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Abstract— We here address the classical bearings-only tracking

problem (BOT) for a single object, which belongs to the general

class of nonlinear filtering problems. Recently, algorithms based

on sequential Monte Carlo methods (particle filtering) have been

proposed. As far as performance analysis is concerned, the

Posterior Cramér-Rao Bound (PCRB) provides a lower bound

on the mean square error. Classically, the PCRB is given by

the inverse Fisher Information Matrix (FIM). The latter is

computed using Tichavský’s recursive formula via Monte Carlo

methods. Recently an exact algorithm to compute the PCRB

via Tichavský’s recursive formula without using Monte-Carlo

methods have been derived by Bréhard et al. This result is

based on a new coordinates system named Logarithmic Polar

Coordinates (LPC) system. This paper illustrates that PCRB can

now be computed accurately and quickly, making it suitable for

active measurement scheduling.

NOTATION

Xt: is the target state in the Cartesian coordinates system,

Yt: is the target state in the LPC system,

ny: size of the target state (ny = 4),

<: inequality R < S means that R − S is a positive semi-

definite matrix,

Idn: n × n identity matrix,

0n×m : n × m matrix composed of zero element,

⊗: Kronecker product,

X∗: denotes the transpose of matrix X .

δ: Dirac delta function,

∆: Laplacian operator,

∇: gradient operator,

I. INTRODUCTION

In many applications (submarine tracking, aircraft surveil-

lance), a bearings-only sensor is used to collect observations

about target trajectory. This problem of tracking has been of

interest for the past thirty years. The aim of Bearings-Only

Tracking (BOT) is to determine the target trajectory using

noise-corrupted bearing measurements from a single observer.

Target motion is classically described by a diffusion model1

so that the filtering problem is composed of two stochastic

equations. The first one represents the temporal evolution of

the target state (position and velocity) called state equation.

The second one links the bearing measurement to the target

state at time t (measurement equation).

One of the characteristics of the problem is the nonlinearity

of the measurement equation so that the classical Kalman filter

is not convenient in this case. We can find in literature two

kinds of solutions to this problem. The first one, proposed

1see [1] for an exhaustive review on dynamic models



by Lindgren and Gong in [2], consists of deriving a pseudo-

linear measurement equation. Then, a Kalman filter can be

used to solve the problem. The stochastic stability analysis

of the estimates is addressed by Song and Speyer in [3].

However, Aidala and Nardone show in [4] that this approach

produces bias range estimate which can be reduced if the

observer executes a maneuver. Consequently, bias range can

be estimated as soon as it becomes observable [5]. A second

idea consists of using the Extended Kalman Filter (EKF) in

Cartesian coordinates system to solve the problem. However,

simulations show that this algorithm is often divergent due

to the weak observability of range ([6], [7], [8]). To remedy

this problem, Aidala and Hammel in [9] proposed an EK-

F using another system named Modified Polar Coordinates

(MPC) system whose one salient feature is that range is not

coupled with the observable components. This constitutes a

neat improvement. Another solution proposed by Peach in

[10] is a range-parametrized EKF, in which a number of

EKF trackers parametrized by range run in parallel. Recently,

particle filtering algorithms have been proposed in this context

([11], [12], [13]). In [14], Arulampalam and Ristic compare the

particle filter with the range-parametrized and EKF in MPC

system; while a comprehensive overview of the state of art

can be found in [15].

As far as performance analysis is concerned, the Posterior

Cramér-Rao Bound (PCRB) proposed in [16] is widely used to

assess the performance of filtering algorithms, by the tracking

community ([17], [18], [19], [20]) and in particular in the

bearings-only context ([15], [21], [22]). Moreover, PCRB has

been recently used for various sensor management problems

like automating the deployment of sensors in [23] or determin-

ing the optimal sensor trajectory in the bearings-only context

in [24].

The PCRB gives a lower bound for the Error Covariance

Matrix (ECM). More precisely, under a technical assumption,

the PCRB is the inverse of the Fisher Information Matrix

(FIM). A seminal contribution on performance analysis is the

paper from Tichavský et al. [25]. Here, the authors noticed

that only the right lower block of the FIM inverse was of

interest for investigating tracking performance. This was the

key idea for deriving a practical updating formula for the

PCRB. However, complex integrals without any closed-forms

are involved in this recursion. So, these complex integrals must

be approximated via Monte Carlo methods. This approach

is quite feasible but induces high computation requirements

which highly reduces its suitability for complex problems

like sensor management. For instance, optimal measurement

scheduling (OMS) would imply to consider a large number of

active measurement sequences and to perform Monte-Carlo

evaluations of the PCRB for each sequence, which would

rapidly become infeasible. Recently Bréhard et al have shown

in [26] that the complex integrals required for calculating the

PCRB admit closed-form expressions if the PCRB is derived

in an original coordinates system named Logarithmic Polar

Coordinates (LPC) system.

We investigate in this paper how this new result can be

used to schedule active measurements in a system involving

active and passive subsystems. Concerning OMS, The general

problem of optimizing the time-distribution of measurements

has a long history. Avitzour et al. in [27] have proposed

an algorithm to optimize the time-distribution of measure-

ments when estimating a scalar random variable by solving

a nonquadratic minimization problem. This result has been

extended by Shakeri et al in [28] to discrete-time stochastic

processes. However, this previous approach is devoted to linear

systems when the BOT is highly nonlinear. Then, Le Cadre

has proposed to use the CRB to solve the problem in [29] for

nonlinear systems where the state equation is deterministic. We

show in this paper that a closed-form PCRB can be derived

for active measurement scheduling based on Bréhard et al

framework.

In section II, the BOT problem is presented in the Cartesian

coordinates system and then in the LPC system. This original

coordinates system is the key point to derive a closed-form



for the PCRB. Calculation of closed-form expressions of the

right lower block of the FIM inverse via Tichavský’s recursive

formula is addressed in section III, in the LPC setting. Then,

the closed-form PCRB is investigated for scheduling active

measurements in section IV. In section V, simulation results

are presented.

II. FROM CARTESIAN TO LPC SYSTEM

A. Cartesian framework for BOT

Historically, BOT is presented in the Cartesian system. Let

us define target state at time t:

Xt =
[

rx(t) ry(t) vx(t) vy(t)
]∗

, (1)

made of target relative velocity and position in the x−y plane.

It is assumed that the target follows a nearly constant-velocity

model. The discretized state equation2 is given by:

Xt+1 = AXt + HUt + σWt , (2)

where:
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Wt ∼ N (0, Q) ,

A = Id4 + δtB with B =





0 1

0 0



 ⊗ Id2,

H =





δt

1



 ⊗ Id2 ,

Q = Σ ⊗ Id2 with Σ =





α3 α2

α2 α1



 .

δt is the elementary time period and Ut is the known difference

between observer velocity at time t + 1 and t.

Otherwise, we note Zt the bearing measurement received at

time t. The target state is related to this measurement through

the following equation:

Zt = arctan

(

rx(t)

ry(t)

)

+ Vt, (3)

where Vt ∼ N (0, σ2
β) and σ2

β is known.

The system (2-3) has two components : a linear state

equation (3) and a nonlinear measurement equation (3). Par-

ticle filter techniques (see [30],[31]) are, thus, particularly

2For a general review of dynamic models for target tracking see [1].

appealing. Otherwise, practical implementations of EKF-based

algorithms ([9] and [10]) use a specific coordinates system,

namely Modified Polar Coordinates (MPC). Indeed, if the

target follows a deterministic trajectory (i.e. Wt = 0 ∀t ∈

{0, . . . , T} in eq.(2)), Nardone and Aidala have demonstrated

in [7] that no information on range exists as long as the

observer is not maneuvering. So the idea consists of using a

coordinates system for which unobservable component (range)

is not coupled with the observable part. This is also the

motivation of Aidala and Hammel [9] for defining the MPC

system: [

βt
1
rt

β̇t
ṙt

rt

]∗

. (4)

Thus, the target state at time t is defined by eq.(4), where βt

and rt are the relative bearing and target range. We present

in the following section a slight modification of the MPC

system, named Logarithmic Polar Coordinates (LPC) system.

The only difference is that the second component is not 1
rt

but ln(rt). Even if this tiny difference appears very minor, it

is instrumental for deriving a closed-form of the PCRB. Let

us now derive BOT equations given by eqs.(2,3) in the LPC

framework.

B. LPC framework for BOT

We consider now that the system state Yt is expressed in

the Logarithmic Polar Coordinates (LPC) system, i.e. :

Yt =
[

βt ln rt β̇t
ṙt

rt

]∗

. (5)

As between Cartesian and MP system, we do not have a direct

bijection between Cartesian and LPC system due to arctan

function definition. We just have f c
lp and f lp

c respectively LPC-

to-Cartesian and Cartesian-to-LPC state mapping functions

such that:

Xt =







f c
lp(Yt) if ry(t) > 0

−f c
lp(Yt) if ry(t) < 0

(6)

with

f c
lp(Yt) = rt

















sinβt

cosβt

β̇t cosβt + ṙt

rt
sin βt

−β̇t sinβt + ṙt

rt
cosβt

















(7)



and

Yt = f lp
c (Xt) =

















arctan
(

rx(t)
ry(t)

)

ln
(√

r2
x(t) + r2

y(t)
)

vx(t)ry(t)−vy(t)rx(t)
r2

x(t)+r2
y(t)

vx(t)rx(t))+vy(t)ry(t)
r2

x(t)+r2
y(t)

















. (8)

Thus, using eqs.(6-8), the stochastic system given by eqs.(2,3)

becomes:

Yt+1 =







f lp
c

(

Af c
lp(Yt) + HUt + σWt

)

if ry(t) > 0,

f lp
c

(

−Af c
lp(Yt) + HUt + σWt

)

if ry(t) < 0.

Zt = βt + Vt. (9)

III. PCRB FOR STATE ESTIMATION

In this section, ”usual” PCRB given by the inverse Fisher

Information Matrix (FIM) is presented. However, this result

is true under a technical hypothesis named ”asymptotic unbi-

asedness assumption”. Recently, Bréhard et al have shown in

[26] that this assumption can be replaced by a more concrete

one named “side assumption”. This new result is reminded

here.

Let Yt and Z1:t be the target state and the set of bearing

measurements up to time t. Let Ŷt be an estimator of Yt which

is a function of Z1:t . We focus here on the Error Covariance

Matrix (ECM) at time t which is ny ×ny-matrix, defined by:

ECMt = ‖Ŷt − Yt‖
2 . (10)

First, let us recall the Fisher Information Matrix (FIM) defi-

nition.

Definition 1 (FIM): For the filtering problem given by

eq.(9); the FIM ,at time t, is denoted Jt and defined as:

Jt = E
{

∇Yt
ln p(Z1:t, Y0:t)∇

∗
Yt

ln p(Z1:t, Y0:t)
}

, (11)

where p(Z1:t, Y0:t) is the joint probability density function of

Z1:t and Y0:t.

Assumption 1 (Side assumption): For a filtering problem

given by eq.(9), the side assumption is defined as:

lim
βt→

π
2

p(βt) = 0 , (12)

where p(βt) is the probability density function of βt.

Roughly speaking, this assumption is valid if bearing mea-

surements are ”sufficiently” far from π
2 .

Proposition 1 (PCRB): Under assumption 1,

ECMt < J−1
t . (13)

IV. CLOSED-FORM FORMULATION FOR TICHAVSKÝ’S

FORMULA IN THE LPC COORDINATES SYSTEM

We have presented in the previous section a PCRB adapted

to the BOT context, given by eq.(13). Now it is necessary to

estimate J−1
t . The classical approach consists of using J−1

t

recursive formula proposed by Tichavský’s et al. However,

some terms involved in this formula must be estimated using

Monte Carlo methods. Bréhard et al in [26] have shown that

all these terms have closed-form expressions if the PCRB is

derived using the LPC system, so that J−1
t can be computed

exactly via Tichavský’s formula. In section A, Tichavský’s

recursive formula is reminded. We remark that no closed-

form expressions for the terms involved in this formula can

be obtained using Cartesian or MPC framework. Then we

present in section B the closed-form PCRB algorithm in the

LPC system.

A. Tichavský’s formula

Tichavský et al. proposed a recursive formula in [25] for

the right lower block of the FIM inverse noted J−1
t .

Proposition 2 (Tichavský’s formula): For a filtering

problem given by eq.(9), the right lower block of the FIM

inverse noted J−1
t has a recursive formula:

J−1
t+1 = D22

t + D33
t − D21

t

(

J−1
t + D11

t

)−1
D12

t , (14)

where D11
t , D12

t , D21
t , D22

t , D33
t are defined by:











































D11
t = E{∇Yt

ln p(Yt+1|Yt)∇∗
Yt

ln p(Yt+1|Yt
}} ,

D21
t = E{∇Yt+1

ln p(Yt+1|Yt)∇
∗
Yt

ln p(Yt+1|Yt)} ,

D12
t = E{∇Yt

ln p(Yt+1|Yt)∇∗
Yt+1

ln p(Yt+1|Yt)} ,

D22
t = E{∇Yt+1

ln p(Yt+1|Yt)∇∗
Yt+1

ln p(Yt+1|Yt)} ,

D33
t = E{∇Yt+1

ln p(Zt+1|Yt+1)∇∗
Yt+1

ln p(Zt+1|Yt+1)} .

Proposition 2 is proved in [25]. The problem now is to com-

pute D11
t , D12

t , D22
t and D33

t . Ristic et al. in [15] have derived

the PCRB in the Cartesian coordinates system. Matrices D11
t ,



D12
t , D22

t and D21
t have closed-form expressions using this

system. However D33
t has no closed-form, so that the authors

assumed that the process noise makes a very small effect on

the PCRB (i.e. Wt = 0) for approximating D33
t . Otherwise,

the classical PCRB has not been derived in MP coordinates

system yet. It seems that no closed-form for D11
t , D12

t , D22
t

and D21
t can be expected, though a closed-form of D33

t exists

under assumption 1. In the LPC system, Bréhard et al have

shown that all the terms have a closed-form expressions using

the LPC system. This result is presented now.

B. An algorithm for calculating a closed-form PCRB, in the

LPC system

The closed-form PCRB in the non manoeuvring case as

given in [26] is presented in fig.2. We can see that calculation

of D11
t , D12

t and D22
t is splited in two steps. In step 1, the

auxiliary matrices Γ11
t , Γ12

t and Γ22
t are computed via a linear

system. Then, D11
t , D12

t and D22
t are extracted from Γ11

t , Γ12
t ,

Γ22
t in step 2. Moreover, we can see D33

t is easily computed

using step 3.a.

V. ABOUT ACTIVE MEASUREMENTS SCHEDULING FOR

STATE ESTIMATION

We assume now that additionally to (passive) bearing mea-

surements, there is an other sub-system which can produce a

noise corrupted range measurement at time t noted dt:

dt = rt + ηt where ηt ∼ N
(

0, σ2
r

)

. (15)

where σr is the range standard deviation. However, active

measurements have a cost. The aim of OMS is to optimize the

time-distribution of active measurements to obtain an accurate

target state estimate. The following problem is considered:

Problem 1: Can we find a policy U0:t such that:

MSEln rl
< s ∀l ∈ {1, . . . , T} (16)

where MSEln rl
is the mean square error related to ln rl and

s is a fixed threshold.

Fig. 1 illustrates a policy which could be obtained. In fig.

1(a), MSEln rt
is below a threshold s all along the scenario.

(a)

(b)

Fig. 1. (a)MSEln rt
in red (b) policy, “Ut = 1” if an active measurement

is produced.

The policy U0:t is given by fig. 1(b). At different moments, a

range measurement is produced such that MSEln rt
remains

below the threshold.

The problem is that MSEln rl
can not be computed for the

different policies such that we solve the suboptimal problem

based on proposition 1.

Problem 1 bis: Can we find a policy U0:t such that:

J−1
ln rl

< s ∀l ∈ {1, . . . , T} (17)

where J−1
ln rl

is the PCRB related to ln rl and s is a fixed

threshold.

The problem is now to compute the PCRB for the different

policies. In the previous section, a closed-form PCRB has been

derived for bearings-only measurements. What happens if a

range measurement is included ? The fact is that the PCRB

has still a closed-form. First, looking at eq.(15), we can see

that only D33
t depends on the measurement equation. Then,

only the latter has to be modified. If the sensor produces a

range measurement at time t, one can show that:

D33
t =

















1
σ2

β

0 0 0

0
Er2

t+1

σ2
r

0 0

0 0 0 0

0 0 0 0

















.



where






Er2
t+1 =

[

1 0 0
]

Γ33
t ,

Γ33
t = Ω33 + Φ Γ33

t−1

(18)

We can see that Er2
t+1 is the first component of Γ33

t and we

have a simple recursive formula for Γ33
t . The computation of

D33
t when a range measurement is produced, is presented in

step3.a’ in 2 such that the algorithm presented in fig.2 is able

to calculate the PCRB for the different policies. Fig.3 show

how the policy U0:t related to problem 1’ is derived from the

PCRB.

Let us now make some remarks about the OMS algorithm

summed up in fig.2 and 3. First, the policy only depends on

the characteristics of the filtering problem given by eq.(9): the

covariance of target state σ, the measurement covariance σβ

and the initial probability density function of the state p(Y0).

You do not need the measurements to compute the policy.

Second, this algorithm is presented in the non-manoeuvring

case but can be extended using the closed-form PCRB in the

case of a manoeuvring observer presented in [26]. Finally, this

algorithm may be extended for a manoeuvring target using

[32].

VI. SIMULATIONS

We illustrate in this section the OMS algorithm proposed in

section V with the scenario presented in fig. 4. For the sake

of completeness, all the constants involved in the scenario are

presented in tab.I. For this scenario, the standard deviation of

the process noise in the state equation σ is fixed to 0.05 ms−1

so that target trajectory strongly departs from a straight line.

An example of trajectory is presented in fig. 4.

For these simulations, the range standard deviation is set to

σr = 100 m. Fig. 5 presents the closed-form PCRB with active

measurement scheduling as depicted in fig.3. As expected the

PCRB ln rt is under the threshold fixed to 0.01. Moreover, we

can see that PCRB falls lower the thereshold when the policy

suggests to produce a range measurement.

VII. CONCLUSION

Along this paper, the closed-form PCRB proposed by

Bréhard et al has been applied to active measurement schedul-

ing such that PCRB is becoming an accurate and time-varying

technique of particular interest in this context. The next step

will be to consider more complex sensor management strate-

gies like considering that the total active measurements budget

is fixed. Moreover, realistic sensor management algorithm

will needs extension of the closed-form PCRB to the three

dimensions case.

Appendix

We refer to eq.(2), for a definition of the various terms
{A, B, Q, α1, α2, α3} involved in this closed form.

Ψ =

�������
1 δt δt δ2

t

0 1 0 δt

0 0 1 δt

0 0 0 1

�������� ⊗ Id4 , Φ =

���	 1 2δt δ2
t

0 1 δt

0 0 1


 ��� (19)

Ω11 =

����������
2α3A

∗

Q
−1

A + 2α1BA
∗

Q
−1

AB
∗

,

+2α2BA∗Q−1A + 2α2A∗Q−1AB∗

2α1BA
∗

Q
−1

A + 2α2A
∗

Q
−1

A

2α1A
∗

Q
−1

AB
∗ + 2α2A

∗

Q
−1

A

2α1A
∗

Q
−1

A

� ��������� (20)

Ω12 =

����������
2(α3 + δtα2)A∗

Q
−1 + 2α1BA

∗

Q
−1

B
∗

,

+2(α2 + δtα1)BA∗Q−1 + 2α2A∗Q−1B∗

2α1BA
∗

Q
−1 + 2α2A

∗

Q
−1

2α1A
∗

Q
−1

B
∗ + 2(α2 + δtα1)A∗

Q
−1

2α1A
∗

Q
−1

� ��������� (21)

Ω22 =

����������
2(α3 + 2δtα2 + δ

2

t α1)Q
−1

,

+2α1BQ−1B∗ + 2(α2 + δtα1) 
 BQ−1 + Q−1B∗ �
2α1BQ

−1
+ 2(α2 + δtα1)Q

−1

2α1Q
−1

B
∗ + 2(α2 + δtα1)Q−1

2α1Q
−1

����������� (22)

Ω33 = 2σ
2 �

α3 α2 α1 � ∗ (23)

C =

�������
C1 0 0 0

0 16 + C1 0 C3

0 0 C2 0

0 C3 0 C2

� ������ (24)

������� ������
C1 =

576α2
3

δ6
t

+
672α2

2

δ4
t

+
64α2

1

δ2
t

−
1152α3α2

δ5
t

+
288α3α1

δ4
t

−
384α2α1

δ3
t

,

C2 =
144α2

3

δ4
t

+
32α2

2

δ2
t

−
192α3α2

δ3
t

+
32α3α1

δ2
t

,

C3 = −
288α2

3

δ5
t

−
192α2

2

δ3
t

+
480α3α2

δ4
t

−
96α3α1

δ3
t

+
64α2α1

δ2
t

(25)



For t = 1 to T

1) Calculation of auxiliary matrices Γ11
t , Γ12

t , Γ22
t and

Γ33
t





























Γ11
t = Ω11 + Ψ Γ11

t−1 ,

Γ12
t = Ω12 + Ψ Γ12

t−1 ,

Γ22
t = Ω22 + Ψ Γ22

t−1 ,

Γ33
t = Ω33 + Φ Γ33

t−1 .

.

2) Calculation of D11
t , D12

t , D22
t

a)



















D11
t =

[

Idny×ny
0ny×3ny

]

Γ11
t ,

D12
t = −

[

Idny×ny
0ny×3ny

]

Γ12
t ,

D22
t =

[

Idny×ny
0ny×3ny

]

Γ22
t + C .

3) Calculation of D33
t

a) if passive meas.

D33
t =

�������
1

σ2
β

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

�������� .

a’) if active meas. + passive meas.

D33
t =

�������
1

σ2
β

0 0 0

0 � r2
t+1

σ2
r

0 0

0 0 0 0

0 0 0 0

��������
with � r2

t+1 = 	 1 0 0 
 Γ
33
t .

4) Calculate J−1
t+1 using Tichavský’s formula:

J−1
t+1 = D22

t + D33
t − D21

t

(

J−1
t + D11

t

)−1
D12

t ,

End for

Fig. 2. Closed-form calculation of the PCRB for ”passive meas.” and “passive

meas.+ active meas”. (Ω11, Ω12, Ω22, Ω33, C, Ψ and Φ are given in

appendix)

For t = 1 to T

1) Compute J̃−1
t if passive meas.

2) if J̃−1
ln rl

> s then Ut = 1 and

compute J−1
t if active meas.+ passive meas.

3) if J̃−1
ln rl

< s then Ut = 0 and

J−1
t = J̃−1

t .

End for

Fig. 3. Active measurement scheduling

Scenario

duration 6000 s

robs
x (0) 3, 5 km

robs
y (0) 0 km

vobs
x (0) 10 ms−1

vobs
y (0) −2 ms−1

rcib
x (0) 0 km

rcib
y (0) 3, 5 km

vcib
x (0) 6 ms−1

vcib
y (0) 3 ms−1

δt 6 s

σ 0.05 ms−1

σβ 0.05 rad (about 3 deg.)

σr0
2 km

σv0
1 ms−1

σβ0
0.05 rad (about 3 deg.)

TABLE I

SCENARIO CONSTANTS

Fig. 4. Scenario:(a) example of trajectory of the target (solid line) and the

observer (dashed line) (b)

0 1000 2000 3000 4000 5000 6000
0

0.01

0.02

0.03

0.04

0.05

0.06
ln(r)

Fig. 5. Closed-form PCRB related to ln rt with range measurement

scheduling (solid line) versus closed-form PCRB related to ln rt without range

measurements (dashed line).
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