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We address the classical bearings-only tracking problem

(BOT) for a single object, which belongs to the general class

of nonlinear filtering problems. Recently, algorithms based on

sequential Monte-Carlo methods (particle filtering) have been

proposed. As far as performance analysis is concerned, the

posterior Cramér-Rao bound (PCRB) provides a lower bound on

the mean square error. Classically, under a technical assumption

named “asymptotic unbiasedness assumption,” the PCRB is given

by the inverse Fisher information matrix (FIM). The latter is

computed using Tichavský’s recursive formula via Monte-Carlo

methods. Two major problems are studied here. First, we show

that the asymptotic unbiasedness assumption can be replaced

by an assumption which is more meaningful. Second, an exact

algorithm to compute the PCRB is derived via Tichavský’s

recursive formula without using Monte-Carlo methods. This result

is based on a new coordinate system named logarithmic polar

coordinate (LPC) system. Simulation results illustrate that PCRB

can now be computed accurately and quickly, making it suitable

for sensor management applications.
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NOTATION

LP(C) Logarithmic polar coordinates
MP(C) Modified polar coordinates
BOT Bearings-only tracking
Xt Target state in Cartesian coordinate system
Yt Target state in LPC system
ny Size of target state (ny = 4)
3 Inequality R3S means that R¡ S is positive

semi-definite matrix
Idn n£ n identity matrix
0n£m n£m matrix composed of zero element
− Kronecker product
X¤ Denotes transpose of matrix X
kXk2Q = EfX¤Q¡1Xg where X is column vector
± Dirac delta function
¢ Laplacian operator
r Gradient operator
det(X) Determinant of matrix X
pdf Probability density function

A = Id4 + ±tB with B =
·
0 1

0 0

¸
− Id2

H =
μ
±t

1

¶
− Id2

Q =§− Id2 with § =
μ
®3 ®2

®2 ®1

¶
.

I. INTRODUCTION

In many applications (submarine tracking, aircraft
surveillance), a bearings-only sensor is used to collect
observations about target trajectory. This problem
of tracking has been of interest for the past thirty
years. The aim of bearings-only tracking (BOT) is to
determine the target trajectory using noise-corrupted
bearing measurements from a single observer. Target
motion is classically described by a diffusion model1

so that the filtering problem is composed of two
stochastic equations. The first one represents the
temporal evolution of the target state (position and
velocity) called state equation. The second one links
the bearing measurement to the target state at time t
(measurement equation).
One of the characteristics of the problem is the

nonlinearity of the measurement equation so that the
classical Kalman filter is not convenient in this case.
We can find in literature two kinds of solutions to
this problem. The first one, proposed by Lindgren
and Gong in [2], consists of deriving a pseudolinear
measurement equation. Then, a Kalman filter can be
used to solve the problem. The stochastic stability
analysis of the estimates had been addressed by Song
and Speyer in [3]. However, Aidala and Nardone
show in [4] that this approach produces bias range
estimates which can be reduced if the observer

1See [1] for an exhaustive review on dynamic models.
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executes a maneuver. Consequently, bias range can
be estimated as soon as it becomes observable [5]. A
second idea consists of using the extended Kalman
filter (EKF) in a Cartesian coordinate system to
solve the problem. However, simulations show that
this algorithm is often divergent due to the weak
observability of range [6—8]. To remedy this problem,
Aidala and Hammel in [9] proposed an EKF using
another system named modified polar coordinate
(MPC) system whose one salient feature is that range
is not coupled with the observable components. This
constitutes a neat improvement. Another solution
proposed by Peach in [10] is a range-parametrized
EKF, in which a number of EKF trackers parametrized
by range run in parallel. Recently, particle filtering
algorithms have been proposed in this context
[11—13]. In [14], Arulampalam and Ristic compare the
particle filter with the range-parametrized and EKF in
MPC system; while a comprehensive overview of the
state of art can be found in [15].
As far as performance analysis is concerned, the

posterior Cramér-Rao bound (PCRB) proposed in [16]
is widely used to assess the performance of filtering
algorithms, by the tracking community [17—20] and in
particular in the bearings-only context [15, 21, 22].
The PCRB gives a lower bound for the error
covariance matrix (ECM). More precisely, under a
technical assumption, the PCRB is the inverse of
the Fisher information matrix (FIM). A seminal
contribution on performance analysis is the paper
from Tichavský, et al. [23]. Here, the authors noticed
that only the right lower block of the FIM inverse was
of interest for investigating tracking performance. This
was the key idea for deriving a practical updating
formula for the PCRB. Recently, PCRB has been
used for various sensor management problems like
automating the deployment of sensors in [24] or
determining the optimal sensor trajectory in the
bearings-only context in [25]. Moreover, PCRB
can be used to schedule active measurements in a
system involving active and passive subsystems.
This application is addressed in the simulation
section.
However, some problems remain to be solved.

In this paper, two major issues of the PCRB are
addressed. First, under a technical assumption named
“asymptotic unbiasedness assumption,” the PCRB
is the FIM inverse. However, the validity of this
assumption has not been thoroughly investigated in
the BOT context yet. Here, our approach consists of
deriving the PCRB in an original coordinate system
named logarithmic polar coordinate (LPC) system.
Using this coordinate system, it is shown that the
asymptotic unbiasedness assumption can be replaced
with another one, more meaningful in the BOT
context. Second, Tichavský’s recursive formula is a
powerful result to compute the right lower block of

the FIM inverse. However, complex integrals without
any closed forms are involved in this recursion. So,
these complex integrals must be approximated via
Monte-Carlo methods. This approach is quite feasible
but induces high computation requirements which
highly reduces its suitability for complex problems
like sensor management. For instance, the aim of
active measurement scheduling consists in optimizing
the time distribution of range measurements to obtain
an accurate target state estimate. It implies to perform
Monte-Carlo evaluations of the PCRB for each policy,
which would rapidly become infeasible.
To avoid this problem, Ristic, et al. in [15] assume

that the target process noise is zero. In the general
case, we show that the complex integrals required for
calculating the PCRB admit closed-form expressions if
the PCRB is derived in the LPC system. Remarkably,
though this coordinate system is only a slight
modification of the MPC [9], it allows instrumental
simplifications in the calculation of the elementary
terms of the PCRB recursion. Applications to active
measurement scheduling is briefly considered in a
simulation framework.
In Section II, the BOT problem is presented

in the Cartesian coordinate system and then in the
LPC system. This original coordinate system is the
key point to derive a closed form for the PCRB.
In Section III, the classical PCRB is presented. A
close examination of the asymptotic unbiasedness
assumption is achieved so as to prove the validity of
the “usual” PCRB, as given by the FIM inverse. We
study this assumption and derive a more meaningful
condition. In particular, conditions ensuring its validity
are examined in the BOT context. Calculation of
closed-form expressions of the right lower block of
the FIM inverse via Tichavský’s recursive formula
is addressed in Section IV, in the LPC setting. Then,
the closed-form PCRB is investigated for scheduling
active measurements in Section V. In Section VI,
simulation results present a comparison between
the closed-form PCRB and the classical one (i.e.,
where the terms involved in Tichavský’s formula are
approximated by Monte-Carlo methods). Finally, the
closed-form PCRB is used for investigating scheduling
of passive and active measurements.

II. FROM CARTESIAN TO LPC SYSTEM

A. Cartesian Framework for BOT

Historically, BOT is presented in the Cartesian
system. Let us define target state at time t:

Xt = [rx(t) ry(t) vx(t) vy(t)]
¤ (1)

made of target relative velocity and position in the
x-y plane. It is assumed that the target follows a
nearly constant-velocity model. The discretized state
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Fig. 1. Two examples of pdf of Zt given Xt. (a) If Zt is far from the bounds. (b) If Zt is close to ¼=2.

equation2 is given by

Xt+1 = AXt+Ut+¾Wt (2)

where

Wt »N (0,Q)

A= Id4 + ±tB with B =
·
0 1

0 0

¸
− Id2

Q =§− Id2 with § =
·
®3 ®2

®2 ®1

¸
:

and ±t is the elementary time period and ¡Ut is
the known difference between observer velocity at
time t+1 and t. The state covariance ¾ is unknown.
However we assume classically that ¾ < ¾max, so that
we use in practice the following equation:

Xt+1 = AXt+Ut+¾maxWt: (3)

Otherwise, we note Zt the bearing measurement
received at time t. The target state is related to this
measurement through the following equation:

Zt = arctan

μ
rx(t)
ry(t)

¶
+Vt+

X
k2Z

k¼1¡¼=2<arctan(rx(t)=ry (t))+Vt+k¼<(¼=2)| {z }
(?)

(4)

where Vt »N (0,¾2¯) and ¾2¯ is known. Let us notice
that the term (?) is usually omitted. However, it is
necessary to consider that measurement Zt is restricted
to a part of the space. This is the case if symmetry
of the receiver (e.g. linear array) leads to considering
measurements belonging in the interval ]¡¼=2,¼=2[,
so that the additional term (?) in (4) is necessary.
Two examples of probability density function (pdf)
of Zt given Xt are presented in Fig. 1 to enlighten the
importance of the additional term (?). In Fig. 1(b), the
bearing measurement is close to ¼=2 so that there is
an overlapping phenomena.

2For a general review of dynamic models for target tracking see [1].

The system (3)—(4) has two components: a linear
state equation (3) and a nonlinear measurement
equation (4). Particle filter techniques [26, 27] are,
thus, particularly appealing. Otherwise, practical
implementations of EKF-based algorithms [9, 10] use
a specific coordinate system, namely MPC. Indeed,
if the target follows a deterministic trajectory (i.e.,
Wt = 0 8t 2 f0, : : : ,Tg in (3)), Nardone and Aidala
have demonstrated in [7] that no information on range
exists as long as the observer is not maneuvering.
So the idea consists of using a coordinate system for
which unobservable component (range) is not coupled
with the observable part. This is also the motivation
of Aidala and Hammel [9] for defining the MPC
system: ·

¯t
1
rt

_̄
t

_rt
rt

¸¤
: (5)

Thus, the target state at time t is defined by (5), where
¯t and rt are the relative bearing and target range. We
propose in the following section a slight modification
of the MPC system, named the LPC system. The only
difference is that the second component is not 1=rt but
ln(rt). Even if this tiny difference appears very minor,
it will be shown that it is instrumental for deriving
a closed form of the PCRB. Let us now derive BOT
equations given by (3) and (4) in the LPC framework.

B. LPC Framework for BOT

We consider now that the system state Yt is
expressed in the LPC system, i.e.,

Yt = [¯t ½t
_̄
t
_½t]
¤ (6)

where
½t = lnrt:

As between Cartesian and modified polar (MP)
system, we do not have a direct bijection between the
Cartesian and the LPC system due to arctan function
definition. We just have fclp and f

lp
c , respectively

LPC-to-Cartesian and Cartesian-to-LPC state mapping
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functions such that

Xt =
½
fclp(Yt) if ry(t)> 0

¡fclp(Yt) if ry(t)< 0
with

fclp(Yt) = rt

266664
sin¯t
cos¯t

_̄
t cos¯t+ _½t sin¯t

¡ _̄t sin¯t+ _½t cos¯t

377775
(7)

and

Yt = f
lp
c (Xt) =

26666666666664

arctan

Ã
rx(t)
ry(t)

!
ln
³q

r2x (t) + r2y (t)
´

vx(t)ry(t)¡ vy(t)rx(t)
r2x (t) + r2y (t)

vx(t)rx(t))+ vy(t)ry(t)

r2x (t) + r2y (t)

37777777777775
: (8)

Thus, using (7) and (8), the stochastic system given
by (3) and (4) becomes

Yt+1 =

(
flpc (Af

c
lp(Yt)+Ut+¾maxWt) if ry(t)> 0

flpc (¡Afclp(Yt) +Ut+¾maxWt) if ry(t)< 0

(9)
Zt = ¯t+Vt+

X
k2Z
k¼1¡¼=2<¯t+Vt+k¼<¼=2:

Though it seems that the LPC increases the
complexity of the BOT problem, it has also the
advantage of highlighting the multi-modality
associated with the two solutions corresponding to
ry(t)> 0 and ry(t)< 0, respectively.

III. PCRB FOR STATE ESTIMATION

In this section, “usual” PCRB given by the inverse
FIM is presented. Notably, in subsection A, we
present the proof of this classical result. The role of
a technical hypothesis named asymptotic unbiasedness
assumption is thus highlighted, especially in the
LPC system. Then, we show in subsection B
that this hypothesis is not always satisfied in the
BOT context and we propose to replace it by an
original extension. Finally, it is shown that the usual
PCRB as given by FIM inverse is valid if bearing
measurements are sufficiently far from ¡¼=2 and
¼=2. Let us remark that the PCRB is not derived
in the Cartesian framework for two reasons. First,
the asymptotic unbiasedness assumption seems
rather difficult to address in this setting. Second, it
is shown that a closed form exists in LPC but not
in the classical coordinate systems (Cartesian or
MPC).

A. Classical PCRB

Let Y0: t and Z1: t be the trajectory and the set
of bearing measurements up to time t. They are
random vectors of size ny(t+1) and t, respectively.

Let Ŷ0: t be an estimator of Y0: t which is a function of
Z1: t. We focus here on the ECM at time t which is
ny(t+1)£ ny(t+1)-matrix, defined by

ECM0: t = kŶ0: t¡Y0: tk2: (10)

First, let us recall the FIM and bias definitions.

DEFINITION 1 (FIM) For the filtering problem given
by (9), the FIM, at time t, is denoted J0: t and defined
as

J0: t = EfrY0 : t lnp(Z1: t,Y0: t)r¤Y0: t lnp(Z1: t,Y0: t)g (11)
where p(Z1: t,Y0: t) is the joint pdf of Z1: t and Y0: t.

DEFINITION 2 (Bias) For the filtering problem
described by (9), estimation bias related to the
estimated trajectory Ŷ0: t is defined as:

B(Y0: t) = EfŶ0: t¡Y0: t j Y0: tg: (12)

Y0: t is a ny(t+1) vector so that B(Y0: t) is a ny(t+1)

vector too. The estimator of the trajectory Ŷ0: t is
unbiased if vector B(Y0: t) is almost surely equal to
zero. This choice of the bias definition is justified
in Appendix A. Proposition 1 ensures that the
FIM gives a lower bound for the ECM under a
specific assumption called asymptotic unbiasedness
assumption. Before introducing this technical
assumption let us introduce a notation to simplify the
presentation:

Notation 1 For a function F :Rd!Rn, U and
U two Rd-vectors such that U = [U1, : : : ,Ud]¤ and
U = [U1, : : : ,Ud]¤, we define

lim
U!U

F(U) =

2664
limU1!U1 (F(U))1 ¢ ¢ ¢ limUd!Ud (F(U))1

...
...

limU1!U1 (F(U))n ¢ ¢ ¢ limUd!Ud (F(U))n

3775
(13)

where (F(U))i is the ith component of vector F(U).

Let us notice that limU1!U1 (F(U))1 is a function
which depends on variables U1 and fU2, : : : ,Udg so
that limU!U F(U) depends on variables U and U. We
will see that Notation 1 is defined unambiguously in
Proposition 1 proof and is helpful in presenting the
following assumption.

Assumption 1 (Asymptotic unbiasedness) For
the filtering problem given by (9), the asymptotic
unbiasedness assumption is defined as:

8 k 2 f1, : : : , tg, lim
Yk!Y+k

B(Y0: t)p(Y0: t) = lim
Yk!Y¡k

B(Y0: t)p(Y0: t)

(14)
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where Yk is the (connected) domain of Yk, k 2
f1, : : : , tg, while fY¡k ,Y+k g are its bounds.
Looking at the definition of LPC given by (6),
we have Y¡l = [¡¼=2,¡1,¡1,¡1]¤ and Y+l =
[¼=2,+1,+1,+1]¤. Moreover, B(Y0: t)p(Y0: t)
is a ny(t+1) vector following Notation 1,
limYk!Y+k B(Y0: t)p(Y0: t) is an ny(t+1)£ ny matrix. After
introducing Assumption 1, we can now present the
classical result on the PCRB.

PROPOSITION 1 (PCRB) For a filtering problem given
by (9)

ECM0: t3C0: tJ¡10: t C¤0: t with

C0: t
¢
=Ef(Ŷ0: t¡Y0: t)r¤Y0: t lnp(Z1: t,Y0: t)g: (15)

Moreover, under Assumption 1, C0: t is the identity
matrix.

Proposition 1 ensures that the FIM inverse gives a
lower bound for the ECM conditionally to the validity
of the technical Assumption 1 named asymptotic
unbiasedness assumption. Classically, Assumption 1
is true if the estimator Ŷ0: t is unbiased when Yk ¼ Y¡k
and Yk ¼ Y+k . However, this point is relatively complex
to verify in the bearings-only context. We propose
to study Assumption 1 to find a more concrete one.
First, let us present a proof of the rather classical
Proposition 1. For the sake of completeness, the
following lemma is reviewed.

LEMMA 1 Let S be a symmetric matrix defined as

S =
·
A C

C¤ B

¸
(16)

where
A is a nonnegative real symmetric matrix
B is a positive real symmetric matrix
C is a real matrix
then S30 implies A¡CB¡1C¤30.

PROOF OF LEMMA 1 This lemma is a classical
algebraic result given in [28].

PROOF OF PROPOSITION 1 Using Lemma 1, we build
the S matrix such that

S =
·
A0: t C0: t

C¤0: t B0: t

¸
where

A0: t
¢
=ECM0: t

B0: t
¢
=J0: t

C0: t
¢
=Ef(Ŷ0: t¡Y0: t)r¤Y0 : t lnp(Z1: t,Y0: t)g:

(17)

From this definition, S is a nonnegative matrix. Using
Lemma 1, one remarks that we just have to prove that

C0: t is equal to the identity matrix. The asymptotic
unbiasedness assumption is used to do so. First, let us
notice that C0: t can be rewritten as

C0: t =
Z
(Ŷ0: t¡Y0: t)r¤Y0: tp(Z1: t,Y0: t)d(Z1: t,Y0: t):(18)

C0: t is an ny(t+1)£ ny(t+1) matrix made of (t+
1)£ (t+1) elementary blocks. We study each of these
elementary blocks (denoted C0: t(k, l)):

C0: t(k, l) =
Z
(Ŷk ¡Yk)r¤Ylp(Z1: t,Y0: t)d(Z1: t,Y0: t),

k 2 f1, : : : ,nyg, l 2 f1, : : : ,nyg: (19)

Before integrating by parts, let us introduce the
following notation:

Notation 2 For a function F :Rd!Rn, U, U¡
and U+ three Rd-vectors such that U = [U1, : : : ,Ud]¤,
U¡ = [U¡1 , : : : ,U¡d ]¤ and U+ = [U+1 , : : : ,U+d ]¤, then we
can define

[F(U)]U
+

U¡ = lim
U!U+

F(U)¡ lim
U!U¡

F(U) (20)

where limU!U+ F(U) and limU!U¡ F(U) are defined
using Notation 1.

Integrating by parts and using the previous notation, a
matrix element of C0: t given by (19) can be rewritten

C0: t(k, l) = Idny ±k=l +

Z
[(Ŷk ¡Yk)p(Z1: t,Y0: t)]

Y+
l

Y¡
l

d(Z1: t,Y
¡flg
0: t )

(21)

where Y¡flg0: t is a whole target trajectory except the
term Yl. Now, if limit and integral operators can be
reversed, we have

C0: t(k, l) = Idny ±k=l +

Z ·Z
(Ŷk ¡Yk)p(Z1: t,Y0: t)dZ1: t

¸Y+
l

Y¡
l

dY
¡flg
0: t :

(22)

Using bias notation previously introduced, we finally
obtain

C0: t(k, l) = Idny ±k=l+
Z
[B(Y0: t)p(Y0: t)]

Y+
l

Y¡
l

dY
¡flg
0: t :

(23)

Thus, under Assumption 1, C0: t is the identity matrix.

Then we can apply Proposition 1 to the BOT
problem if asymptotic unbiasedness assumption is
satisfied. More precisely, this assumption ensures that
the term C0: t is the identity matrix. Let us now study
the validity of this hypothesis in the BOT context.

B. Validity of Asymptotic Unbiasedness Assumption in
BOT Context

First let us remind that by Proposition 1 the PCRB
is given by the inverse FIM if a technical assumption
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named asymptotic unbiasedness assumption is true.
According to the previous section, C0: t given by (15)
is not the identity matrix if this assumption is not
verified. The following proposition shows that the
asymptotic unbiasedness assumption is not always true
in the BOT context.

PROPOSITION 2 (PCRB) For a filtering problem given
by (9),

ECM0: t3C0: tJ¡10: t C¤0: t
where C0: t is an ny(t+1)£ny(t+1) block diagonal
matrix where diagonal terms are expressed as
follows:

C0: t(l, l) =

26664
1¡¼p(¯l)j¼=2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

37775 , 8 l 2 f0, : : : , tg

(24)
where p(¯l) is the pdf of ¯l.

More precisely, Proposition 2 gives a more simple
formula for C0: t. This result is quite intuitive. When
bearing measurements are close to a bound (i.e., ¡¼=2
or ¼=2) there is an overlapping phenomenon due
to the arctan definition as the underlying pdf is not
Gaussian but something like that function represented
in Fig. 1. Finally let us notice that p(¯l) is not defined
in ¼=2 because ¯l is in ]¡¼=2,¼=2[. However, the
limit exists.

PROOF OF PROPOSITION 2 The complete proof
of Proposition 2 is given in Appendix B with two
intermediate results skipped in Subappendices B1
and B2. The idea of the proof consists of studying
C0: t using the formula given by (22) in Proposition 1
proof. To study (22), the pdf of Yt+1 given Yt, i.e.,
p(Yt+1 j Yt) is derived in Appendix B1. Then, a
technical lemma allows us to end the proof.

In the filtering context, we are generally not
interested in ECM0: t but only in the right lower block
ECMt = kŶt¡Ytk2. Thus, it is not the whole matrix
C0: tJ

¡1
0: t C

¤
0: t which is of interest but just the right

lower block. As C0: t is a diagonal matrix according
to Proposition 2, we have

ECMt3CtJ¡1t C¤t

with

Ct =

26664
1¡¼p(¯t)j¼=2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

37775 : (25)

Matrix J¡1t is the right lower block of J0: t-inverse,
given by (11). Now from a practical point of view,

the problem is to be able to estimate J¡1t and Ct.
Concerning the first one, J¡1t is classically obtained
by means of Tichavský’s recursive formula via
Monte-Carlo methods. Looking at (25), we can see
that Ct only modifies the PCRB linked to the first
component of the target state ¯t. The PCRB associated
to this component is overestimated because p(¯t)j¼=2 is
not zero all the time. When bearing measurements are
sufficiently far from the bounds ¡¼=2 and ¼=2, Ct is
the identity matrix, so that the classical PCRB is given
by the FIM inverse.

Assumption 2 (Side assumption) For a filtering
problem given by (9), the side assumption is defined
as

p(¯l)j¼=2 = 0, 8 l 2 f0, : : : ,Tg (26)

where p(¯l) is the pdf of ¯l.

PROPOSITION 3 (PCRB) Under Assumption 2,

ECMt3J¡1t : (27)

PROOF OF PROPOSITION 3 Proposition 3 is easily
derived from Proposition 2.

IV. CLOSED-FORM FORMULATION FOR
TICHAVSKÝ’S FORMULA IN LPC COORDINATE
SYSTEM

We have derived in the previous section a PCRB
adapted to the BOT context, given by (27). Now it
is necessary to estimate J¡1t . The classical approach
consists of using J¡1t recursive formula proposed by
Tichavský’s et al. However, some terms involved in
this formula must be estimated using Monte-Carlo
methods. We demonstrate here that all these terms
have closed-form expressions if the PCRB is derived
using the LPC system, so that J¡1t can be computed
exactly via Tichavský’s formula. In subsection A,
Tichavský’s recursive formula is reminded. We remark
in subsection B that no closed-form expressions for
the terms involved in this formula can be obtained
using Cartesian or MPC framework. Then we show
in subsection C that closed-form calculation can be
derived in the new LPC system.

A. Tichavský’s Formula

Tichavský, et al. proposed a recursive formula
in [23] for the right lower block of the FIM inverse
noted J¡1t .

PROPOSITION 4 (Tichavský’s formula) For a filtering
problem given by (9), the right lower block of the FIM
inverse noted J¡1t has a recursive formula:

Jt+1 =D
22
t +D

33
t ¡D21t (Jt+D11t )¡1D12t
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TABLE I
Closed Forms In Different Coordinate Systems

Cartesian Modified Polar Logarithmic Polar

D11t Yes No Yes
D12t Yes No Yes
D21t Yes No Yes
D22t Yes No Yes
D33t No Yes Yes

where D11t , D
12
t , D

21
t , D

22
t , D

33
t are defined by

D11t
¢
=EfrYt lnp(Yt+1 j Yt)r¤Yt lnp(Yt+1 j Ytgg

D21t
¢
=EfrYt+1 lnp(Yt+1 j Yt)r¤Yt lnp(Yt+1 j Yt)g

D12t
¢
=EfrYt lnp(Yt+1 j Yt)r¤Yt+1 lnp(Yt+1 j Yt)g (28)

D22t
¢
=EfrYt+1 lnp(Yt+1 j Yt)r¤Yt+1 lnp(Yt+1 j Yt)g

D33t
¢
=EfrYt+1 lnp(Zt+1 j Yt+1)r¤Yt+1 lnp(Zt+1 j Yt+1)g:

Proposition 4 is proved in [23]. However, for the
BOT context, even if pdf p(Yl+1 j Yl) and p(Zt j Yt)
are known and simple, D11t , D

12
t , D

21
t , D

22
t , and D

33
t

do not have closed-form expressions altogether. We
show now that existence of closed-form expressions
is a characteristic of the LPC system, introduced in
Section IIB.

B. Closed-Form Expressions of D11t , D
12
t , D

22
t , D

21
t ,

and D33t in Different Coordinate Systems

Ristic, et al. in [15] have derived the PCRB in
the Cartesian coordinate system. Matrices D11t , D

12
t ,

D22t and D21t have closed-form expressions using this
system. However D33t has no closed form, so that
the authors assumed that the process noise makes
a very small effect on the PCRB (i.e., Wt = 0) for
approximating D33t . Otherwise, the classical PCRB
has not been derived in MPC system yet. It seems
that no closed form for D11t , D

12
t , D

22
t , and D

21
t can be

expected, though a closed form of D33t exists. These
results are summed up in Table I.
Now the question is whether we can find a

coordinate system allowing closed forms for all
terms. First, it seems that the coordinate system must
include ¯t so that under Assumption 2, D

33
t has a

closed form as in the MPC system. Second, in the
Cartesian framework, it seems that the existence of
closed forms for D11t , D

12
t , D

22
t , and D

21
t in (28) are

inherited from the linear property of rXt lnp(Xt+1 j Xt)
and rXt+1 lnp(Xt+1 j Xt). First, considering LPC
definition given by (6), we can see that ¯t is one of
the components of the state. Second, we can show that
gradients rYt lnp(Xt+1 j Xt) and rYt+1 lnp(Xt+1 j Xt) are

quadratic forms in Xt,Xt+1. Indeed, we have

r¤Yt lnp(Xt+1 j Xt) =
1
¾2max

(Xt+1¡AXt¡Ut)¤Q¡1ArYt
fXtg

(29)

r¤Yt+1 lnp(Xt+1 j Xt) =¡
1
¾2max

(Xt+1¡AXt¡Ut)¤Q¡1rYt+1
fXt+1g

where rYtfXtg and rYt+1fXt+1g are LPC-to-Cartesian
mapping function derivatives at time t and t+1
(LPC-to-Cartesian mapping function is given by (7)).
These two terms can be expressed using the Cartesian
framework:

rYt
fXtg=

26664
ry(t) rx(t) 0 0

¡rx(t) ry(t) 0 0

vy(t) vx(t) ry(t) rx(t)

¡vx(t) vy(t) ¡rx(t) ry(t)

37775
(30)

rYt+1
fXt+1g=

26664
ry(t+1) rx(t+1) 0 0

¡rx(t+1) ry(t+1) 0 0

vy(t+1) vx(t+1) ry(t+1) rx(t+1)

¡vx(t+1) vy(t+1) ¡rx(t+1) ry(t+1)

37775 :
so that rYtfXtg and rYt+1fXt+1g given by (30) are
linear operators in Xt,Xt+1.

C. An Algorithm for Calculating a Closed-Form PCRB,
in the LPC System

Based on previous sections, 1, 2, 3, and 4 below
give closed forms for D11t , D

12
t , D

22
t , and D

33
t in

the LPC framework. Moreover, we show that these
closed-forms can be written in a recursive manner.
The algorithm that calculates the closed-form PCRB
is summed up in Fig. 2. We can see that calculation
of D11t , D

12
t , and D

22
t is split in two steps. In step 1,

the auxiliary matrices ¡ 11t , ¡
12
t , and ¡

22
t , defined by

(35), (38), and (41), are computed via a linear system.
Then, D11t , D

12
t , and D

22
t are extracted from ¡ 11t ,

¡ 12t , ¡
22
t in step 2. This algorithm is compared in the

simulations section with the classical PCRB summed
up in Fig. 3.
1) D11t Closed Form: We show in Appendix

D that D11t can be expressed as an expectation of a
simple function in the Cartesian coordinate system:

D11t =
1
¾2max

EfF¤XtA¤Q¡1AFXtg with FXt =rYtfXtg:
(31)

The problem is now to compute this expectation.
We show now that no “direct” recursive formula
can be derived for D11t but the latter can be obtained
as the by-product of a general linear system
in Proposition 5.1. First let us investigate the
nonmaneuvering case. In this case, using the
statistical properties of Xt+1 given Xt and the linear
property of F, (31) can be rewritten as

1204 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 42, NO. 4 OCTOBER 2006

Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:18 from IEEE Xplore.  Restrictions apply.



Fig. 2. Closed-form calculation of PCRB.

D11t =
1
¾2max

EfF¤Xt¡AXt¡1A¤Q¡1AFXt¡AXt¡1g| {z }
constant

+
1
¾2max

EfF¤AXt¡1A¤Q¡1AFAXt¡1g: (32)

The first term can be calculated remarking that
Xt¡AXt¡1 »N (0,¾2maxQ) and F is a linear operator.
We derived in Appendix D from the linear property of
F that ½

FAXt = FXt + ±tGXt
GAXt =GXt

where

8<:
FXt =rYt

fXtg

GXt = Id2−
μ
vy(t) vx(t)

¡vx(t) vy(t)

¶
:

(33)

Incorporating (33) in (32), we obtain

D11t = constant+
1
¾2max

EfF¤Xt¡1A¤Q¡1AFXt¡1g| {z }
=D11

t¡1

+
±2t
¾2max

EfG¤Xt¡1A¤Q¡1AGXt¡1g

+
±t
¾2max

EfF¤Xt¡1A¤Q¡1AGXt¡1g

+
±t
¾2max

EfG¤Xt¡1A¤Q¡1AFXt¡1g: (34)

Looking at (34), it seems that no “direct” recursive
formula can be derived for D11t . However, we can

Fig. 3. Classical computation of PCRB.

propose an original recursive formula for D11t via a
joint matrix ¡ 11t formed with the four terms involved
in (34) which is valid in the general case including the
maneuvering case:

D11t = [Idny 0ny£3ny ]¡
11
t ,

¡ 11t =
1
¾2max

0BBBB@
EfF¤XtA¤Q¡1AFXtg
EfF¤XtA¤Q¡1AGXtg
EfG¤XtA¤Q¡1AFXtg
EfG¤XtA¤Q¡1AGXtg

1CCCCA
where FXt and GXt are defined by (33).

(35)

We can see that D11t is just one block of ¡ 11t . Now
the following proposition assumes that we have a
recursive formula for ¡ 11t , so that D

11
t is obtained as

a by product.

PROPOSITION 5.1 (¡ 11t formula) For a filtering
problem given by (9), we have the following recursive
formula for ¡ 11t :

¡ 11t = −11 +ª¡ 11t¡1 +¤
11
t¡1
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where

ª =

0BBB@
1 ±t ±t ±2t

0 1 0 ±t

0 0 1 ±t

0 0 0 1

1CCCA− Id4

−11 =

0BBB@
2®3A

¤Q¡1A+2®1BA
¤Q¡1AB¤+2®2BA

¤Q¡1A+2®2A
¤Q¡1AB¤

2®1BA
¤Q¡1A+2®2A

¤Q¡1A

2®1A
¤Q¡1AB¤+2®2A

¤Q¡1A

2®1A
¤Q¡1A

1CCCA
and

¤11t¡1 =

8>>>>>>><>>>>>>>:

04ny£ny if Ut¡1 = 0,

1
¾2max

0BBBB@
F¤EXtA

¤Q¡1AFEXt ¡F¤AEXt¡1A¤Q¡1AFAEXt¡1
F¤EXtA

¤Q¡1AGEXt ¡F¤AEXt¡1A¤Q¡1AGAEXt¡1
G¤EXtA

¤Q¡1AFEXt ¡G¤AEXt¡1A¤Q¡1AFAEXt¡1
G¤EXtA

¤Q¡1AGEXt ¡G¤AEXt¡1A¤Q¡1AGAEXt¡1

1CCCCA if Ut¡1 6= 0:
(36)

We refer to (2), for a definition of the various terms
fA,B,Q,®1,®2,®3g involved in this closed form. For
definitions of F and G see (33).

Let us now make some remarks about the previous
proposition. We can see that the recursive formula for
¡ 11t given by (36) is just a simple linear equation,
where all the terms have closed-form expressions.
Moreover, if the maneuvering term Ut¡1 is zero, then
EXt = AEXt¡1. As a consequence, ¤11t¡1 is zero if the
maneuvering term Ut¡1 is zero. If this condition does
not hold, ¤11t¡1 can be computed exactly using E(X0)
and the recursion E(Xt) = AE(Xt¡1)+Ut¡1. Finally, ¡ 110
can be initialized by Monte-Carlo method.
2) D12t Closed Form: Using the same approach as

in the previous section, we show in Appendix D that

D12t =¡
1
¾2max

EfF¤XtA¤Q¡1FAXtg| {z }
(?)

¡¨ 12
t

with

¨ 12
t =

8>>>>><>>>>>:

0ny£ny
if Ut = 0

1
¾2max

(F¤EXtA
¤Q¡1FEXt+1 ¡F¤EXtA¤Q¡1FAEXt)

if Ut 6= 0
(37)

where operator F is defined by (33). Comparing (37)
with (31), we can notice that we have now two terms
to compute. The term ¨ 12

t can be easily calculated.
We can remark that the latter is zero if Ut is zero. If
this condition is not verified, E(Xt) is computed for
any value of t using E(X0) and the relation E(Xt) =
AE(Xt¡1)+Ut¡1. Otherwise, (?) can be computed
recursively using the same approach as for D11t . D

12
t

is deduced from ¡ 12t via

D12t =¡[Idny 0ny£3ny ]¡ 12t ¡¨ 12
t

¡ 12t =
1
¾2max

0BBBB@
EfF¤XtA¤Q¡1FAXtg
EfF¤XtA¤Q¡1GAXtg
EfG¤XtA¤Q¡1FAXtg
EfG¤XtA¤Q¡1GAXtg

1CCCCA
(38)

where operators F and G are given by (33). Again,
we have a recursive formula for ¡ 12t , yielding D

12
t as a

by-product.

PROPOSITION 5.2 (¡ 12t formula) For a filtering
problem given by (9), we have the following recursive
formula for ¡ 12t

¡ 12t = −12 +ª¡ 12t¡1 +¤
12
t¡1

where

−12 =

0BBB@
2(®3 + ±t®2)A

¤Q¡1 +2®1BA
¤Q¡1B¤+2(®2 + ±t®1)BA

¤Q¡1 +2®2A
¤Q¡1B¤

2®1BA
¤Q¡1 +2®2A

¤Q¡1

2®1A
¤Q¡1B¤+2(®2 + ±t®1)A

¤Q¡1

2®1A
¤Q¡1

1CCCA
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and

¤12t¡1 =

8>>>>>>><>>>>>>>:

04ny£ny if Ut¡1 = 0,

1
¾2max

0BBBB@
F¤EXtA

¤Q¡1FAEXt ¡F¤AEXt¡1A¤Q¡1FA2EXt¡1
F¤EXtA

¤Q¡1GAEXt ¡F¤AEXt¡1A¤Q¡1GA2EXt¡1
G¤EXtA

¤Q¡1FAEXt ¡G¤AEXt¡1A¤Q¡1FA2EXt¡1
G¤EXtA

¤Q¡1GAEXt ¡G¤AEXt¡1A¤Q¡1GA2EXt¡1

1CCCCA if Ut¡1 6= 0:
(39)

ª is given by (36). We refer to (2), for a definition of
the various terms fA,B,Q,®1,®2,®3g involved in this
closed form. For definitions of F and G see (33).

Again, the recursion giving ¡ 12t is linear and has a
closed form. Similarly to ¡ 11t recursion, ¤12t¡1 is zero
if no maneuver occurs (EXt = AEXt¡1). Else, ¤12t¡1 is
updated from E(X0). Considering the initialization of
the ¡ 12t recursion, ¡ 120 can be approximated using the
Monte-Carlo method.
3) D22t Closed Form: Using the same approach as

in the previous section, we show in Appendix D that

D22t =
1
¾2max

EfF¤AXtQ¡1FAXtg| {z }
(?)

+C+¨ 22
t

where

C =

0BBBBBB@

0 0 0 0

0 8 0 0

0 0 2
®23

®3®1¡®22
0

0 0 0 2
®23

®3®1¡®22

1CCCCCCA
and

¨ 22
t =

8>>><>>>:
0ny£ny if Ut = 0,

1
¾2max

(F¤EXt+1Q
¡1FEXt+1 ¡F¤AEXtQ¡1FAEXt )

if Ut 6= 0
(40)

where the operator F is defined by (33). As
we can see above, C is just a constant term and ¨ 22

t

is a maneuvering term which can be calculated
using the same approach as for ¨ 12

t in Section
B2. Otherwise, (?) in (40) can be calculated
recursively. The matrix D22t is deduced from ¡ 22t
via

D22t+1 = [Idny£ny 0ny£3ny ]¡
22
t+1 + C+¨ 22

t

¡ 22t =
1
¾2max

0BBBBBBBB@

EfF¤AXtQ¡1FAXtg

EfF¤AXtQ¡1GAXtg

EfG¤AXtQ¡1FAXtg

EfG¤AXtQ¡1GAXtg

1CCCCCCCCA
(41)

where operators F and G are given by (33). Again,
the following proposition yields a closed-form
recursive formula for ¡ 22t , and for D

22
t as a

by-product.

PROPOSITION 5.3 (¡ 22t formula) For a filtering
problem given by (9), a closed-form recursive formula
for ¡ 22t is given by

¡ 22t = −22 +ª¡ 22t¡1 +¤
22
t¡1

where

−22 =

0BBB@
2(®3 +2±t®2 + ±

2
t ®1)Q

¡1 +2®1BQ
¡1B¤+2(®2 + ±t®1)(BQ

¡1 +Q¡1B¤)

2®1BQ
¡1 +2(®2 + ±t®1)Q

¡1

2®1Q
¡1B¤+2(®2 + ±t®1)Q

¡1

2®1Q
¡1

1CCCA
and

¤22t¡1 =

8>>>>>>><>>>>>>>:

0ny£ny if Ut¡1 = 0,

1
¾2max

0BBBBB@
F¤AEXtQ

¡1FAEXt ¡F¤A2EXt¡1Q¡1FA2EXt¡1
F¤AEXtQ

¡1GAEXt ¡F¤A2EXt¡1Q¡1GA2EXt¡1
G¤AEXtQ

¡1FAEXt ¡G¤A2EXt¡1Q¡1FA2EXt¡1
G¤AEXtQ

¡1GAEXt ¡G¤A2EXt¡1Q¡1GA2EXt¡1

1CCCCCA if Ut¡1 6= 0:
(42)
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Authorized licensed use limited to: UR Rennes. Downloaded on July 10, 2009 at 11:18 from IEEE Xplore.  Restrictions apply.



4) D33t Closed Form: We show in Appendix D
that D33t is simply

D33t =

0BBBBB@
1
¾2¯

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCCCCA : (43)

V. PCRB FOR PASSIVE AND ACTIVE
MEASUREMENTS

We assume now that additionally to (passive)
bearing measurements, there is another subsystem
which can produce a noise-corrupted range
measurement at time t noted dt:

dt = rt+ ´t where ´t »N (0,¾2r ) (44)

where ¾r is the range measurement standard deviation.
However, active measurements have a cost so that
the total active measurements budget is fixed. The
aim of measurement scheduling is to optimize the
time distribution of active measurements to obtain an
accurate target state estimate.
The general problem of optimizing the time

distribution of measurements has a long history.
Avitzour, et al. in [29] have proposed an algorithm
to optimize the time-distribution of measurements
when estimating a scalar random variable by solving
a nonquadratic minimization problem. This result
has been extended by Shakeri, et al. in [30] to
discrete-time stochastic processes. However, this
approach is devoted to linear systems when the
BOT is highly nonlinear. Then, Le Cadre has
proposed to use the CRB to solve the problem in
[31] for nonlinear systems where the state equation
is deterministic. We show in this section that a
closed-form PCRB derived can be used for active
measurement scheduling.
In the previous section, a closed-form PCRB has

been derived for bearings-only measurements. What
happens if range measurements are included ? We
show in this section that the PCRB still has a closed
form. First, looking at (28), we can see that only D33t
depends on the measurement equation. Then, only
the latter has to be modified. If the sensor produces
a range measurement at time t, then:

D33t =EfrYt+1
lnp(Zt+1,dt+1 j Yt+1)r¤Yt+1 lnp(Zt+1,dt+1 j Yt+1)g:

(45)

Using the independence property between bearings
and range measurements, (45) can be rewritten

D33t =EfrYt+1
lnp(Zt+1 j Yt+1)r¤Yt+1 lnp(Zt+1 j Yt+1)g| {z }

=D33t

+EfrYt+1
lnp(dt+1 j Yt+1)r¤Yt+1 lnp(dt+1 j Yt+1)g:

(46)

Using D33t given by (43) and range measurement
equation given by (44), we obtain

D33t =

2666666664

1
¾2¯

0 0 0

0
Er2t+1
¾2r

0 0

0 0 0 0

0 0 0 0

3777777775
: (47)

Consequently, the problem is to compute Er2t+1. We
show now that there is no “direct” recursive formula
to calculate Er2t+1 but the latter can be obtained as a
by-product of a linear system. First let us address the
nonmaneuvering case. Using the state equation given
by (3) and the statistical properties of Wt, elementary
calculations yield

Er2t+1 = Efr2x (t+1)+ r2y (t+1)g

= 2¾2max®3 +Efr2x (t) + r2y (t)g| {z }
=Er2t

+2±tEfvx(t)rx(t) + vy(t)ry(t)g

+ ±2t Efv2x (t) + v2y (t)g: (48)

Then looking at (48), It seems that no “direct”
recursive formula can be derived for Er2t+1. However,
we can propose an original recursive formula for the
latter via a joint matrix ¡ 33t formed with the three
terms involved in (48) which is valid in the general
case including the maneuvering case:

Er2t+1 = [1 0 0]¡
33
t (49)

¡ 33t =

264 Efr2x (t+1)+ r2y (t+1)g
Efvx(t+1)rx(t+1)+ vy(t+1)ry(t+1)g

Efv2x (t+1)+ v2y (t+1)g

375 :
We can see that Er2t+1 is the first component of ¡ 33t .
We have a simple recursive formula for ¡ 33t given by
Proposition 6.

PROPOSITION 6 (¡ 33t formula)

¡ 33t =−33 +©¡ 33t¡1 +¤
33
t¡1

where

−33 = 2¾2max

264®3®2
®1

375

©=

2641 2±t ±2t

0 1 ±t

0 0 1

375
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Fig. 4. Closed-form calculation of PCRB for active measurements scheduling.

and

¤33t¡1 =

266666664

2±t

·Erx(t)
Ery(t)

¸¤
Ut+2±

2
t

·Evx(t)
Evy(t)

¸¤
Ut+ ±

2
t U

¤
t Ut·Erx(t)

Ery(t)

¸¤
Ut+2±t

·Evx(t)
Evy(t)

¸¤
Ut+ ±tU

¤
t Ut

2
·Erx(t)
Ery(t)

¸¤
Ut+U

¤
t Ut

377777775
:

(50)

We refer to (2), for a definition of the various terms
f®1,®2,®3g involved in this closed form.
PROOF OF PROPOSITION 6 We incorporate the
diffusion equation given by (3) in ¡ 33t given by (49).
Finally, we obtain (50) using the statistical properties
of Wt.

¤33t¡1 is zero if no maneuver occurs. Concerning
the initialization, ¡ 330 can be approximated by
Monte-Carlo method. The algorithm is summed up
in Fig. 4 and is illustrated by simulation results in the
following section.

VI. SIMULATIONS

We have shown in the Section IV that under
Assumption 2, the PCRB has a closed form. We have

presented the algorithm in Fig. 2. The aim of this
section is double. First, we show that these original
formulas are valid and allow to compute accurately
the PCRB without high computation load. Second,
this bound can be used for optimal scheduling of
active measurements in a sensor management context.
To check formulas, the closed-form PCRB is

compared with the classical one using two scenarios.
In the first one, the observer goes straight line while
in the second one, the observer maneuvers. For the
sake of completeness, all the constants involved in the
two scenarios are presented in Table II. For these two
scenarios, the standard deviation of the process noise
in the state equation ¾max is fixed to 0:05 ms

¡1 so
that target trajectory strongly departs from a straight
line. The classical PCRB algorithm is reviewed in
Fig. 3 (the sample size to approximate D11t , D

12
t , D

22
t ,

and D21t by Monte-Carlo methods is 1000). For all
the algorithms, the initial FIM inverse is computed
using the initial ECM. The latter is computed using
Monte-Carlo methods. More precisely, N initial target
states in LPC, noted fY(i)0 gi2f1,:::,Ng, are sampled by
using the initial range, bearing, and speed standard
deviations which are, respectively, set to ¾r0 = 2 km,
¾¯0 = 0:05 rad (about 3 deg), and ¾s = 1 ms

¡1. Then,
we obtain J¡10 using the following approximation:
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Fig. 5. Scenario 1. (a1) Example of trajectory of target (solid line) and observer (dashed line). (b1) Set of bearings measurements.
Scenario 2. (a2) Example of trajectory of target (solid line) and observer (dashed line). (b2) Set of bearings measurements.

J¡10 ¼ Ef(Y0¡EfY0g)(Y0¡EfY0g)¤g

¼ 1
N

NX
i=1

(Y(i)0 ¡Y0)¤(Y(i)0 ¡Y0): (51)

The first scenario is presented in Fig. 5. An
example of trajectory is presented in Fig. 5(a1),
while the set of bearing measurements is presented
in Fig. 5(b1). Fig. 6 presents the comparison of
PCRB obtained by the algorithms given by Fig. 2 and
Fig. 3 for the four components of the target state. The
closed-formed PCRB and the classical one produce
the same results which verify formulas. Moreover, the
computation load difference between the two methods
is important. The approximated PCRB takes about
600 sec when closed-form PCRB takes about 3 sec.
Now looking at ½t’s bound given Fig. 6(b), it is a bit
surprising to see that the two PCRBs decrease while
rt is weakly observable. The fact is that ½t is not a
meaningful component such that the bound given
Fig. 6(b) for ECM½t

(i.e., the ECM related to ½t) is not
intuitive. A bound for ECMrt

(i.e., the ECM related to
rt) would be more meaningful. Using a Taylor series,
we can demonstrate that

ECMrt
¼ e2E(½t)ECM½t

(52)

TABLE II
Scenarios Constants

Scenario 1 Scenario 2
Duration 6000 s 6000 s

robsx (0) 3, 5 km 3, 5 km
robsy (0) 0 km 0 km

vobsx (0) 10 ms¡1 10 ms¡1

vobsy (0) ¡2 ms¡1 ¡2 ms¡1

rcibx (0) 0 km 0 km
rciby (0) 3, 5 km 3, 5 km

vcibx (0) 6 ms¡1 6 ms¡1

vciby (0) 3 ms¡1 3 ms¡1

±t 6 s 6 s
¾max 0:05 ms¡1 0:05 ms¡1

¾¯ 0:05 rad (about 3 deg) 0:05 rad (about 3 deg)

¾r0
2 km 2 km

¾v0
1 ms¡1 1 ms¡1

¾¯0
0:05 rad (about 3 deg) 0:05 rad (about 3 deg)

so that
ECMrt

¸ e2E(½t)FIM½t
: (53)

Consequently, we can use the PCRB related to ½t to
derive a bound for the ECM related to rt. The problem
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Fig. 6. PCRB for (a) ¯t, (b) ½t, (c)
_̄
t, (d) _½t.

is that E(½t) is generally weakly observable. We have
computed in Fig. 9 the bound given by (53) using the
true rt. We can see that the bound increases over time
which matches theoretical observability results.
In the second scenario, the closed-form PCRB is

checked when maneuvering terms appear. We consider
that the observer follows a leg-by-leg trajectory. Its

velocity vector is constant on each leg:

1500· t· 4500
μ
vobsx (t)

vobsy (t)

¶
=
μ
4 ms¡1

12 ms¡1

¶

4500· t· end
μ
vobsx (t)

vobsy (t)

¶
=
μ
8 ms¡1

¡7 ms¡1
¶
:

(54)
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Fig. 7. PCRB for (a) ¯t, (b) ½t, (c)
_̄
t, (d) _½t with scenario 2: closed-form PCRB (dashed line) versus approximated PCRB (solid line).

An example of trajectory for the second scenario
is presented in Fig. 5(a2), while the set of bearing
measurements is presented in Fig. 5(b2). Fig. 7
presents a comparison of PCRB obtained by the
algorithms given in Fig. 2 and Fig. 3. We obtain the
same results. Then the closed-form PCRB is valid in
the maneuvering case. As for the previous scenario,

we compute the bound given by (53) which is given
by Fig. 10. As expected, the PCRB dramatically
decreases when the observer maneuvers at time
periods 1500 and 4500.
Consequently, we can now compute the

PCRB accurately and quickly, making it suitable
for sensor management applications. We have
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Fig. 8. Closed-form PCRB with range measurements scheduling (solid line) versus closed-form PCRB without range measurements
(dashed line). (a) ¯t, (b) ½t, (c) ¯t, (d) ½t.

proposed in Section V an algorithm given by
Fig. 4 which calculates the closed form PCRB for
active measurement scheduling application. Fig. 8
presents a comparison based on the first scenario
of the closed-form PCRB with active measurements
produced every 80 sec with the closed-form when no

active measurements are produced. In simulations,
The range measurement standard deviation is set to
¾r = 100 m. As we can see in Fig. 8(b). ½t bound
falls when the sensor produces a range measurement.
Fig. 11 presented the related bounds for rt given by
(53).
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Fig. 9. PCRB for rt with scenario 1: closed-form PCRB (dashed line) versus approximated PCRB (solid line).

Fig. 10. PCRB for scenario 2: closed-form PCRB for rt (dashed line) versus approximated PCRB for rt (dashed line).

Fig. 11. Closed-form PCRB with range measurements scheduling for rt (solid line) versus closed-form PCRB for rt without range
measurements (dashed line).

VII. CONCLUSION

An innovative analysis of the PCRB in the
bearings-only context has been presented. In
particular, strong results were shown with regards to
the PCRB calculation; namely we derived an original
closed-form PCRB. This power result, asserted by
various simulations, cascades down from an original
frame that consists in a new coordinate system: the
LPC system. Computing the PCRB then becomes
an accurate and time-varying technique of particular
interest for real-time sensor management issues.

APPENDIX A. ABOUT THE BIAS

Bias definition as given by (12) may appear
surprising at first. A more natural definition could
be EfŶ0: t¡Y0: tg where Ŷ0: t is an estimator of Y0: t
and function of Z1: t. It is this point of view we are
now going to explain through a decomposition of
the mean square error related to the estimation of
Y0: t. When estimating a deterministic parameter, the
mean square error can be classically decomposed
in estimation variance and bias. However, in the
stochastic case, using (10), we only have the
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following relation:

ECM0: t = kY0: t¡EfŶ0: t j Y0: tgk2 + kEfŶ0: t j Y0: tg¡ Ŷ0: tk2:
(55)

The mean square error is then equal to the covariance
estimation error if and only if

kY0: t¡EfŶ0: t j Y0: tgk2 = 0: (56)

Assumption (56) is equivalent to

EfY0: t¡ Ŷ0: t j Y0: tg= 0, for almost Y0: t (57)

which is the retained definition of an unbiased
estimator.

APPENDIX B. PROOF OF PROPOSITION 2

Proposition 2 is adapted from Proposition 1 to
BOT context. More precisely, Proposition 2 gives a
more simple formula for C0: t. The idea of proof is
to study this term. Looking at (22) in Proposition
1 proof, each ny £ ny-matrix term of C0: t can be
rewritten

C0: t(k, l) = Idny£ny ±k=l+
Z
£(k, l)d(Z1: t,Y

¡flg
0: t )

where

£(k, l) = [(Ŷk ¡Yk)p(Z1: t,Y0: t)]
Y+
l

Y¡
l

: (58)

Remark that Y¡l and Y+l are ny-vectors, so that
£(k, l) is an ny £ny-matrix (notation [ ]

Y+
l

Y¡
l

defined in

(20)). First, let us rewrite £(k, l) using the statistical
property of stochastic system (9). The idea is to use
the following relation:

p(Z1: t,Y0: t) =
tY
j=1

fp(Zj j Yj)p(Yj j Yj¡1)gp(Y0) (59)

which is true under two assumptions. First, the
measurement at time t depends only on the target
state at time t. Second, fYtgt2N is a Markovian process.
These two assumptions are easily deduced from the
formulation of the BOT problem given by (9). Then
using (59), (58) is equivalent to

£(k, l) =

24(Ŷk ¡Yk) tY
j=1

fp(Zj j Yj)(Yj j Yj¡1)gp(Y0)
35Y+l
Y¡
l

:

(60)

Now, one can see that some terms in (60) do not
depend on Yl so that they can be factorized. Then we

obtain

£(k, l) =

8>>>>>>>>>><>>>>>>>>>>:

μ(k, l)p(Zl+1:t,Yl+2:t j Yl+1) if l = 0,

μ(k, l)p(Zl+1:t,Yl+2:t j Yl+1)p(Yl¡1)
if l = 1

μ(k, l)p(Zl+1:t,Yl+2:t j Yl+1)p(Z1:l¡1,Y0:l¡1)
if 1< l < t

μ(k, l)p(Z1:l¡1,Y0:l¡1) if l = t

where

μ(k, l) =

8>>>>>><>>>>>>:

[(Ŷk ¡Yk)p(Yl+1 j Yl)p(Yl)]
Y+
l

Y¡
l

if l = 0

[(Ŷk ¡Yk)p(Zl j Yl)p(Yl+1 j Yl)p(Yl j Yl¡1)]
Y+
l

Y¡
l

if 0< l < t

[(Ŷk ¡Yk)p(Zl j Yl)p(Yl j Yl¡1)]
Y+
l

Y¡
l

if l = t:

(61)

We are thus reduced to calculate μ(k, l). Thus, the
following limits must be studied:

lim
Yl!Y+l

p(Yl j Yl¡1), lim
Yl!Y¡l

p(Yl j Yl¡1)

lim
Yl!Y+l

p(Yl+1 j Yl), lim
Yl!Y¡l

p(Yl+1 j Yl)

lim
Yl!Y+l

p(Zl j Yl), lim
Yl!Y¡l

p(Zl j Yl):

(62)

To study the first four limits, p(Yl+1 j Yl) derived in
Appendix B1 is needed:

p(Yt+1 j Yt) = r4t+1p(Xt+1 j Xt)®(Yt)

where

p(Xt+1 j Xt) =
1

4¼2
p
det(Q)

e¡
1
2 kXt+1¡AXt¡Utk2Q ,

®(Yt) = P(ry(l)> 0 j Yl)1fry(l)>0g
+P(ry(l)< 0 j Yl)1fry(l)<0g:

(63)

We can notice that in (63), p(Xt+1 j Xt) is just the pdf
of the diffusion process given by (3). The pdf of Yt+1
given Yt is less simple than in Cartesian coordinate
system because we do not have a direct bijection
between the two coordinate systems.
Now let us remark that Yl takes its values in

]¡¼=2,¼=2[£R3 so that Y¡l = [¡¼=2,¡1,¡1,¡1]
and Y+l = [¼=2,+1,+1,+1]. According to (62), we
must study limYl!Y¡l p(Xt+1 j Xt) and limYl!Y+l p(Xt+1 j
Xt) to derive the first four limits of (62). Using f

c
lp

definition given by (7), we can obtain limYl!Y¡l Xt and
limYl!Y+l Xt via limYl!Y¡l f

c
lp(Yl) and limYl!Y+l f

c
lp(Yl) and
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finally derive

lim
Yl!Y¡l

p(Xt j Xt¡1) = [p(Xt j Xt¡1)j¯l=¡¼=2 0 0 0]

lim
Yl!Y+l

p(Xt j Xt¡1) = [p(Xt j Xt¡1)j¯l=¼=2 0 0 0]

lim
Yl!Y¡l

p(Xt+1 j Xt) = [p(Xt+1 j Xt)j¯l=¡¼=2 0 0 0]

lim
Yl!Y+l

p(Xt+1 j Xt) = [p(Xt+1 j Xt)j¯l=¼=2 0 0 0]:

(64)

Now using (64) and notice that P(ry(l)> 0 j Yl) and
P(ry(l)< 0 j Yl) are bounded functions, we obtain

lim
Yl!Y+l

p(Yl j Yl¡1) = [p(Yl j Yl¡1)j¯l=¼=2 0 0 0]

lim
Yl!Y¡l

p(Yl j Yl¡1) = [p(Yl j Yl¡1)j¯l=¡¼=2 0 0 0]

lim
Yl!Y+l

p(Yl+1 j Yl) = [p(Yl+1 j Yl)j¯l=¼=2 0 0 0]

lim
Yl!Y¡l

p(Yl+1 j Yl) = [p(Yl+1 j Yl)j¯l=¡¼=2 0 0 0]:

(65)

We have studied the four first limits of (62). Now, let
us turn toward the two last ones. According to (4):

p(Zl j Yl) = p(Zl j ¯l): (66)

We deduce from (66) that

lim
Yl!Y+l

p(Zl j Yl) = [p(Zl j ¯l)j¯l=¼=2 p(Zl j ¯l) p(Zl j ¯l) p(Zl j ¯l)]

(67)
lim
Yl!Y¡l

p(Zl j Yl) = [p(Zl j ¯l)j¯l=¡¼=2 p(Zl j ¯l) p(Zl j ¯l) p(Zl j ¯l)]:

Using limits given by (65) and (67), μ(k, l) given by
(61) can be rewritten

μ(k, l) =

8>>>>>><>>>>>>:

[[(Ŷk ¡Yk)p(Yl+1 j Yl)p(Yl)]
¼=2
¡¼=2 0ny£(ny¡1)] if l = 0

[[(Ŷk ¡Yk)p(Zl j Yl)p(Yl+1 j Yl)p(Yl j Yl¡1)]
¼=2
¡¼=2 0ny£(ny¡1)]

if 1< l < t

[[(Ŷk ¡Yk)p(Zl j Yl)p(Yl j Yl¡1)]
¼=2
¡¼=2 0ny£(ny¡1)]

if l = t:

(68)

Consequently, lots of terms in μ(k, l) are equal to zero
without any technical assumption. The problem is now
to study more precisely the first column of μ(k, l). The
following result assures a more simple formulation for
this column.

LEMMA 2 For a filtering problem given by (9)

lim
¯l!¡¼=2

p(Zl j Yl) = lim
¯l!¼=2

p(Zl j Yl)

lim
¯l!¡¼=2

p(Yl j Yl¡1) = lim
¯l!¼=2

p(Yl j Yl¡1)

lim
¯l!¡¼=2

p(Yl+1 j Yl) = lim
¯l!¼=2

p(Yl+1 j Yl):
(69)

Lemma 2 is proved in Appendix B2. Using previous
lemma, μ(k, l) formula given by (68) becomes

μ(k, l) = ±fk=lg

2666664
¡¼³(l) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3777775
where

³(l) =

8>>>><>>>>:
p(Yl+1 j Yl)p(Yl)j¯l=¼=2 if l = 0,

p(Zl j Yl)p(Yl+1 j Yl)p(Yl j Yl¡1)j¯l=¼=2
if 0< l < t,

p(Z1: t,Y0: t)j¯l=¼=2 if l = t:

(70)

Incorporating μ(k, l) new formula given by (70) in
£(k, l) formulation given by (61), yields

£(k, l) = ±fk=lg

2666664
¡¼p(Z1: t,Y0: t)j¯l=¼=2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3777775 :
(71)

Putting the new expression of £(k, l) given by (71) in
C0: t formula given by (58), we deduce that C0: t is a
diagonal matrix with diagonal element:

C0: t(l, l) =

2666664
1¡¼p(¯l)j¼=2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3777775 : (72)

APPENDIX B1. A CLOSED-FORM FOR P(YL+1 j YL)

The aim of this section is to derive the pdf of Yl+1
given Yl. The classical approach consists of proving
that there exists a function gYl (:) such that

P(Yl+1 2 A j Yl) =
Z
A

gYl (yl+1)d¸(yl+1)

8 A 2 B
³i
¡ ¼
2
,
¼

2

h
£R3

´ (73)

where B(]¡¼=2,¼=2[£R3) is the ¾-algebra of Borel
subsets of ]¡¼=2,¼=2[£R3 and ¸(:) is Lebesgue
measure. If this property is true then gYl (:) is the
distribution density function of Yl+1 given Yl. To obtain
this result we use the distribution density function
of Xl+1 given Xl. However, computation is not easy
because there is no direct bijection between Cartesian
and LPC system. We only have (7) and (8). Then we
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have

P(Yl+1 2 A j Yl)
= P(flpc (Xl+1) 2 A j Yl)
= P(flpc (Xl+1) 2 A j Yl,fry(l)> 0g)P(fry(l)> 0g j Yl)

(74)

+P(flpc (Xl+1) 2 A j Yl,fry(l)< 0g)P(fry(l)< 0g j Yl):
(75)

Then, using the pdf of Xl+1 given Xl and the change
of variable theorem, we obtain the pdf of Yl+1 given Yl:

p(Yl+1 j Yl) = r4l+1p(Xl+1 j Xl)®(Yl)
with

p(Xl+1 j Xl) =
1

4¼2
p
det(Q)

e¡
1
2 kXl+1¡AXl¡HUlk2Q ,

®(Yl) = 1fry(l)>0gP(fry(l)> 0g j Yl)
+ 1fry(l)<0gP(fry(l)< 0g j Yl):

(76)

One can remark that the Jacobian term is r4l+1 where
rl+1 is the relative range at time t+1. Moreover
p(Xl+1 j Xl) is the pdf of the diffusion process given
by (3). This term can be rewritten as function of
Yl and Yl+1 using Cartesian-to-LPC state mapping
function given by (7).

APPENDIX B2. LEMMA 2 PROOF

First Relation of Lemma 2

According to (4), the pdf of Zl given Yl is

p(Zl j Yl) =
1p
2¼¾¯

X
k2Z
e¡(Zl¡¯l¡k¼)

2=2¾2
¯1¡¼=2<Zl<¼=2:

(77)

We can see examples of pdf of Zl given Yl in Fig. 1.
Using p(Zl j Yl) given by (77), we can see that the first
relation of Lemma 2 is true.

Second Relation of Lemma 2

Looking at (76), we can see that we have just to
prove that

lim
¯l!¡¼=2

p(Xl j Xl¡1) = lim
¯l!¼=2

p(Xl j Xl¡1): (78)

Then we need to express Xl as a function which
depends on Yl. Using (7), we obtain

lim
¯l!¡¼=2

p(Xl j Xl¡1) = lim
¯l!¡¼=2

p(fclp(Yl) j Xl¡1)1ry(l)>0

+ lim
¯l!¡¼=2

p(¡fclp(Yl) j Xl¡1)1ry(l)<0
(79)

lim
¯l!¼=2

p(Xl j Xl¡1) = lim
¯l!¼=2

p(fclp(Yl) j Xl¡1)1ry(l)>0

+ lim
¯l!¼=2

p(¡fclp(Yl) j Xl¡1)1ry(l)<0:

Now if we note

X
¼=2
l = [rl 0 rl _½l ¡ rl _̄l]¤ (80)

we finally obtain

lim
¯l!¡¼=2

p(Xl j Xl¡1) = p(X¼=2l j Xl¡1)+p(¡X¼=2l j Xl¡1)
(81)

lim
¯l!¼=2

p(Xl j Xl¡1) = p(¡X¼=2l j Xl¡1)+p(X¼=2l j Xl¡1)

so that the second relation of Lemma 2 is true.

Third Relation of Lemma 2

Looking at (76), we can see that we have to prove
that

lim
¯l!¡¼=2

p(Xl+1 j Xl)®(Yl) = lim
¯l!¼=2

p(Xl+1 j Xl)®(Yl):
(82)

The proof is a little bit more difficult because we
need to study ®(Yl) limit. First let us remark that ®(Yt)
definition given by (76) can rewritten as

®(Yt) = P(ry(l)> 0 j jry(l)j)1fry(l)>0g
+P(ry(l)< 0 j jry(l)j)1fry(l)<0g: (83)

Now to study ®(Yl) limit, we need the following
lemma.

LEMMA 3 For X a scalar random variate

P(X > 0 j jXj= x) = pX(x)
pX(x)+pX(¡x)

P(X < 0 j jXj= x) = pX(¡x)
pX(x)+pX(¡x)

(84)

where pX is the pdf of X.

PROOF OF LEMMA 3 First let us remark that for a
positive ², we can write

P(X > 0 j jXj 2 [x¡ ²,x+ ²])

=

R x+²
x¡² pX(x)dxR x+²

x¡² pX(x)dx+
R ¡x+²
¡x¡² pX(x)dx

(85)

so that

M¡
² · P(X > 0 j jXj 2 [x¡ ²,x+ ²])·M+

²

with

M¡
² =

inf[x¡²,x+²]pX(x)
sup[x¡²,x+²]pX(x)+ sup[¡x¡²,¡x+²]pX(x)

M+
² =

sup[x¡²,x+²]pX(x)
inf[x¡²,x+²]pX(x)+ inf[¡x¡²,¡x+²]pX(x)

:

(86)
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Then let ² converge to zero so that the first relation
of the lemma is proved. The second relation is
straightforward.

Applying Lemma 3 with X = ry(l) and finally
remarking that lim¯l!¡¼=2 ry(l) = lim¯l!¼=2 ry(l) = 0,
we obtain

lim
¯l!¡¼=2

®(Yt) = lim
¯l!¼=2

®(Yt) =
1
2 (87)

so that

lim
¯l!¡¼=2

p(Xl+1 j Xl)®(Yl) = 1
2p(Xl+1 j ¡X¼=2l ) + 1

2p(Xl+1 j X¼=2l )

(88)

lim
¯l!¼=2

p(Xl j Xl¡1)®(Yl) = 1
2p(Xl+1 j X¼=2l ) + 1

2p(Xl+1 j ¡X¼=2l )

with X¼=2l defined by (80). The third relation of
lemma is proven.

APPENDIX C. PROPERTIES OF OPERATORS F
AND G

Operators F and G are defined by (33). Before
investigating the properties of such operators, let us
remark that these operators can be rewritten using
direct tensor product. First, let us study FXt which
represents the derivative of the LPC-to-Cartesian
mapping w.r.t. state in LPC. Using (7), we have

FXt =rYtfXtg=
½rYtfclp(Yt) if ry(t)> 0

¡rYtfclp(Yt) if ry(t)< 0:

(89)
Using now fclp definition given by (7), we have

rYtfclp(Yt) = rt

266664
cos¯t sin¯t 0 0

¡sin¯t cos¯t 0 0

_½t cos¯t¡ _̄
t sin¯t _½t sin¯t+

_̄
t cos¯t cos¯t sin¯t

¡ _½t sin¯t¡ _̄
t cos¯t _½t cos¯t¡ _̄

t sin¯t ¡sin¯t cos¯t

377775 : (90)

We can notice the block structure of rYtfclp(Yt).
Then using (89) and (90), FXt can be rewritten using
Kronecker products, so that (33) can be rewritten as

FXt = Id2£2−RXt +
·
0 0

1 0

¸
−VXt , GXt = Id2£2−VXt

where

RXt =

·
ry(t) rx(t)

¡rx(t) ry(t)

¸
and VXt =

·
vy(t) vx(t)

¡vx(t) vy(t)

¸
:

(91)

Now let us detail the basic properties of F: and G:
operators.

PROPERTY 1 G: and F: are linear operators, i.e., let
Xt and X̃t to state vector, then FXt+X̃t = FXt +FX̃t and
G
Xt+X̃t

=GXt +GX̃t .

PROPERTY 2 Reminding that

A=
·
1 ±t

0 1

¸
− Id2£2

terms GAkXt and FAkXt stand as follows:

FAkXt = FXt + k±tGXt , GAkXt =GXt : (92)

Proofs are omitted.

APPENDIX D. CLOSED FORMS FOR D11T , D
12
T AND

D22T AND D33T

We show in this section that (28) can be rewritten
as

D11t =
1
¾2max

EfF¤XtA¤Q¡1AFXtg

D12t =¡
1
¾2max

EfF¤XtA¤Q¡1FAXtg¡¨ 12
t

D22t =
1
¾2max

EfF¤AXtQ¡1FAXtg+ C+¨ 22
t

D33t =

26666664

1
¾2¯

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

37777775

(93)

with

¨ 12
t = F¤EXtA

¤Q¡1FEXt+1 ¡F¤EXtA¤Q¡1FAEXt

¨ 22
t = F¤EXt+1Q

¡1FEXt+1 ¡F¤AEXtQ¡1FAEXt

C =

0BBBBBBBB@

0 0 0 0

0 8 0 0

0 0
2®23

®3®1¡®22
0

0 0 0
2®23

®3®1¡®22

1CCCCCCCCA
:
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Considering at D11t , D
12
t and D22t and D33t formulas

given by (28), it is necessary to derive p(Yt+1 j Yt) and
p(Zt j Yt). According to Appendix B1:

p(Yt+1 j Yt) = r4t+1p(Xt+1 j Xt)®(Yt): (94)

More precisely, according to (28), we need
rYt lnp(Yt+1 j Yt), rYt+1 lnp(Yt+1 j Yt) and rYt lnp(Zt j Yt).
Using p(Yt+1 j Yt) as given by (94) and remarking that
rYt®(Yt) = 0, we obtain

rYt
p(Yt+1 j Yt)

=
1
¾2max

r4t+1F
¤
Xt
A¤Q¡1(Xt+1¡AXt¡Ut)p(Xt+1 j Xt)®(Yt)

rYt+1
p(Yt+1 j Yt) (95)

= r4t+1

μ
¡ 1
¾2max

F¤Xt+1Q
¡1(Xt+1¡AXt¡Ut) + [0 4 0 0]¤

¶
£p(Xt+1 j Xt)®(Yt)

where FXt is defined by (33). Then, using (94) and
(95), we obtain

rYt lnp(Yt+1 j Yt)

=
1
¾2max

F¤XtA
¤Q¡1(Xt+1¡AXt¡Ut)

(96)
rYt+1 lnp(Yt+1 j Yt)

=¡ 1
¾2max

F¤Xt+1Q
¡1(Xt+1¡AXt¡Ut)+ [0 4 0 0]¤:

Incorporating rYt lnp(Yt+1 j Yt), rYt+1 lnp(Yt+1 j Yt) given
by (96) in (28), we obtain:

D11t =
1
¾4max

EfF¤XtA¤Q¡1(Xt+1¡AXt ¡Ut)

¤ (Xt+1¡AXt ¡Ut)¤Q¡1AFXtg,

D12t =¡
1
¾4max

EfF¤XtA¤Q¡1(Xt+1¡AXt ¡Ut)

£ (Xt+1¡AXt¡Ut)¤Q¡1FXt+1g,

D22t =
1
¾4max

EfF¤Xt+1Q
¡1(Xt+1¡AXt¡Ut)

¤ (Xt+1¡AXt ¡Ut)¤Q¡1FXt+1g

¡ 1
¾2max

EfF¤Xt+1Q
¡1(Xt+1¡AXt¡Ut)g[0 4 0 0]

¡ 1
¾2max

[0 4 0 0]¤Ef(Xt+1¡AXt¡Ut)¤Q¡1FXt+1g

+[0 4 0 0]¤[0 4 0 0]: (97)

Now, we are dealing with the calculation of each
elementary term of (97) separately.
D11t Formula: Let us rewrite D11t as given by

(97), we have

D11t =
1
¾4max

EfF¤XtA¤Q¡1(Xt+1¡AXt¡Ut)(Xt+1¡AXt¡Ut)¤Q¡1AFXtg

=
1
¾4max

EfF¤XtA¤Q¡1Ef(Xt+1¡AXt¡Ut)(Xt+1¡AXt¡Ut)¤ j Xtg| {z }
=¾2maxQ

Q¡1AFXtg: (98)

Then using the statistical property of Xt+1 given Xt,

i.e., N (AXt+Ut,¾2maxQ) given by (3), we obtain D11t
formula as given by (93).

D12t Formula: Our aim is now to render explicit

D12t given by (97). Let us first use the linear property

of F::

D12t =¡
1
¾4max

=0z }| {
EfF¤XtA¤Q¡1(Xt+1¡AXt¡Ut)(Xt+1¡AXt¡Ut)¤Q¡1FXt+1¡AXt¡Utg

¡ 1
¾4max

EfF¤XtA¤Q¡1(Xt+1¡AXt¡Ut)(Xt+1¡AXt¡Ut)¤Q¡1FAXt+Utg: (99)

Using the statistical property of Xt+1, i.e., Xt+1 given
Xt is an N (AXt+Ut,Q), we obtain
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D12t =¡
1
¾2max

EfF¤XtA¤Q¡1FAXtg¡
1
¾2max

F¤EXtA
¤Q¡1FUt :

(100)

Now remarking that Ut = EXt+1¡AXt and the linearity
of operator F, we obtain D12t expression given by
(93).
D22t Formula: Starting from D22t given by (97)

and using again the linearity of F::

D22t =
1
¾4max

=0z }| {
EfF¤AXt+UtQ¡1(Xt+1¡AXt¡Ut)(Xt+1¡AXt¡Ut)¤Q¡1FXt+1¡AXt¡Utg

+
1
¾4max

EfF¤AXt+UtQ¡1(Xt+1¡AXt¡Ut)(Xt+1¡AXt¡Ut)¤Q¡1FAXt+Utg+ C (101)

with

C = 1
¾4max

EfF¤Xt+1¡AXt¡UtQ¡1(Xt+1¡AXt¡Ut)(Xt+1¡AXt¡Ut)¤Q¡1FXt+1¡AXt¡Utg

¡ 1
¾2max

EfF¤Xt+1¡AXt¡UtQ¡1(Xt+1¡AXt¡Ut)g(0 4 0 0)

¡ 1
¾2max

Ef(0 4 0 0)¤E(Xt+1¡AXt¡Ut)¤Q¡1FXt+1¡AXt¡Utg+(0 4 0 0)¤(0 4 0 0):

Let us notice that we can show using F definition
given by (33) and the statistical property of Xt+1
(i.e., Xt+1 given Xt is N (AXt+Ut,¾2maxQ) distributed)
that the C definition given by (102) is equivalent to
the C definition given by (93). Now, using again the
statistical property of Xt+1, we obtain

D22t =
1
¾4max

EfF¤AXt+UtQ¡1(Xt+1¡AXt¡Ut)

£ (Xt+1¡AXt¡Ut)¤Q¡1FAXt+Utg+ C:
(102)

To end the proof, the linearity of the operator F and
the equality Ut = EXt+1¡Xt allow us to infer (93)
from (102).

APPENDIX E1. PROOF OF PROPOSITION 5.1

The proof of Proposition 5.1 is based on the
properties of FXt and GXt investigated in Appendix C.
Developing ¡ 11t given by (35) and using the linearity
of operator F, we obtain

¡ 11t = −11 +
1
¾2max

0BBBB@
EfF¤(AXt¡1+Ut¡1)A¤Q¡1AF(AXt¡1+Ut¡1)g
EfF¤(AXt¡1+Ut¡1)A¤Q¡1AG(AXt¡1+Ut¡1)g
EfG¤(AXt¡1+Ut¡1)A¤Q¡1AF(AXt¡1+Ut¡1)g
EfG¤(AXt¡1+Ut¡1)A¤Q¡1AG(AXt¡1+Ut¡1)g

1CCCCA

where

−11 =
1
¾2max

0BBBBBB@

EfF¤(Xt¡AXt¡1¡Ut¡1)A¤Q¡1AF(Xt¡AXt¡1¡Ut¡1)g

EfF¤(Xt¡AXt¡1¡Ut¡1)A¤Q¡1AG(Xt¡AXt¡1¡Ut¡1)g

EfG¤(Xt¡AXt¡1¡Ut¡1)A¤Q¡1AF(Xt¡AXt¡1¡Ut¡1)g

EfG¤(Xt¡AXt¡1¡Ut¡1)A¤Q¡1AG(Xt¡AXt¡1¡Ut¡1)g

1CCCCCCA :

(103)

Now remarking that Ut¡1 = EXt¡AEXt¡1 and using
linear property of operator F, we obtain

¡ 11t =−11 +
1
¾2max

0BBBBBB@

EfF¤AXt¡1A¤Q¡1AFAXt¡1g

EfF¤AXt¡1A¤Q¡1AGAXt¡1g

EfG¤AXt¡1A¤Q¡1AFAXt¡1g

EfG¤AXt¡1A¤Q¡1AGAXt¡1g

1CCCCCCA+¤
11
t¡1

(104)

where ¤11t¡1 is defined by (36). According to Appendix
C, FAXt¡1 = FXt¡1 + ±tGXt¡1 and GAXt¡1 =GXt¡1 , so that

¡ 11t = −11 +ª¡ 11t¡1 +¤
11
t¡1 (105)

where ª is defined by (36). It remains to show that
−11 has a more simple formula using the following
lemma.

LEMMA 4 For X and Y two state vectors, let us define

£ =

0BBBBB@
E(F¤X (§− Id2£2)FY)
E(F¤X (§− Id2£2)GY)
E(G¤X(§− Id2£2)FY)
E(G¤X(§− Id2£2)GY)

1CCCCCA (106)

where operators F and G are defined by (33). Then
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£ =

0BBB@
§−EfR¤XRYg+§-−EfV¤XVYg+§#−EfV¤X RYg+§"−EfR¤XVYg

§"−EfV¤X VYg+§−EfR¤XVYg
§Ã−EfV¤XVYg+§−EfV¤X RYg

§−EfV¤X VYg

1CCCA

where

§" =
·
0 1

0 0

¸
§, §Ã =§

·
0 0

1 0

¸

§- =
·
0 1

0 0

¸
§

·
0 0

1 0

¸
:

(107)

PROOF OF LEMMA 4 We just have to rewrite (106)
using F and G formulas given by (33). We prove
Lemma 4 using direct tensor product properties.

To end the proof, Lemma 4 is applied with

X = Xt¡AXt¡1¡Ut¡1
Y = Xt¡AXt¡1¡Ut¡1

§− Id2£2 =
1
¾2max

A¤Q¡1A:

(108)

Then, using the statistical property of Xt, i.e., Xt given
Xt¡1 is N (AXt¡1 +Ut¡1,¾2maxQ)-distributed, we obtain

EfR¤XRYg= 2¾2max®3Id2£2
EfR¤XVYg= 2¾2max®2Id2£2
EfV¤X RYg= 2¾2max®2Id2£2
EfV¤XVYg= 2¾2max®1Id2£2

(109)

so that −11 is given by (101).

APPENDIX E2. PROOF OF PROPOSITION 5.2

Using the same approach as in Proposition 5.1
proof, we have

¡ 12t =−12 +ª¡ 12(t¡ 1)+¤12t¡1
where ª and ¤12t¡1 are given by (36) and (42) and

−12 =
1
¾2max

0BBBBB@
EfF¤(Xt¡AXt¡1¡Ut¡1)A¤Q¡1FA(Xt¡AXt¡1¡Ut¡1)g

EfF¤(Xt¡AXt¡1¡Ut¡1)A¤Q¡1GA(Xt¡AXt¡1¡Ut¡1)g

EfG¤(Xt¡AXt¡1¡Ut¡1)A¤Q¡1FA(Xt¡AXt¡1¡Ut¡1)g

EfG¤(Xt¡AXt¡1¡Ut¡1)A¤Q¡1GA(Xt¡AXt¡1¡Ut¡1)g

1CCCCCA :

(110)

Lemma 4 is again the key for simplifying −12, and is
used with

X = Xt¡AXt¡1¡Ut¡1
Y = A(Xt¡AXt¡1¡Ut¡1)

§− Id2£2 =
1
¾2max

A¤Q¡1:

(111)

Now, using the statistical property of Xt, i.e., Xt given
Xt¡1 is N (AXt¡1 +Ut¡1,¾2maxQ)-distributed, we obtain
for −12 the simple formula given by (39).

APPENDIX E3. PROOF OF PROPOSITION 5.3

The proof again mimics that of Proposition 5.1.
Thus, we first obtain

¡ 22t =−22 +ª¡ 22t¡1 +¤
22
t

where ª and ¤22t¡1 given by (36) and (42), and

−22 =
1
¾2max

0BBBB@
EfF¤A(Xt¡AXt¡1¡Ut¡1)Q¡1FA(Xt¡AXt¡1¡Ut¡1)g
EfF¤A(Xt¡AXt¡1¡Ut¡1)Q¡1GA(Xt¡AXt¡1¡Ut¡1)g
EfG¤A(Xt¡AXt¡1¡Ut¡1)Q¡1FA(Xt¡AXt¡1¡Ut¡1)g
EfG¤A(Xt¡AXt¡1¡Ut¡1)Q¡1GA(Xt¡AXt¡1¡Ut¡1)g

1CCCCA :
(112)

We prove now that −22 has a more simple formula
using Lemma 4 with

X = A(Xt¡AXt¡1¡Ut¡1)
Y = A(Xt¡AXt¡1¡Ut¡1)

§− Id2£2 =
1
¾2max

Q¡1:

(113)

Then, using the statistical property of Xt, i.e., Xt given
Xt¡1 is N (AXt¡1 +Ut¡1,¾2maxQ)-distributed, we obtain
for −22 the formula given by (42).
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