = FkCov(xk−1)F ∗k + Qk (46)

derived from eq.(10).

4.2.2 Closed-form for D12
k

We prove in the appendix B that D12
k given by (37) can be

rewritten

D12
k = E

{F∗xk
F ∗k Q−1

k FFkxk

}−Υ12
k (47)

where Υ12
k is given by eq.(38). Using the linear property of

operator F , we have:

FFkxk
=

4∑

i=1

Iixk(i) (48)

where I1, I2, I3 and I4 are constant matrices. Looking
at eq.(48), let us remark that that the values of these con-
stant terms depend on Fk. Tab.2 gives the values of the-
ses constant matrices for a target that can switch between
a nearly-constant velocity model and a constant turn model
as presented by (18) and (21). Now using (44) and (48),
D12

k can be rewritten:

D12
k =

4∑

i=1

4∑

j=1

I∗i F ∗k Q−1
k IjE(xk(i)xk(j))−Υ12

k (49)

The terms E(xk(i)xk(j)) are the elements of the covari-
ance matrix Cov(xk). This matrix can be obtained using
the recursive formula given by (46).

4.2.3 Closed-form for D22
k

We prove in the appendix B that D22
k given by (37) can be

rewritten:

D22
k = E

{F∗Fkxk
Q−1

k FFkxk

}
+ Ck + Υ22

k (50)

where Υ22
k and Ck are given by eq.(38). Now D22

k can be
rewritten:

D22
k =

4∑

i=1

4∑

j=1

I∗i Q−1
k IjE(xk(i)xk(j)) + Ck + Υ22

k (51)

using (48). The terms E(xk(i)xk(j)) are the elements of
the covariance matrix Cov(xk). This matrix can be ob-
tained using the recursive formula given by (46).

5 Conclusion
In this paper, we have considered the problem of calculating
the PCRB in the case of a manoeuvering target in the BOT
context. In a recent paper, Bréhard et al have shown that a
closed-form PCRB can be derived for the nearly-constant
velocity model. We have proved in this paper that this ap-
proach can be extended to the manoeuvering context via the
Best-Fitting Gaussian approach which has been proposed in
a recent paper by Hernandez et al [15].

Along this paper, strong results were shown with re-
gards to the PCRB calculation; namely we derived origi-
nal closed-form PCRB. This power result cascades down
from an original frame that consists in a new coordinate sys-
tem: the Logarithmic Polar Coordinate system. Computing
the PCRB then becomes an accurate and time-varying tech-
nique of particular interest for real-time sensor management
issues.

Appendix A: proof of eq.(33)
First, it is necessary to derive p(yk+1|yk). Bréhard et al
have shown in [13] that

p(yk+1|yk) = r4
k+1p(xk+1|xk)α(yk) . (52)
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where:

α(yk) = P(ry(k) > 0|yk)11{ry(k)>0}
+P(ry(k) < 0|yk)11{ry(k)<0} . (53)

Remarking that ∇yk
α(yk) = 0, we obtain:

∇yk
ln p(yk+1|yk) = F∗xk

A∗Q−1
k Ek+1 ,

∇yk+1 ln p(yk+1|yk) = −F∗xk+1
Q−1

k Ek+1 + 4e2 .
(54)

where

F∗xk
, ∇yk

{xk} , (55)

Ek+1 , xk+1 − Fkxk − uk (56)

Appendix B: proof of eq.(37)

Considering at D11
k , D12

k and D22
k formulas

given by eq.(32), incorporating ∇yk
ln p(yk+1|yk),

∇yk+1 ln p(yk+1|yk) given by (33), we obtain:





D11
k = E

{F∗xk
F ∗k Q−1

k Ek+1E∗k+1Q
−1
k FkFxk

}
,

D12
k = −E{F∗xk

F ∗k Q−1
k Ek+1E∗k+1Q

−1
k Fxk+1

}
,

D22
k = E

{
F∗xk+1

Q−1
k Ek+1E∗k+1Q

−1
k Fxk+1

}

− 4E
{
F∗xk+1

Q−1
k Ek+1

}
e2

− 4e∗2E
{E∗k+1Q

−1
k Fxk+1

}
+ 16e2e

∗
2 .

(57)

Now, we are dealing with the calculation of each elemen-
tary term of eq.(57) separately.

D11
k formula

Let us rewrite D11
k as given by eq.(57), we have:

D11
k = E

{F∗xk
A∗Q−1

k Ek+1E∗k+1Q
−1
k FkFxk

}
, (58)

= E{F∗xk
F ∗k Q−1

k E
{Ek+1E∗k+1|xk

}
︸ ︷︷ ︸

=Qk

Q−1
k AFxk

} .

Then using the statistical property of xk+1 given xk i.e.
N (Fkxk + ukk, Qk) given by eq.(10), we obtain D11

k for-
mula as given by eq.(37).

D12
k formula

Our aim is now to render explicit D12
k given by eq.(57). Let

us first use the linear property of F.:

D12
k = −

= 0︷ ︸︸ ︷
E

{F∗xk
F ∗k Q−1

k Ek+1E∗k+1Q
−1
k FEk+1

}
(59)

− E
{F∗xk

F ∗k Q−1
k Ek+1E∗k+1Q

−1
k FFkxk+ukk

}
.

Using the statistical property of xk+1 i.e xk+1 given xk is
a N (Fkxk + ukk,Qk), we obtain:

D12
k = −E{F∗xk

A∗Q−1
k FFkxk

}−F∗Exk
F ∗k Q−1

k Fukk. (60)

Now remarking that uk = Exk+1 − Fkxk and the linearity
of operator F , we obtain D12

k expression given by eq.(37).

D22
k formula

Starting from D22
k given by eq.(57) and using again the lin-

earity of F.:

D22
k =

= 0︷ ︸︸ ︷
E

{F∗Fkxk+uk
Q−1

k Ek+1E∗k+1Q
−1
k FEk+1

}
,

+ E
{F∗Fkxk+uk

Q−1
k Ek+1E∗k+1Q

−1
k FFkxk+uk

}

+ Ck (61)

with Ck is defined by eq.(38). Now, using again the statisti-
cal property of xk+1, we obtain:

D22
k = E

{F∗Fkxk+ukkQ−1
k Ek+1E∗k+1Q

−1
k FFkxk+uk

}

+ Ck . (62)

To end the proof, the linearity of the operator F and the
equality uk = Exk+1 − Fkxk allow us to infer eq.(37).

6 Appendix C: proof of eq.(40)
We derive here a closed-form expression for Ck. First, let
us define Ωk:

Ωk , F∗Ek+1
Q−1

k Ek+1 (63)

Using this definition, Ck given by eq.(38) can rewritten:

Ck = g2(Qk)− 4g1(Qk)e∗2 − 4e2g
∗
1(Qk) + 16e2e

∗
2 (64)

where

g1(Qk) = E{Ωk} (65)
g2(Qk) = E{ΩkΩ∗k} (66)

We can see that the main problem is to compute the two
first moments of the random variable Ωk. Using the linear
property of operator F given by (44), Ωk can be rewritten:

Ωk =
4∑

i=1

I∗i Q−1
k εk+1(i)εk+1 (67)

where constant matrices I1, I2, I3, I4 are given in Tab.1.
Now using the following decomposition:

εk+1 =
4∑

i=1

eiε
(i)
k+1 (68)

where ei is defined in notation section. We obtain:

Ωk =
4∑

i,j=1

I∗i Q−1
k ejε

(i)
k+1ε

(j)
k+1 (69)

Now using the statistical properties of εk+1 defined by
eq.(34), we derive the first moment of Ωk.

g1(Qk) =
4∑

i,j=1

I∗i Q−1
k ejQk(i, j) (70)

Now let us consider the second moment. Using eq.(68), we
obtain:

g2(Qk) =
4∑

i1,j1,i2,j2=1

I∗i1Q
−1
k P(j1,j2)Q

−1
k Ii2

× E{ε(i1)k+1ε
(j1)
k+1ε

(i2)
k+1ε

(j2)
k+1} (71)
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where P (i,j) is defined in notation section. We have now to
calculate the fourth moment of a normal distribution. One
can show

E{ε(i1)k+1ε
(j1)
k+1ε

(i2)
k+1ε

(j2)
k+1} =

Qk(i1, j1)Qk(i2, j2) + Qk(i1, j2)Qk(i2, j1) (72)

This is a classical result which can be found in [17]. We
obtain the final expression for the second moment.

Table 1: Constants I1, I2, I3 and I4.

I1 =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 I2 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




I3 =




0 0 0 0
0 0 0 0
0 1 0 0
−1 0 0 0


 I4 =




0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0




Table 2: Constants I1, I2, I3 and I4.

I1 = I1

I2 = I2

I3 = (I1δk + I3)p1+




1−cos wδk

w
sin wδk

w 0 0
− sin wδk

w
1−cos wδk

w 0 0
sinwδk cos wδk 0 0
− coswδk sin wδk 0 0


p2

I4 = (I2δk + I4)p1+




sin wδk

w
cos wδk−1

w 0 0
− cos wδk−1

w
sin wδk

w 0 0
cos wδk sinwδk 0 0
sinwδk cos wδk 0 0


p2
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