
A general principled method for image similarity

validation

Fr�ed�eric Cao and Patrick Bouthemy

IRISA / INRIA
Campus universitaire de Beaulieu
35042 Rennes Cedex, France
ffcao,bouthemyg@irisa.fr

Abstract. A novel and general criterion for image similarity validation
is introduced using the so-called a contrario decision framework. It is
mathematically proved that it is possible to compute a fully automat-
ic detection criterion to decide that two images have a common cause,
which can be taken as a de�nition of similarity. Analytical estimates of
the necessary and su�cient number of sample points are also given. An
implementation of this criterion is designed exploiting the comparison of
grey level gradient direction at randomly sampled points. Similar images
are detected a contrario, by rejecting an hypothesis that resemblance is
due to randomness, which is far more easy to model than a realistic degra-
dation process. The method proves very robust to noise, transparency
and partial occlusion. It is also invariant to contrast change and can
accomodate global geometric transformations. It does not require any
feature matching step. It can be global or local, only the global version
is investigated in this paper.

1 Introduction

Establishing that two images, or parts of images, are similar is a general concern
in image analysis and computer vision. It is involved in a number of problems
or applications, and more speci�cally in image or video retrieval [1, 16]. In this
paper, we answer the following question: can we automatically assess that two
images are similar and with which degree of con�dence? A second question is:
can we compute \universal" thresholds to decide that two images are similar?
This problem is very di�cult in full generality since image similarity should be
de�ned up to a large group of invariance, which may depend on the application:
contrast change, occlusion, transparency, noise, translation, scaling, geometric
deformation, etc.
In this paper, we investigate the global case. Even on complete images, this is
a central issue for image retrieval: checking whether or not an image is present
in a database or in a video stream. The designed solution is based on statistical
arguments. It requires very simple information computed on the image intensi-
ties. It is extremely stable with respect to noise (it still works with an additive
Gaussian noise with standard deviation 30 or a 50% impulse noise). The search is
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totally processed online and is very e�cient (10 frames/s on a 2.4GHz PC, with
no optimization). The implemented version only relies on the direction of the
image gradient, and is therefore contrast invariant. We have demonstrated that
it is robust to occlusion and transparency. Finally, we will mention how global
geometric transformations can be handled. Let us point out that the similarity
measure does not require any feature matching step.

The paper is organized as follows. A brief review of related work is made in
Section 2. In Section 3, the a contrario decision framework is introduced and
used to de�ne an automatic criterion for the similarity between two images.
The method will be introduced in parallel of a more usual hypothesis testing
framework, but we emphasize that decision only relies on the likelihood of one
hypothesis (which is that the two compared images are not the same). The im-
plemented test compares the image gradient direction at some random points.
Similarity is detected a contrario, by rejecting an hypothesis that resemblance is
due to randomness. In Section 4, we show that this number of sample points can
be chosen to maintain a probability of detection very close to 1, when we assume
white Gaussian noise. However, we insist that detection does not rely on such
a Gaussian noise assumption. It will be observed that, in practice, the required
number of samples is seldom above a few hundreds, even for quite important
noise. Section 5 contains experimental results of image comparison and retrieval
in databases of typically 10; 000 images. We cope with several kinds of image
perturbations as strong Gaussian and impulse noise, JPEG compression, trans-
parency, occlusion. We also handle a prior registration before detecting similar
pairs. Summary and concluding remarks are given in Section 6.

2 Related work

The statistical arguments we introduce can be related to the work of Lisani and
Morel [8]. Their approach uses the direction of the gradient of a grey level image,
and they detect local changes in registered stereo pairs of satellite images. Our
method is dual since, on the contrary, we use the gradient direction in both
images to decide that they have much spatial information in common. Detection
thresholds are computed by using an a contrario framework, as introduced by
Desolneux, Moisan and Morel [2], and extended for spatio-temporal problems in
[18]. More ancient work [17] used the same kind of ideas but detection thresholds
were not computed. Other image features widely used are SIFT descriptors [9, 10]
which are basically local direction distributions. Nevertheless, the indexing and
comparison of descriptors is achieved by a nearest-neighbor procedure. Hence,
there is no decision involving an automatic threshold setting, which is precisely
our main concern. On the other hand, we think that our methodology can be
adapted to the comparison of SIFT features as well, instead of using the direction
of the spatial intensity gradient.

Basically, our method consists in sampling random points in two images and
counting the number of points such that the di�erence of the spatial intensity
gradient direction is small enough. Using the gradient direction as image feature



3

for image similarity detection was already proven useful (e.g., [13]). This step
is embedded in a probabilistic framework which will be subsequently discussed.
Let us point out that contrarily to methods as RANSAC [4], the estimation of
the registration parameters is completely separated from the similarity decision
step, which makes the proposed method more general. In particular, our method
can consider di�erent types of image features, independently of the image infor-
mation used to perform the registration. Furthermore, it can be used to validate
the performance of the registration methods themselves.

Probabilities will be computed in a model representing the absence of sim-
ilarity (so-called background model, in the statistical meaning). Some similar
idea can be found in [5] where the authors study the inuence of \conspiracy of
random".

3 A contrast invariant image comparison method

In what follows, we always assume that images are grey-level valued with size
N�N . Let u and v be two images. To facilitate understanding, the development
below is instantiated for the case where image gradient direction is the considered
image feature. However, let us stress that this framework is general and other
kinds of image features could be utilized as well.

For any point x, let us denote by �u(x) and �v(x) the directions of the image
gradient of u and v at point x. Let us denote by Du;v(x) the angle di�erence
between �u(x) and �v(x) on the unit circle S

1. When there is no risk of ambi-
guity, we elude the subscript and write D(x) instead. It is a real value in [0; �].
Since we want this measure to be accurate, we only consider points where both
image gradients are large enough (larger than 5 in practice). Now, two images
di�ering from a contrast change have the same gradient direction everywhere,
which ensures that the method is contrast invariant.

Even though the proposed method is not a classical hypothesis testing, let
us formulate it this way, to explain its principle. From the observations of the
values of D(x), let us consider that we aim at selecting one of the two following
hypotheses: H0: u and v are unrelated images. H1: u and v have similar content.
Modeling Hypothesis H1 is equivalent to model the type of degradation that
can lead from u to v, and only very simplistic models are usually at hand. In an
image retrieval application, v can belong to a database of typically 106 images
(10 hours of video). Hence, false alarms (that is, accept H1 while H0 actually
holds) have to be controlled, else the system will become impractical. Because
of the large size of the database, this implies that it is necessary to ensure very
small probabilities of false alarms. The proposed method is to base the decision
only on H0, which is far more easy to model. It allows us to attain very small
probabilities of false alarm. Moreover, there is no need to compare the likelihood
of the two hypotheses, since we can derive automatic thresholds on the likelihood
of H0, which allows us to reject it very surely.

Hypothesis H0 models the absence of similarity. Thus, the following assump-
tion is made: for some set of points x1, ..., xM , the values D(xi)i2f1;:::;Mg are
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independent, identically distributed in [0; �]. This probabilistic model will be
called the a contrario model (or background model). The principle of the detec-
tion is to compute the probability that the real observation has been generated
by the a contrario model. When this probability is too small, the independence
assumption of the two images is rejected and similarity is detected (validated).

Let � 2 (0; �), and q� = �
� be the probability that the considered angle is less

than or equal to �. For any set of distinct points fx1; : : : ; xMg, the probability,
under H0, that at least k among the M values fD(x1); : : : D(xM )g are less than
� is given by the tail of the binomial law

B(M;k; q�) =

MX
j=k

�
M

j

�
qj�(1� q�)

M�j :

De�nition 1. Let 0 6 �1 6 : : : 6 �L 6 � be L values in [0; �]. Let u a real
valued image, and x1; : : : xM , M distinct points. Let us also consider a database
B of NB images. For any v 2 B, we call number of false alarms of (u; v) the
quantity

NFA(u; v) = NB � L � min
16i6L

B(M;ki; q�i); (1)

where ki is the cardinality of

fj; 1 6 j 6 M;Du;v(xj) 6 �ig:

We say that the pair (u; v) is meaningful (more speci�cally, "-meaningful), or
that u and v are similar (more speci�cally, "-similar) if NFA(u; v) 6 ".

The interpretation of this de�nition will be made clear after stating the fol-
lowing proposition. Let us just mention now that the probability given by the
tail of the binomial law has to be multiplied by the number of tests done, i.e.,
the considered number (L) of quantized values of the gradient direction and the
overall number (NB) of tested images, to evaluate the NFA.

Proposition 1. For a database of NB images such that the gradient direction d-
i�erence with a query u has been generated by the background model, the expected
number of v such that (u; v) is "-meaningful is less or equal than ".

Proof. For all i, let us denote by Ki the random number of points among the xj
such that D(xj) is less than �i. For any v, (u; v) is "-meaningful, if there is at
least 1 6 i 6 L such that NB � L � B(M;Ki; q�i) < ". Let us denote by E(v; i)
this event. Its probability PH0

(E(v; i)) satis�es

PH0
(E(v; i)) 6 "

L �NB :

Indeed, for any real random variableX with survival functionH(x) = P (X > x),
it is a classical fact that P (H(X) < x) 6 x. By applying this result to Ki, we
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get the upper bound on P (E(v; i)). The event E(v) de�ned by \(u; v) is "-
meaningful" is E(v) = [16i6LE(v; i). Let us denote by EH0

the mathematical
expectation under the a contrario assumption. Then

EH0

 X
v2B

1E(v)

!
=
X
v2B

EH0
(1E(v))

6
X
v2B

16i6L

PH0
(E(v; i))

6
X
v2B

16i6L

"

L �NB = ": 2

De�nition 1 together with Proposition 1 mean that there is in average less than
" images v in the database B that could match with u by chance, that is to say,
when H0 holds. As a matter of fact, any detection must be considered as a false
alarm under hypothesis H0 (hence the denomination of NFA - number of false
alarms -, which might be at �rst misleading for the reader since the NFA value
is used to detect the really similar image pairs, as speci�ed in the Algorithm
summary given next page).

Thus, it is chosen to eliminate any observation (i.e., any image v, given image
u) having a frequency of the order of " (or more) in the a contrario model. In
Section 5.1, it will be checked that Hypothesis H0 is sound for two unrelated
images.

Even though this is theoretically simple, it may be di�cult to numerically
evaluate the tail of the binomial law. A su�cient and more tractable condi-
tion of meaningfulness is given by the following classical result, �rst proved by
Hoe�ding [6].

Proposition 2. Let H(r; p) = r ln r
p + (1� r) ln 1�r

1�p , be the relative entropy of
two Bernoulli laws with parameters r and p. Then, for k > Mp,

B(M;k; p) 6 exp

�
�M �H

�
k

M
; p

��
: (2)

This inequality leads to the following su�cient condition of meaningfulness.

Corollary 1. If

max
16i6L
ki>Mq�i

H

�
ki

M
; q�i

�
>

1

M
ln
LNB

"
; (3)

the pair (u; v) is "-meaningful.

In this corollary, it appears clearly that the values of k such that (u; v) is "-
meaningful only depends on the logarithm of L, NB and ". In practice, we choose
L about 32 which is compatible with our perceptual accuracy of directions. In
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other terms, the �i must be understood as quantization steps of (0; �). We also
take " = 1 since it means that we may have in average less than 1-false detection.
However, as we shall see, really similar images have much smaller NFA and the
choice of " is not really important. Thus, in all experiments, we always set " = 1,
and we can therefore claim that the decision threshold is automatically derived.

The algorithm to be implemented is actually simple and of very low computa-
tional complexity. Indeed, it involves only a few computations as indicated below.

Algorithm

Let us �x M > 1, and L quantized values (�i)16i6L.
For a pair of image u, v:

1. Draw M random points x1, ..., xM .
2. Compute the di�erence of the gradient direction D(xj).
3. For each i

(a) Count the number of xj such that D(xj) 6 �i, denoted by ki.

(b) Compute NB
PM

n=ki

�
M
n

�
qn�i(1� q�i)

M�n (with q�i =
�i
� ).

4. NFA(u; v) is the minimum of these values.
5. Test if NFA(u; v) 6 ".

In practice, we take M varies between 200 and 500 (this is discussed be-
low), � = 32 (this hardly has any incidence). Let us point out that the quan-
tity � log10NFA can be considered as a con�dence level, while being a more
tractable number.

4 Random sampling

4.1 Problem statement

The a contrario model assumes that the values D(xj) are i.i.d. in (0; �). This
implicitly means that it is assumed that the direction �u(xj) and �v(xj) are
independent for a given xj , and that all the directions �u(xj) are also mutually
independent. (The same holds for v.) The NFA is nothing but a measure of the
deviation to this hypothesis. If a few points are randomly drawn in the image,
this assumption is clearly reasonable. However, since natural images contain
alignments the second assumption becomes clearly false if we sample too many
points. Moreover, if the two images have a casual alignment in common, this
segment will induce a very strong deviation from the independence assumption,
and the images could be wrongly considered as similar.We then face the following
dilemma for choosing the number of samples M :

{ it must be large enough to allow us to contradict the independence hypothesis
and to obtain small values of the number of false alarms for two similar
images.



7

{ it must be small enough to avoid the \common alignment problem". If we
draw a few hundreds points uniformly in the images, then they are aligned
very unlikely.

In order to evaluate the typical magnitude of the number of sample points, let
us assume that v di�ers from u by an additive Gaussian noise N (0; �2), which
will be our hypothesis H1. We insist that we use this H1 to only determine
the magnitude of the su�cient number of sample points, but since we cannot
assert that this model is realistic, the detection eventually relies only upon the
background model H0. By computing the gradient by a �nite di�erence scheme,
it is possible to assume that the gradient coordinates of v are also corrupted by
a white Gaussian noise (with a variance depending on the numerical scheme).
If the law of the gradient norm is empirically estimated, it becomes possible to
compute the law of the direction variation D, PH1

(D < �).

4.2 Bounds on the number of sample points

By de�nition, we detect the pair (u; v) as "-meaningful, if NFA(u; v) < ". If
H1 holds, we would like to detected meaningful pairs with a high probability.
Hence, we would like the value P (NFA(u; v) < "jH1) to be large whenever v is
a (noisy) version of u. Let us also assume that u is an image of a query base Q
containing NQ images (and v is still in the database B). If we want less than "
detection in the a contrario model by comparing all the pairs in Q�B, we have
to multiply the NFA de�nition (1) by NQ. Let

k� = inffk; s.t. NQ �NB � L � B(M;k; q�) < "g:
To make things simpler, assume that we compute the NFA with only one value
of angle � (so that L = 1). Since there is no ambiguity, we drop the subscript �.
If K is the random number of points such that D < �, the pair (u; v) is detected
if and only if K > k. The probability of detection under H1 is therefore

PD � P (K > kjH1) = B(M;k; p): (4)

where
p = PH1

(D < �);

which is known, since we have here a model of noise.

De�nition 2. We call number of misses

M(M;k) = NQNB(1�B(M;k; p)): (5)

As for the number of false alarms, if M(M;k) < ", it is clear that the expected
number of misdetections under hypothesis H1 is less than ".

The noise model clearly implies that p (the probability that gradient direc-
tions are alike when both images are the same) is larger than q (probability that
the directions are alike for unrelated images, i.e. the a contrario model) unless
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the images are constant of � = +1, which is of little interest, and p! q when
� ! +1 (up to a normalization of grey level, the image tends to a white noise).

From estimates on the tail of the binomial law, we obtain the following nec-
essary conditions on the number of samples M .

Proposition 3. Assume that M(M;k) < ". Then, for some positive constant
C ' 0:39246,

M(p� q)2 > min(p(1� p); q(1� q))

�
C + ln

NQNB

"
p
M

�
: (6)

The proof is given in appendix.
The estimate above tells that, when the noise amount � becomes large, M

grows like 1
(p�q)2 . This is not strictly exact because of the lnM term on the right

side of (6). This term is unavoidable since it appears in any sharp lower bound
of the tail of the binomial law. In the following Proposition 4, it will be proved
that the order of magnitude O((p � q)�2) is su�cient.

Proposition 4. If

M > 2

(p� q)2
ln
NBNQ

"
: (7)

then M(M;k) < ".

In practice, we do not know neither that the two images are the same nor the
amount of noise. However, the purpose of this result is to determine the order of
magnitude of the su�cient number of sample points. Numerical evaluation shows
that it is a few hundreds which is compatible with the size of usual images.

5 Numerical applications and experiments

5.1 Justi�cation of the background model

The background model should be sound for two unrelated images. Let us make
the following experiment. Let us compute the empirical distribution of the gra-
dient direction on two images. Because of quantization and presence of strongly
privileged directions, these two histograms are not uniform at all. Nevertheless,
the distribution of the di�erence of the directions, taken at two random locations
(that is, di�erent points in the two images) is the circular convolution of these
histograms. On many pairs of images, we indeed checked that the di�erence of
the repartition function with a uniform distribution in (��; �) is everywhere less
than 0.01.

5.2 Number of sample points under hypothesis H1

On Fig. 1, we discuss (see the caption) the relation between � (the noise stan-
dard deviation), M (the number of sample points) and the detection rate as
explained in subsection 4.2. By varying � and M , we empirically retrieve the
bound estimate of subsection 4.2.
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Fig. 1. We match an image with some of its corrupted versions by a white Gaussian
noise, for � varying between 5 and 100 (horizontal axis), and for a number of samples
M between 10 and 500 (vertical axis). For each couple (�;M), 50 trials are drawn,
yielding NB = 250000. The grey level in the left plot is the number of similarity
detections (white for 50 and black for 0). The curves on the right are the su�cient
and necessary values of M for controlling the number of misses, given by (6) and (7)
respectively. As expected, the empirical results on the left are between these curves
and bounds are not sharp.

5.3 Experiments of image retrieval and image comparison

We have tested the robustness of the method for image retrieval in a video
stream with respect to the following degradations: noise (impulse, Gaussian or
JPEG compression), transparency, partial occlusion. The image comparison is
directly applied with no preprocessing of any type. There are actually some
applications to such a detection method: for instance, to segment television video
stream one may look for particular jingles or some recurrent images. Current
methods work by computing local features and matching them. It thus requires
to pre-compute those features, organize and store them in feature databases.
The proposed method only needs the spatial image gradient on a few hundred
points.

0 1 2 3 4 5

x 10
4

−10

−5

0

5

10

Fig. 2. The middle image is a 50% impulse noise version of the original one. In a
database of 105 images, they still match with a NFA close to 10�5. The right plot
shows the con�dence values (� log

10
(NFA)) for the �rst 50000 images of the sequence,

the query being the noisy image. The peaks indeed correspond to exactly the same
view of the stadium.
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We �rst consider the following experiment. We select a single image in a
sequence containing about one hour program of an athletics meeting (86096 im-
ages). This image represents a view of the stadium. To make the problem still
more complex and to evaluate the robustness to noise, a white Gaussian noise
with standard deviation � = 30 is added to this image, and the resulting image
will be taken as the query. The proposed criterion is applied with M = 500
random sample points in the images. The true image was detected with a NFA
equal to 10�14. About 20 images (belonging to the same static shot) are detected
around the true image, which is of course correct as well. Moreover, this very
same view of the stadium appears three other times in the video (before the
selected true image). All of them are detected with a very low NFA (or equiva-
lently, with a high con�dence value, as shown in Fig.2). There was a single true
false alarm (unrelated image) with a NFA equal to 10�0:73, which was probably
due to the presence of the logo, but this NFA is coherent with the prediction: it
is close to 1. No false alarms were obtained for an impulse noise of 50%. We have
also applied JPEG compression to the original images. Extreme JPEG compres-
sion (quality less than 10) may lead to false detections since gradient orientation
is constrained by the blocking e�ect. For usual compression ratio (quality 75),
this e�ect was not observed.

On Fig. 3, two images of a movie are compared. The scene exhibits a strong
transparency e�ect and an important contrast change. Thus, the grey levels in
those images are di�erent. Obviously, image intensity is not a good criterion at
all, since the images apparences are di�erent although the images clearly have
a common cause. The gradient direction comparison proves that these images
are similar in the sense that there resemblance cannot be explained by the a
contrario model. It was empirically checked that sample points were quite uni-
formly distributed in the images. This experiment demonstrates that we are able
to assess that two images are similar even if they are a�ected by transparency
e�ects.

Fig. 3. Robustness to transparency. The two images are selected from a movie. The
background is �xed, but the contrast changes a lot and a transparency layer is also
moving. Nevertheless, with 200 sample points, the con�dence value is � log

10
(NFA) =

43:2, and images are thus detected as very similar.
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Fig. 4 shows the robustness to partial occlusion. The score panel occludes
the bottom part of the image in this video of tennis match. The two images
are detected as very similar since their NFA is about 10�50. Since an hour of
video contains about 105 images, such a NFA value asserts that the image pairing
remains meaningful for any size of database. The threshold on the image gradient
norm is equal to 5 in this experiment. If we take it equal to 0.2 (still with 200
sample points), the NFA increases since we select points where the gradient
orientation is dominated by quantization. However, with an equal probability,
we select points with larger gradients, and the gradient directions then match
very well. Therefore, the NFA is still very low, and about 10�32.

Fig. 4. Robustness to occlusion. Despite the partial occlusion the two images are de-
tected as very similar with con�dence value of � log

10
(NFA) = 50:1. The right plot

gives the position of the 200 sample points. There are not points in constant areas (be-
cause of the gradient threshold). However, some points are selected in the non-matching
area (scores), but the NFA is still very low.

As a last experiment, let us give a short insight of how geometrical invariance
might be taken into account. We apply exactly the same decision scheme to
pairs of consecutive images in a video sequence, but we �rst register the images
by using the robust multiresolution motion estimation method by Odobez and
Bouthemy [12], (the corresponding Motion-2D software is available on line at
http://www.irisa.fr.vista/Motion2D) which computes a 2D parametric motion
model that corresponds to the dominant image motion, which is usually related
to the camera motion. The evolution of the NFA through time is represented on
Fig. 5 (more precisely, the con�dence values given by � log10(NFA) are plotted).
It indicates if the consecutive images of the video sequence (once registered) can
be stated as similar or not. As expected, con�dence is high in case of similarity
since NFA are always lower than 10�20, except at very precise instants that
correspond to shot changes. Let us point out that an accurate registration of
the two images to be compared is nevertheless required to properly exploit the
proposed method for image similarity detection.

6 Conclusion and perspectives

We have described a novel and fast method allowing us to e�ciently compare
two images from a random sampling of points and to decide whether they are
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Fig. 5. Similarity evaluation between successive images of a video stream after reg-
istration. Plot of the con�dence values � log

10
(NFA)) for 500 consecutive pairs in a

MPEG video sequence. Most of the time, the NFA is below 10�20. The sudden drops
correspond to shot changes. The NFA is thus a reliable value as predicted by Proposi-
tion 1.

actually similar or not. It can be used for image comparison and image retrieval
in databases or in video stream. Actually, the argument is quite general and the
thresholds are rigorously proved to be robust and can be �xed once for all, for
any type of images. Hence the user does not have to tune any parameter. Prelim-
inary results have demonstrated the accuracy and the e�ciency of the proposed
method. Nevertheless, a more extensive experimental evaluation could be car-
ried out. As an extension, our approach could also be applied to parts of images
instead of entire images, so that the methodology could be used in many other
applications of image retrieval, image matching or registration evaluation. These
parts of images could be extracted from local characteristics as keypoints [11] or
local frame based on stable directions [7, 14]. We could then estimate the same
detection bounds for system similar to [15]. This work is in progress.

A Proofs

Proof of Prop. 3. From (4), we know that 1�PD = B(M;M�k; 1�p). A re�ned
Stirling inequality [3] implies that

"

NBNQ
> B(M;M � k; 1� p)

>
�

M

M � k

�
(1� p)M�kpk

> 2p
2�M

e�1=6e�MH(1�k=M;1�p):
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Thus

M �H
�
1� k

M
; 1� p

�
> C + ln

NBNQ

"
p
M

;

with C = 1
6 +

1
2 ln

�
2 ' 0:39246. Since k > Mq, we also have H

�
1� k

M ; 1� p
�
<

H(1� q; 1� p). By convexity of H ,

H(1� q; 1� p) 6 (p� q)@xH(1� q; 1� p) = (p� q) ln

�
1� q

q

p

1� p

�
:

Moreover

ln

�
1� q

q

p

1� p

�
=

Z p

q

dx

x(1� x)
6 (p� q) max

x2[p;q]

1

x(1� x)
:

Since the function on the right hand side is convex, it attains its maximum on
the boundary of the interval, and this completes the proof. 2

Proof of Prop. 4. We �rst prove the following lemma, bounding from above the
number of samples necessary to pass the test of similarity.

Lemma 1. Let us �x M > 0 and L = 1 and let k be the minimal number of
samples with similar directions such that the pair (u; v) is "-meaningful.

k 6 1 +Mq +

�
M

2

�
ln
NBNQ

"

��1=2

: (8)

Proof. Since k = inffj s.t. NBNQ � B(M;k; q) < "g, B (M;k � 1; q) > "
NBNQ

holds, also yielding

H

�
k � 1

M
; q

�
<

1

M
ln
NBNQ

"
:

Convexity properties of the entropy H yield H(r; q) > 2(r�q)2. Setting r = k�1
M

gives the result. 2

If M is large enough, we can assume that k < Mp from (8). A su�cient
condition to M(M;P ) < " is

H

�
1� k

M
; 1� p

�
>

1

M
ln
NBNQ

"

Since by convexity H(r; p) > 2(r � p)2, it su�ces that

2

�
p� k

M

�2

> 1

M
ln
NBNQ

"
;

which is implied by

p� q �
�

1

2M
ln
NBNQ

"

�1=2

>

�
1

2M
ln
NBNQ

"

�1=2

;

and the result directly follows. 2
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