
www.elsevier.com/locate/inffus

Information Fusion 7 (2006) 285–303
Target motion analysis and track association with a network
of proximity sensors

Régis Donati a, Jean-Pierre Le Cadre b,*

a Department of Undersea Warfare, DSA/SPN/ST/LSM, 8 bd Victor, 00303 Paris Armees, France
b IRISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France

Received 23 August 2004; received in revised form 8 February 2005; accepted 8 February 2005

Available online 12 March 2005
Abstract

Target motion analysis and track association are the aims of this paper. It is assumed that the target trajectory is only partially

observable by using temporal processing of a single sensor. Thus, original algorithms have been developed for fusing local estimates.

Though suboptimal, such algorithms are feasible and close to optimality. Their performances have been theoretically investigated.

Another problem is track-to-track association, the aim of which is to perform decision if the tracks estimated by two local sub-

systems are related to a single target or not and for which an original approach has been developed. This study is illustrated by a

specific case study: the detection of a moving target by stationary electric sensors.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Detection and target motion analysis are usually dis-

connected. It is generally assumed that detection has

been achieved at a signal processing level, while target
motion analysis is more relevant of information process-

ing. Even if the aim of surveillance devices (e.g. sonar,

radar systems) is to detect, track and classify a very large

number of targets, the following problem has its own

importance: How to detect a (unique) target crossing a

sensor network?

Some remarks will enlighten the relevance of this

problem. First, for many applications, the detection
range of an elementary sensor is limited; thus a very rea-

sonable assumption is that it can detect at most one
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target, sufficiently close.1 Second, due to this limited

detection range, the interest of centralized processing

may be seriously mitigated due to the fact that the sig-

nal-to-noise ratios are too much different and further-

more unknown. A practical consequence is that it is
likely that a moving target can be perceived by at most

one sensor of the network, at each time-period. Third,

since spatial discrimination is not relevant in this con-

text, the only way to detect at the sensor level is to use

temporal processing so as to (partially) estimate the tar-

get motion. Detection at the network level will be

achieved by gathering the partial target motion esti-

mates for deciding if they have a common origin.
For the sake of simplicity, we shall mainly restrict

to a rectilinear and uniform motion model. Of course,

this is not restrictive but extensions are beyond this

paper scope. The problem we consider is (relatively)
1 This point will be made more precise in Section 5 see the ‘‘cookie-

cutter’’ sensor range.
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independent of the sensor nature, which may be acous-

tic, magnetic, etc. The crucial point is that the elemen-

tary sensors are fixed and work in passive mode; thus,

target motion model is only partially observed. This

leads us to consider the following problem [3]: how is

it possible to fuse these partial estimates so as to jointly

perform a complete estimation of the target trajectory

and a track detection?

This subject has been the object of fruitful research.

Detection by a field of fixed sensors has been rather

extensively considered in the search theory literature.

We refer to the original work of Koopman [11] for a

general and technical presentation. Additional insights

can be found in [20,22]. Associating the partial estimates
is another problem. Important contributions include the

works of Mucci et al. and of La Scala and Farina [17].

The scopes of this paper and of the recent paper of Wet-

tergren et al. [23] are rather similar. However, the infor-

mation which is considered at the sensor level in [23] is

only reduced to a CPA information. Authors then devel-

oped an original method for target tracking via geomet-

ric invariants.
For all these methods, performance analysis is an

important concern. It has been investigated by La Scala

and Farina [17,18], with interesting and insightful re-

sults. Here, our aim is to provide a general presentation

of performance analysis of the fusion methods.

To illustrate these ideas, an original problem is pre-

sented. More specifically, we shall consider as an appli-

cation the detection of an underwater moving target
going through a network made of electric sensors. Actu-

ally, various phenomena such as galvanic corrosion be-

tween the hull and the propeller [1] will induce a static

electric field known as the UEP (underwater electric po-

tential) field [1]. In Section 2, the signal processing con-

text is briefly presented. Of course, centralized

processing is optimal from an idealized signal processing

perspective. However, for reasons which have been pre-
sented above it is also irrelevant in this context. This is

followed by a brief presentation of the calculation of

the probability that the target be detected by at least

one sensor of the array (Section 3).

Thus, fusion of partial target motion analysis (TMA)

‘‘tracklets’’ is considered in Section 4 in order to perform

a complete estimation of the target trajectory from par-

tial ones. Various fusion rules are examined. Under the
assumption of correct association, their performances

and advantages are analyzed and compared. However,

a difficult problem remains: tracklet association and

more specifically the validity of the unique track assump-

tion. To that aim, an original tracklet distance is defined

and its performance is analyzed. Then, testing for correct

association is considered [5] in Section 5. Its aim is to test

the association of partial tracks, estimated at the sensor
level. Monte Carlo simulations show good agreement

with theoretical prediction of performance.
Principal notations:
• FIM: the Fisher information matrix,

• cpa: the closest distance from sensor to target, tcpa:
the time instant of CPA, d the intersensor distance,

• X = {cpa,v,h, tcpa}: the complete target state vector,

YðXÞ ¼ a ¼ cpa
v ; h; tcpa

� �
the partial target state

vector,

• AT: the transpose of the A matrix, NðX; CÞ the nor-

mal distribution with mean X and covariance matrix

C,

• hX,Yi: scalar product of the two vectors X,Y, kXk:
norm of the X vector,

• det(A) the determinant of a (square) matrix A (also

denoted jAj),
• bXf corresponds to a fused estimator whatever the

fusion method is,

• PD, PFA, PFAS: probability of detection, false alarm,

false association.
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2. Processing at the elementary receiver level

In this section, we shall briefly present a model for the

(signal) processing at the elementary receiver level. Note

that a model of the same type can be considered for
acoustic sensors [2,16] and more generally passive prox-

imity sensors. The presentation of this part is deliber-

ately made short since its aim is only to provide a

modelling of the low-level processing. More details

about the expression of the analyzed signal (here electric

field e(t)) can be found in [4], where it is also explained

that e(t) is a function of three parameters which are:

• the ratio a , cpa
v ; cpa minimal target receiver distance,

v target speed,

• the time of the closest distance target-receiver (CPA),

denoted tcpa,

• the target heading h,

so that the following spatio-temporal modelling of the

sensor output is appropriate:

zt ¼ eðY; tÞ þ nt;

where Y ¼ a ,
cpa
v
; tcpa; h

h iT

: ð2:1Þ

A common feature of short-range sensors is that the re-

ceived signal is modelled in terms of a specific target tra-

jectory parameterization (denoted as CPA coordinates

for the sequel), i.e. {cpa,v, tcpa,h} (see Fig. 2). These

coordinates which are well adapted to distributed net-
works are presented in Appendix A. Notice furthermore

that the target trajectory is (generally) only partially ob-

servable, which means that the dimension of the obser-

vable space is three (i.e. dim(Y)).
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Fig. 2. Kinematic definitions and notations.
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Fig. 1. Theoretical UEP signature of a moving source.
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An example of the ‘‘theoretical’’ electric signature of

a moving target is shown in Fig. 1. Notice the strong

change which occurs at CPA. Defining the ‘‘signature’’

U(Y) by normalization2 of the UEP vector
EðYÞðEðYÞ , KUðYÞÞ, maximizing the likelihood re-

verts to findingbY ¼ arg max
Y
ðhZ;UðYÞi2Þ; bK ¼ hZ;UðbYÞi: ð2:2Þ

Thus, the parameter vector bY is estimated by selecting

the normed signal U(Y) which maximizes the energy of

the projection of the observation vector Z on the

{U(Y)} basis (matched filtering). Though stationarity

hypothesis is clearly irrelevant for this type of problem,3

it has been shown in [4] that the above estimates of the

parameter vector Y ¼ ða ¼ cpa
v ; h; tcpaÞ are asymptotically

optimal. We refer to [15] for a presentation of the anal-

ysis of asymptotic performance in the non-stationary

case. More precisely, denoting FIM the Fisher informa-

tion matrix and N the normal density, we have

½bY � Y� !N

0

0

0

264
375; ½FIMY��1

0B@
1CA; ð2:3Þ
2 i.e. UðYÞ ¼ ð1=kEðYÞkÞEðYÞ, K: signal-to-noise ratio.
3 Estimating the Y vector is made possible only by the changes of

observation means.
with

½FIMY�ði; jÞ ¼ K2 oUðYÞ
oY i

;
oUðYÞ
oY j

� �� �
1 6 i; j 6 3:

ð2:4Þ

Actually, this type of modelling is quite general for
proximity sensors. For instance, we know, it is shown

(see Appendix A) that the effect of motion (Doppler ef-

fect) on an emitted signal (frequency f0) results in a fre-

quency shift

ft ¼ f0 1� v sinðht þ btÞ
c

� 	
; ð2:5Þ

(c: wave velocity), where bt is the target azimuth and ht

its heading, and where the temporal evolution of the

bearing angle bt is given by (see Appendix A)

sinðbtÞ ¼
�a sin hþ ðt � tcpaÞ cos h
a cos hþ ðt � tcpaÞ sin h

: ð2:6Þ

Then, it can be shown (see [19]) that the dimension of

the observable space is three. Thus, this observable

space can be parameterized by the partial CPA coordi-

nates cpa
v ; h; tcpa

� �
. Let us stress that there is a 1:1 corre-

spondence between Cartesian coordinates and CPA

ones (see Appendix A). The principal motivation for

introducing CPA coordinates is that it is the natural

parameterization of the observable space for a proximity

sensor (see Appendix A).

Let us go now to the general setting of the problem.

The basic scenario we shall consider is made of two sen-

sors observing the same moving target, as depicted in

Fig. 2. Throughout this paper, it is assumed that the tar-

get motion is rectilinear and uniform.

The first way to process the observations collected by
the two sensors is to consider them as a whole and to ap-

ply matched filtering to this concatenated observation Z

ðZ ¼ ðZT
1 ;Z

T
2 Þ

T
). This is the centralized processing. The

observation is then modelled as
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Fig. 3. The multilevel distributed processing.
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Z ¼ EðXÞ þN ¼
EðY1ðXÞÞ
EðY2ðXÞÞ

� 	
þ

N1

N2

� 	
;

where

X ¼ ðcpa1; v; h; tcpa1
ÞT;

Y1ðXÞ ¼ ða1 , cpa1=v; h; tcpa1
ÞT;

Y2ðXÞ ¼ ða2 , cpa2=v; h; tcpa2
ÞT;

a2 ¼ a1 � ðd=vÞ sin h; tcpa2
¼ tcpa1

þ ðd=vÞ cos h:

ð2:7Þ

Unfortunately, the centralized processing suffers from

serious drawbacks. Among them are computation and,

overall, communication requirements. More fundamen-

tally is the fact that for short range sensors, the decrease

of the signal-to-noise ratio as a range function makes

that if a sensor ‘‘sees’’ the target, it is undetected by most

of the other ones (see Section 3). Practically, this means
that the useful information, i.e. a target is in the range

detection of a proximity sensor is ‘‘diluted’’ in noise only

observations. Furthermore, it is not realistic that reliable

modelling of the signal-to-noise ratios are available at

each time-period and for each sensor. This is a very fun-

damental difference with ‘‘classical’’ array processing

and the basic motivation of this paper.

Nevertheless, it will play the role of the idealized ref-
erence. Rather surprisingly, we will show that subopti-

mal (distributed) processing is very close to optimality,

while having definite advantages.

Thus, our general aim will be the association of the

outputs of the elementary receivers so as to have an esti-

mation of the complete trajectory vector X (X = (cpa,v,

h, tcpa)T) from the partial estimates obtained on each

sensor. Using elementary calculations.4 The following
deterministic formulas are then straightforwardly de-

duced from Eqs. (A.1) and (A.2):

cpa2

v
¼ a2 ¼ a1 �

d
v

sinðhÞ;

tcpa2
¼ tcpa1

þ d
v

cosðhÞ;
ð2:8Þ

as well as the statistical distribution of the partial target

trajectory estimates

â1

ĥ1

t̂cpa1

0B@
1CA!N

a1

h

tcpa1

0B@
1CA; C1

264
375:

â2

ĥ2

t̂cpa2

0B@
1CA!N

a2

h

tcpa2

0B@
1CA; C2

264
375:

ð2:9Þ

From now on, we shall consider that the vectors of par-

tial estimates bY1 , ðâ1; ĥ1; t̂cpa1
ÞT and bY2 , ðâ2; ĥ2; t̂cpa2

ÞT
4 Change from Cartesian to CPA coordinates is detailed in Appendix

A.
as the observations. As it is a reasonable assumption to

consider them as uncorrelated, they will be called ‘‘trac-

klets’’. If the observation vectors bY1 and bY2 corresponds

to the observation of the same target, then the following

relations hold true:bY1 ¼ Y1ðXÞ þN1; bY2 ¼ Y2ðXÞ þN2;

Y2ðXÞ ¼ Y1ðXÞ þ
� d

v sinðhÞ
0

d
v cosðhÞ

0B@
1CA; ð2:10Þ

where X is the complete target trajectory parameteriza-

tion. Thus, the problem we have to solve is twofold.

In a first step it is necessary to estimate the X vector

from bY1 and bY2. Under the perfect association hypoth-

esis, this is achieved by fusing either partially (the fâ1;2g,
or the f̂tcpa1;2

g), or both (the track association fusion
rule) or optimally (i.e. the whole set of parameters).

The second step is to test the validity of associating

the vectors bY1 and bY2, which means: does they corre-

spond to a unique target? It is worth noting that these

two steps cannot be separated. An overview of the ele-

mentary case study is provided in Fig. 3. A preliminary

step is to consider the detection of a moving target as a

function of the sensor array characteristics. This is the
object of the (short) next section.
3. Detection with an array of sensors

The aim of this section is to determine the detection

performance of a network made of identical sensors,

each one using the GLRT
5 test (see Eq. (2.2) and [4]) with

the same threshold. Since this preliminary state is a fun-

damental prerequisite before associating and testing, it

deserves some interest, exemplified by recent publica-

tions on this subject [14,23]. First, let us precise the

objective we have in mind.
5
GLRT: Generalized Likelihood Test.
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Definition 1. A (moving) target is said detected by the

sensor network if it has been detected by at least one

sensor.

Of course, other definitions are possible; e.g. a major-

ity rule, etc. But, the framework would be identical

though more complicated. The network we will study

is depicted in Fig. 4. So, it is simply a linear array (strait
interdiction) made of N equispaced sensors.

Thus, in this way, sensor ‘‘cooperation’’ is made

as elementary as possible. Our objective is to fix the

PFA of the whole sensor network at a given level

(PFA,array = g). Assuming independent noises on the var-

ious sensors, we have

P FA;array ¼ 1� Prob: no sensor generates a false alarm½ �
¼ 1� ð1� P FA;sensorÞN : ð3:1Þ

So, in order that PFA,array be at the fixed level, it is nec-

essary to impose

P FA;sensor ¼ 1� ð1� gÞ
1
N � g

N
: ð3:2Þ
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Fig. 5. (left) Lateral range curve: probability of detection (y-axis) versus rang

number (see Fig. 4).
From this relation, it is then possible to infer the detec-

tion threshold we must apply on each sensor. To inves-

tigate the detection capabilities of the sensor network,

we shall define now the typical target characteristics. A

reasonable assumption is that it is going right on the net-

work, with a heading close to 90�. Moreover, its speed is
approximately known (mechanical and discretion con-

straints) as well as its electric momentum (the value of

the SNR K).

The target trajectory is thus parameterized by the

abscissa (denoted x) of its intersection with the

array line. In the absence of specific information, X

(which is the random variable associated with x) can

be supposed uniformly distributed in the interval [0, L].
Recalling the expression of the elementary probability

of detection for a unique sensor (see Section 3), we

deduce that the probability of detection for a sensor

located at the abscissa i d (d: elementary intersensor

distance) is

P D;sensoriðxÞ ¼
Z 1

g
v2

4ðK2ðx� idÞ; uÞdu;

K given by Eq: (2.2): ð3:3Þ

This expression can be used to plot the so-called

lateral range curve [20]. This curve gives, for a typical

target, the probability of detecting a moving target as

a function of the cpa parameter sensor (for a given prob-
ability of false alarm), for a unique sensor. For example,

such a curve is plotted on Fig. 5(left) for a target defined

by

• electric momentum: 50 A m, noise variances:

200n V2/m2;

• speed: 5 m/s, heading: 90�;

when the false alarm rate is 0.01.

Using the independence assumption for the noises

incoming the various sensors, we obtain the detection
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probability of the whole array for a target crossing it at

X = x:

P D;arrayðxÞ¼1�Prob no sensor detect:½ �; ð3:4Þ

1�
YN
i¼1

1�
Z 1

g
v2

4ðK2ðx� idÞ;uÞdu
� �

: ð3:5Þ

Then, as X is uniformly distributed along [0, L], the

detection probability of the whole array for a typical tar-

get supposed to cross it anywhere stands as follows:

P D;array ¼ 1� 1

L

Z L

0

YN
i¼1

1�
Z 1

g
v2

4ðK2ðx� idÞ; uÞdu
� �

dx:

ð3:6Þ

We note that the global probability of detection depends

on the desired global false alarm probability and of the
number of sensors. So, it is possible to determine the

sensor number we need for protecting an area of length

L against a typical target, with a given probability of

detection and a fixed global false alarm probability.

The detection probability of the array is represented

on Fig. 5(right) as a function of the number of sensors.

Parameters are those of Fig. 5(left), with L = 8000 m

and a global PFA of 10�1.
This type of curve can be used in order to predict the

performance of a given network relatively to a typical

target or to determine the required number of sensors

in order to achieve a given level of performance (for a

given area and for a typical target). In fact, a rough

‘‘explanation’’ of Fig. 5(right) is provided by Figs. 4

and 5(left). The receiver detects in a ‘‘cookie-cutter’’

fashion [11,20]. So, the global probability of the array
is rapidly increasing when the elementary detection disks

become closer.

Actually, the detection process has been very roughly

modelled in this section. Practically, sensors are able to

provide much more than a ‘‘simple’’ detection (i.e. a bin-

ary information). They can provide partial estimates of

the target trajectories as well as an estimation of their

accuracies. The problem is now to fuse these (partial)
estimates so as to consider jointly target detection and

motion analysis at the network level. This will be the ob-

ject of the incoming sections.
6 The symbol ¼1 means first-order expansion. Note that first-order

expansion is generally sufficient for approximating the variance of an

estimator; while a second-order expansion is a prerequisite for

estimating the bias.
4. Fusing local estimates (tracklets)

The problem we have to deal now is to fuse the local
estimates (tracklets) for inferring an estimation of the

complete target state. Thus, various approaches are con-

sidered, with various advantages and disadvantages.

Such comparison relies essentially on performance anal-

ysis which constitutes an important contribution of this

section. Section is organized as follows:
• Fusion of local estimates of the a = cpa/v ratios.

• Fusion of local estimates of tcpa.

• The (symmetric) track association fusion.

• The optimal fusion.

4.1. Fusion of local estimates of the a = cpa/v ratios

Our aim is to obtain an explicit estimate (say X̂) of

the complete state vector from the partial ones, esti-

mated at the sensor level. Let us detail now the various

steps of this approach. From the local estimates of the

target heading on sensor 1 and 2 (say ĥ1 and ĥ2), we de-

duce the following (fused) estimate (say ĥf ):

ĥf ¼
1

r2
h1
þ r2

h2

ðr2
h2

ĥ1 þ r2
h1

ĥ2Þ: ð4:1Þ

From the deterministic relation v ¼ d sinðhÞ
a1�a2

(see Eq. (2.8)),

the following speed estimator v̂ is considered:

v̂f ¼
d sinðĥf Þ
â1 � â2

; ð4:2Þ

ĥf being given by (4.1). The parameter v being esti-

mated, cpa1 is trivially (though suboptimally) estimated

from

dcpa1 ¼ v̂f â1 ¼ â1

d sinðĥf Þ
â1 � â2

: ð4:3Þ

So that, finally, this fusion rule takes the following form

(d: intersensor distance):

ĥf ¼ 1
r2

h1
þr2

h2

r2
h2

ĥ1þr2
h1

ĥ2


 �
! v̂f ¼ d sinðĥÞ

â1�â2
; ðdcpa1Þf ; ð̂tcpa1

Þ:

ð4:4Þ
We have just obtained a simple estimator of the com-

plete target state vector X. Even if this estimator cannot

pretend to optimality, it has the advantage to be explicit

and its performance can be calculated by means of ele-

mentary calculations. For that aim, we consider the fol-

lowing first-order expansions6:

ĥf ¼
1

hþ eh;

v̂f ¼
d sinðĥf Þ
ðâ1 � â2Þ

¼ d sinðĥf Þ
ða1 þ ea1

� a2 � ea2
Þ

¼1 vþ d cosðhÞ
ða1 � a2Þ

eh � v
ea1
� ea2

a1 � a2

� 	
:

ð4:5Þ

This last approximation is not valid if the target trajec-

tory is parallel to the array. Indeed, in this case, the ra-

tios a = (cpa/v) are identical with a zero difference. So,

this fusion rule is of no interest when the target heading
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is close to 0 degree. If the target heading is reasonably

far from 0 degree, we can derive from Eq. (4.3) the fol-

lowing equalities:

dcpa1 f ¼ â1

d sinðĥf Þ
ðâ1 � â2Þ

;

¼1 cpa1 þ vea1
þ a1

d cosðhÞ
a1 � a2

eh � v
ea1
� ea2

a1 � a2

� �
:

ð4:6Þ
Collecting and rewriting the preceding expansions in a

matrix form, the asymptotic performance of this X esti-

mate is

dcpa1 f

v̂f

ĥf

t̂cpa1

0BBBB@
1CCCCA!N

cpa1

v

h

tcpa1

0BBB@
1CCCA; M1C1MT

1 þM2C2MT
2

26664
37775;
ð4:7Þ

where

M1 ¼

�v
a2

a1 � a2

� 	
a1d cosðhÞ
a1 � a2

r2
h2

r2
h1
þ r2

h2

0

� v
a1 � a2

d cosðhÞ
a1 � a2

r2
h2

r2
h1
þ r2

h2

0

0
r2

h2

r2
h1
þ r2

h2

0

0 0 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
and

M2 ¼

v
a1

a1 � a2

� 	
a1d cosðhÞ
a1 � a2

r2
h1

r2
h1
þ r2

h2

0

v
a1 � a2

d cosðhÞ
a1 � a2

r2
h1

r2
h1
þ r2

h2

0

0
r2

h1

r2
h1
þ r2

h2

0

0 0 0

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: ð4:8Þ

In the above equation, the Ci (i = 1,2) matrices are un-

known. However, a reasonable assumption is that they

can be tightly approximated by the Fisher Information

matrices FIMbY i
, where bY i is itself given as a solution

of the maximization problem (2.2). Note that these

matrices are considered at the signal processing level

(see Fig. 3). Estimating the FIM requires to estimate
the SNR factor K2 ((2.4) and see [4]), which may be

achieved by means of a standard time series method

(regression) once X̂ has been obtained.

Now, to investigate the performance of the fusion

rule the volume of the covariance matrix of X̂ is insight-

ful and the following result is particularly appealing.
Proposition 1. Consider the uncertainty volume related

to the (cpa/v) fusion rule, then the following results hold:

The covariance matrix of X̂f is approximated by the

matrix M1C1MT
1 þM2C2MT

2 (see Eq. (4.8)) whose deter-

minant can be factored as:

If C1 ¼ C2 ¼ C;

then detðM1CMT
1 þM2CMT

2 Þ
¼ uðCÞ detðM1MT

1 þM2MT
2 Þ;

so that

detðM1CMT
1 þM2CMT

2 Þ ¼ uðCÞ v4

ða1 � a2Þ2

" #
;

and; more generally;

detðM1C1MT
1 þM2C2MT

2 Þ

¼ uðC1;C2Þ
ðr4

h1
þ r4

h2
Þv4

ða1 � a2Þ2ðr2
h1
þ r2

h2
Þ2

" #
:

ð4:9Þ

The functionals u(C) and u(C1,C2) are only related to the

signal processing performance.

For a proof, we refer to Appendix B. The importance

of the above result is that the effects of the signal pro-

cessing performance (the C matrix) on the one hand,

and of the fusion step on the other, appear clearly sepa-
rated. This result is not fortuitous and is tightly related

to basic results of multilinear algebra (see Appendix B).

Another important consequence is the expression of the

scalar functional u(C). For instance, elementary calcula-

tions yield the following results:

if C ¼ diagða; b; cÞ;

then uðCÞ ¼ 1

4
a2bcða ¼ r2

a; b ¼ r2
h; c ¼ r2

tcpa
Þ;

if C ¼ Toeplitzða; b; cÞ;

then uðCÞ ¼ 1

4
ðða� cÞð2a3 � 3ab2 þ 2a2c� b2cÞÞ

� ðrh1
¼ rh2

Þ;

if C1 ¼ diagða; b; cÞ and C2 ¼ diagða0; b0; cÞ;

then uðC1;C2Þ ¼
1

4
aa0

bþ b0

2

� 	
c: ð4:10Þ

Even if the effect of the target-receiver basis is clearly

stated in Proposition 1 (the v4/(a1 � a2)2 term), the
function u(C) emphasizes the influence of the quality

of estimation of the Yi components. An interesting

consequence is that the fusion rule can be chosen so as

to minimize u(C). Finally, under the assumption C =

diag(a,b,c) the asymptotic variance of the X̂ compo-

nents are given by (rh1
¼ rh2

)
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varðdcpa1Þ ¼
2aðcpa2

1 þ cpa2
2Þv2 þ cpa2

1bd2ðcosðhÞÞ2

2ðcpa1 � cpa2Þ
2

;

varðv̂Þ ¼ 4av4 þ bd2v2ðcosðhÞÞ2

2ðcpa1 � cpa2Þ
2

;

varðĥÞ ¼ b
2
; varð̂tcpa1

Þ ¼ c: ð4:11Þ

Though effect of the CPA fusion on varðĥÞ and varð̂tcpa1
Þ

is not surprising, effects on unobserved parameters (i.e.

varðdcpa1Þ and varðv̂Þ) are much more informative. In

particular, importance of the (cpa1 � cpa2) term is put

in evidence. To end this section, it remains to approxi-
mate the bias of this fusion rule. A second-order expan-

sion of v̂ and dcpa1 yields

BiasðX̂ðcpa=vÞÞ ¼ 2
v2

d2sin2ðhÞ
r2

a �
1

2
r2

h

 ! 0

v

cpa1

0

0BBBB@
1CCCCA:
ð4:12Þ

A similar expression holds for the tcpa fusion rule. Con-
sidering Eqs. (4.12) and (4.11), we note that the effect of

the bias may be not negligible versus variance ones.

4.2. Fusion of local estimates of tcpa

The other approach is valid when the target trajec-

tory is approximately parallel to the array line and is

based upon the fusion of the two estimates t̂cpa1
and

t̂cpa2
. To be more precise, from the deterministic relation

(see Eq. (2.8)) tcpa2
¼ tcpa1

þ d
v cosðhÞ, we deduce

v ¼ d cosðhÞ
tcpa2
� tcpa1

;

and the following estimators of the target velocity and

cpa:

v̂f ¼
d cosðĥf Þ

t̂cpa2
� t̂cpa1

;

dcpa1 f ¼ â1

d cosðĥf Þ
t̂cpa2
� t̂cpa1

:

So, that the whole algorithm takes the following form:

ĥf ¼ 1
r2

h1
þr2

h2

ðr2
h2

ĥ1 þ r2
h1

ĥ2Þ ! v̂f ¼
d cosðĥf Þ

t̂cpa2
� t̂cpa1

;

dcpa1 f ð̂tcpa1
Þ: ð4:13Þ

In order to calculate the performance of this estimator

we consider again expansions relatively to the elemen-

tary errors, yielding
v̂ ¼ d cosðhþ ehÞ
ðtcpa2

þ etcpa2
� tcpa1

þ etcpa1
Þ

¼1 v� d sin h
tcpa2
� tcpa1

eh � v
etcpa2
� etcpa1

tcpa2
� tcpa1

� 	
: ð4:14Þ

Assuming that the source heading is not close to 90�, the

following approximation also holds:

dcpa1 ¼ â1

d cos ĥ

ð̂tcpa2
� t̂cpa1

Þ

¼1 cpa1 þ vea1
þ a1 �

d sin h
ðtcpa2

� tcpa1
Þ eh � v

etcpa2
� etcpa1

tcpa2
� tcpa1

� 	
:

ð4:15Þ

Again, assuming normality of X̂, we havedcpa1

v̂

ĥ

t̂cpa1

0BBB@
1CCCA!N

cpa1

v

h

tcpa1

0BBB@
1CCCA; M 0

1C1M 0t
1 þM 0

2C2M 0t
2

26664
37775;
ð4:16Þ

where (under the assumption rh1
¼ rh2

)

M 0
1 ¼

v � 1

2

a1 d sin h
tcpa2
� tcpa1

� 	
a1v

tcpa2
�tcpa1

0 � 1

2

d sin h
tcpa2
� tcpa1

� 	
v

tcpa2
�tcpa1

0 1
2

0

0 0 1

0BBBBBBB@

1CCCCCCCA ð4:17Þ

and

M 0
2 ¼

v � 1

2

a1d sin h
tcpa2
� tcpa1

� 	
� a1v

tcpa2
�tcpa1

0 � 1

2

d sin h
tcpa2
� tcpa1

� 	
�v

tcpa2
�tcpa1

0 1
2

0

0 0 0

0BBBBBBB@

1CCCCCCCA: ð4:18Þ

Quite analogously to (1), the following property holds
for the tcpa-based fusion rule.

Proposition 2. Assume that the covariance matrices C1

and C2 are equal (C1 = C2 = C), then we have

detðM 0
1CM 0;T

1 þM 0
2CM 0;T

2 Þ
¼ uðCÞ detðM 0

1M 0;T
1 þM 0

2M 0;T
2 Þ;

so that

detðM 0
1CM 0;T

1 þM 0
2CM 0;T

2 Þ ¼ uðCÞ v4

ðtcpa1
� tcpa2

Þ2

" #
:

ð4:19Þ
Proof is omitted since identical to that of Proposition 1.

This time, it is the difference ðtcpa1
� tcpa2

Þ term which is

predominant.
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4.3. The track association fusion rule

Up to now, we have considered the cpa as well as the

tcpa fusion rules. So, it seems quite desirable to use them

jointly and in a symmetric way. Moreover, this fusion

rule is especially relevant for testing the validity of the
unique track assumption. So, let us consider the follow-

ing F(v,h) functional:

F ðv; hÞ , â2 � â1 þ
d
v

sinðhÞ
� 	2

þ t̂cpa2
� t̂cpa1

� d
v

cosðhÞ
� 	2

and define fĥf ; v̂fg 2 arg min
h;v

F ðv; hÞ: ð4:20Þ

Minimizing F(v,h) with respect to v alone, a straightfor-

ward calculation yields

v̂f ¼
d

ð̂tcpa2
� t̂cpa1

Þ cosðhÞ � ðâ2 � â1Þ sinðhÞ ;

so that, after immediate simplifications, we obtain

F ðv̂f ; hÞ ¼ ðâ2 � â1Þ cosðhÞ þ ð̂tcpa2
� t̂cpa1

Þ sinðhÞ
� 
2

and finally

tanðĥf Þ ¼
ðâ1 � â2Þ
ð̂tcpa2

� t̂cpa1
Þ ! v̂f ¼

d cosðĥf Þ
ð̂tcpa2

� t̂cpa1
Þ : ð4:21Þ

It is important now to remark that these expressions of

ĥf and v̂f as given by (4.21) ensure that F ðv̂f ; ĥf Þ is zero,

which means that

â2 ¼ â1 �
d
v̂f

sinðĥf Þ; t̂cpa2
¼ t̂cpa1

þ d
v̂f

cosðĥf Þ: ð4:22Þ

Thus, it is legitimate (for this fusion rule) to consider a

definition of distance between the two tracklets Ŷ1 and

Ŷ2 as

dðŶ1; Ŷ2Þ ¼ maxfj ĥf � ĥ2 j; j ĥf � ĥ1 jg; ð4:23Þ

ĥf being given by Eq. (4.21). As we will see the interest

of this distance is that it is close to the optimal one (see

Section 4.4), while the non-centrality parameter is now

made explicit.

To give credit to this assertion let us examine now the

performance of this fused estimator (see Eqs. (4.21) and

(4.22)), under the hypothesis of valid association.

ĥf ¼ arctan ðâ1�â2Þ
ð̂tcpa2

�t̂cpa1
Þ

h i
! v̂f ¼

d cosðĥf Þ
ð̂tcpa2

� t̂cpa1
Þ ! dcpa1 ¼

â1

v̂f
; ð̂tcpa1

Þ: ð4:24Þ
Immediate calculations yield

v̂f ¼
1 vþ v2

d
cosðhÞeðtcpa2

� tcpa1
Þ þ v2

d
sinðhÞeða1 � a2Þ;

ĥf ¼
1

hþ v
d

sinðhÞeðtcpa2
� tcpa1

Þ � v
d

sinðhÞeða1 � a2Þ;

dcpa1 ¼
1

cpa1 þ vþ vcpa1

d
sin h


 �
eða1Þ

� vcpa1

d
sinðhÞeða2Þ þ

vcpa1

d
cos h


 �
eðtcpa2

� tcpa1
Þ;

where vf ¼ v and hf ¼ h:

ð4:25Þ
Under the (asymptotic) Gaussian assumption the fused

X̂f estimator then has the following asymptotic
distribution:

dcpa1 f ¼ â1v̂f

v̂f

ĥf

t̂cpa1

0BBBBB@

1CCCCCA!NðX;M GMTÞ;

where

M¼

v 1þcpa1

d
sinh


 �
�vcpa1 cosh

d
�vcpa1 sinh

d
vcpa1 cosh

d

v2

d
sinh �v2

d
cosh �v2

d
sinh

v2

d
cosh

� v
d

cosh � v
d

sinh
v
d

cosh
v
d

sinh

0 1 0 0

" " " "
eða1Þ eðtcpa1

Þ eða2Þ eðtcpa2
Þ
ð4:26Þ

G ¼ Cov â1; t̂cpa1
; â2; t̂cpa2

� �
:

Again, it is quite insightful to calculate the volume of

uncertainty associated with X̂f , yielding

detðMGMTÞ ¼ a2b2 v8

d4
;

with var ðâ1Þ ¼ a; varð̂tcpa1
Þ ¼ b; ð4:27Þ

which, compared with the performance of the optimal
fusion rule (see Proposition 3) shows that this

fusion rule is close to optimality, as far as the ratio

target speed/intersensor distance is not too great. This

justifies the use of the distance dðŶ1; Ŷ2Þ as given by

Eq. (4.23).

0BBBBB@

1CCCCCA
4.4. The optimal fusion rule and its performance

Let us turn now toward the optimal fusion rule. The

whole target state vector bX is obtained as the solution of

the following optimization problem:



Sensor 1

Sensor 2

Sensor 3

Target

d1,2

d1,3

→

→
→

d2,3

a1,2

a1,3

Fig. 6. A target crossing a triangle network.
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bXopt 2 arg min
X
kŶ1 � Y1ðXÞk2

C�1
1
þ kŶ2 � Y2ðXÞk2

C�1
2

n o
:

ð4:28Þ

Considering the above likelihood functional Eq. (4.28)

as a X one, its gradient vector is

�J XðY1ðXÞÞC�1
1 ðŶ1�Y1ðXÞÞ�J XðY2ðXÞÞC�1

2 ðŶ2�Y2ðXÞÞ;
where

J XðY1ðXÞÞ¼

1
v 0 0

�cpa1

v2 0 0

0 1 0

0 0 1

0BBBB@
1CCCCA;

J XðY2ðXÞÞ¼

1

v
0 0

d sinðhÞ�cpa1

v2
0 � d

v2
cosðhÞ

�d
v

cosðhÞ 1 �d
v

sinðhÞ
0 0 1

0BBBBBBBB@

1CCCCCCCCA
: ð4:29Þ

Assuming the Ŷ1 and Ŷ2 tracklets7 uncorrelated, a clas-

sical calculation then yields the expression of the Fisher

information matrix (FIM) associated with bXopt (Eq.
(4.28)):

FIMXðY1;Y2Þ ¼ J XðY1ðXÞÞC�1
1 ðJ XðY1ðXÞÞÞT

þ J XðY2ðXÞÞC�1
2 ðJ XðY2ðXÞÞÞT: ð4:30Þ

It can be shown that the covariance of bXoptðcovðbXoptÞÞ
asymptotically tends toward the inverse of the fimX ma-

trix, so that (see Appendix C):

Proposition 3. Asymptotically, the uncertainty volume

related to the optimal fusion rule is given by

detðcovðbXoptÞÞ! ðdetðFIMbXopt

ÞÞ�1¼wðC;v;dÞ;

where the functional wðC;v;dÞ is given by

C�1¼ diagða;b;cÞ!wðC;v;dÞ

¼ v8

acd2 acd2þ2abð1�2cosð2hÞÞv2þ2bcð1þ2cosð2hÞÞv2
� 
 ;

C�1¼ aId!wðC;v;dÞ¼ 1

a4

v8

½d2ð4v2þa2d2Þ�
:

ð4:31Þ
Thus, it has been shown that the volume of uncertainty

is this time 1
a4

v8

½d2ð4v2þa2d2Þ�


 �
ðC�1 ¼ aIdÞ. Moreover, we

see that in the general case C = diag(a,b,c) the effects

of the signal processing performance on the one hand

and of the target-receivers geometry on the other cannot

be separated.
7 Ŷ1 represent a partial estimation of the complete target state, hence

the name ‘‘tracklet’’.
Maximizing the likelihood functional requires an iter-

ative method. Clearly, if the unique track assumption is

valid, the previous approaches are quite convenient for

initializing it, while convergence is investigated in
Appendix D. In this appendix, it is shown that an itera-

tive algorithm would converge toward the exact solu-

tion, under the common track assumption.

Usually, the basic element of a sensor network is

made of three sensors forming a triangle. Thus, it is of

a fundamental practical importance to analyze the per-

formance of (optimal) fusion for such configuration.

The geometry and the definitions of the various param-
eters are depicted in Fig. 6 ða1;2 ¼ ð~i;~d1;2Þ; d1;2 ¼ k~d1;2kÞ.

Elementary calculations yield (see Fig. 6)

tcpa2
¼ tcpa1

þ d1;2

v
cosðh� a1;2Þ;

tcpa3
¼ tcpa1

þ d1;3

v
cosðh� a1;3Þ;

a2 ¼ a1 �
d1;2

v
sinðh� a1;2Þ;

a3 ¼ a1 �
d1;3

v
sinðh� a1;3Þ:

ð4:32Þ

Taking sensor 1 as the reference, the Fisher information

matrix is given by the sum
P3

i¼1J XðYiðXÞÞJ T
XðYiðXÞÞ,

and the following result is shown in Appendix C:

detðFIMÞ ¼
d2

1;2d2
1;3

v8
ð1þ 3cos2ða1;2 � a1;3ÞÞ

þ 6
d2

1;2 þ d2
1;3

v6

 !
þ cos2ðh� a1;2Þ

v6
ðd2

1;2Þ

� sin2ðh� a1;3Þ
v6

ðd2
1;3Þ: ð4:33Þ

The result we have obtained is in the same vein than that

of Proposition 3. Concerning the d4/v8 term, there is a



Table 1

Comparison of the performance of various fusion rules

Fusion rule Uncertainty volume for X̂ Simplified expression Optimization

Fusion of the (cpa/v) ratios
uðCÞ ðr4

1 þ r4
2Þv4

ða1 � a2Þ2ðr2
1 þ r2

2Þ
2

" #
v6

4d2sin2ðhÞ

None

Biased

Fusion of the tcpa uðCÞ ðr4
1 þ r4

2Þv4

ðtcpa1
� tcpa2

Þ2ðr2
1 þ r2

2Þ
2

" #
v6

4d2cos2ðhÞ
None

Biased

Optimal fusion rule
v8

a4d2 a2d2 þ 4v2
� 
 ðC�1 ¼ aIdÞ v8

ð4d2v2 þ a2d4Þ
Iterative

Asympt. Unbiased

Track association fusion rule a2b2 v8

d4

v8

d4
None

Biased
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neat improvement due to the network since the factor of

this term is now ð1þ 3cos2ða1;2 � a1;3ÞÞ (instead of 1). A

similar remark for the d2/v6 term can be made. The inter-

est of considering the three sensors as an elementary net-

work is thus evident. Finally, Propositions 1 and 2 (cpa

and tcpa fusion rules can be extended to a network of an

arbitrary geometry.

Effect of tracklet correlation can be analyzed in the
same way. Actually, tracklet correlation may occur if

the temporal support for signal processing are not dis-

joint (see Fig. 6). This is tightly related to the intersensor

distance, target velocity, integration time, etc. In this

case, Eq. (4.30) is replaced by the following one:

FIMXðY1;Y2Þ ¼ ðJ XðY1ðXÞÞ; J XðY2ðXÞÞÞ

�
C�1

1 Cor�1

Cor�1 C�1
2

 !
J T

XðY1ðXÞÞ

J t
XðY2ðXÞÞ

 !
:

ð4:34Þ

Then, under the assumptions C�1 = aId, and (Cor)�1 =

corId, the w(C,v,d) functional (see Proposition 3) is re-

placed by

wðC;Cor; v; dÞ ¼ v8

ða2 � cor2Þ2d2½ða2 � cor2Þd2 þ 4v2�
:

ð4:35Þ
8 Decentralized processing means here that X̂ is estimated via the

cpa/v fusion rule of the Ŷi tracklets.
9 Centralized means here that the target motion parameters are

estimated via centralized signal processing.
4.5. Selecting the fusion rule

It has been shown that the cpa fusion rule has to be

rejected when target heading is close to 0� (modulo p)

whereas the tcpa is clearly irrelevant for target headings

close to 90� (modulo p). Between these two extreme

cases, the best way to select the right fusion rule is to cal-

culate their respective performance. For the sake of clar-

ity, the previous results are summarized in Table 1.
While the use of the optimal fusion rule requires iter-

ative methods, they can be initialized via the the non-

iterative ones. Furthermore, it is wise to test the validity
of tracklet association (see the track association fusion

rule) before performing a finer estimation. Thus, these

four methods are not really concurrent. The best way

is certainly to combine them.

4.6. Simulations

To illustrate the benefits of decentralized estimation,
we shall consider the framework of Section 2. For

Monte Carlo simulations (500 runs), two sensors sepa-

rated by a distance of 800 m are considered with a target

going through the array with a heading equal to 90 � and

a distance of cpa relatively to sensor 1 equal to 300 m.

Its velocity is 5 m/s, its electric moment is 50 A m and

electric noises on the axes of both sensors have a vari-

ance equal to 200 nV2/m2. On Fig. 7 (top), we can see
the collected signals and the histograms of the estimated

parameters (via decentralized processing8) as well as

their theoretical PDF (prob. density function) and cen-

tralized processing PDF.9

Considering Fig. 7, we can conclude that the behav-

iour of the fused estimators agrees with the theoretical

performance and is close to optimality. The advantages

of decentralized estimation are evident for practical
applications.
5. Track-to-track association

Up to now, the problem was to estimate the target

motion parameters. However, another question is to de-

cide if a unique target is present or not. Consider the
case where multiple detections arise in the network. Is

there is one target crossing the network, or more? An an-

swer to this question cannot be given by a short time
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(4), left: histograms of the estimates.
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analysis, so it must be based on spatio-temporal process-

ing. Again, for the sake of brevity, we assume that we

have two sensors, each one estimating one tracklet can-
didate. This study will be divided in two parts. The first

one is devoted to the valid association hypothesis; while

the second precisely investigates the validity of this

assumption.

5.1. Valid association assumption

The idea, inspired by [13], consists in testing the asso-

ciation of two (partial) tracklets. The corresponding sce-

nario is represented on Fig. 2. Let Ŷ1 and Ŷ2, the vectors

of (partial) estimates associated with sensor 1 and 2. We

assume that these two vectors are normally distributed.

More precisely,

Ŷ1 !NðY1;C1Þ; Ŷ2 !NðY2;C2Þ;
with

Ŷ1 ¼ ðâ1; ĥ1; t̂cpa1
ÞT; Ŷ2 ¼ ðâ2; ĥ2; t̂cpa2

ÞT:
ð5:1Þ

Invoking the deterministic relations Eq. (2.8), we

shall test the proximity of the two vectors Ŷ2 and Ŷ1;2,
where Ŷ1;2 is an updated version (on sensor 2) of Ŷ1, gi-

ven by

Ŷ1;2 ¼ â1 �
d
v

sinðĥ1Þ; ĥ; t̂cpa1
þ d

v
cosðĥ1Þ

� 	T

: ð5:2Þ

Under the hypothesis of moderate estimation errors
anddenoting ‘‘d(estimator)’’ the error affecting the esti-

mator, the following first-order expansions are

considered:

â1�
d
v

sinðĥ1Þ¼
1
a1�

d
v

sinðhÞþd â1ð Þ�
d
v

cosðhÞdðĥ1Þ

¼1 a2þdðâ1Þ�
d
v

cosðhÞdðĥ1Þ;

t̂cpa1
þd

v
cosðĥ1Þ¼1 tcpa1

þd
v

cosðhÞþdð̂tcpa1
Þ�d

v
sinðhÞdðĥ1Þ;

¼1 tcpa2
þdð̂tcpa1

Þ�d
v

sinðhÞdðĥ1Þ:

Consequently, under the assumption that the two

sensors observe the same target, there is a value of

the velocity v such that Ŷ1;2 has the following

distribution:

Ŷ1;2 !NðY2; J 1;2ðvÞC1J T
1;2ðvÞÞ;

where

J 1;2ðvÞ ¼
1 � d

v cosðhÞ 0

0 1 0

0 � d
v sinðhÞ 1

0B@
1CA: ð5:3Þ

This means that the difference vector DbY1;2ðvÞ
ðDbY1;2ðvÞ ¼ Ŷ2 � Ŷ1;2ðvÞÞ is normal, centered and with

a covariance matrix C(v) (given by CðvÞ ¼ J 1;2ðvÞ
C1J T

1;2ðvÞ þ C2). This value v̂opt of the target velocity is

estimated by maximizing the likelihood function of the

difference vector DbY1;2ðvÞ. In this meaning, it is then de-

fined by
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Fig. 8. A geometric interpretation of hf.

R. Donati, J.-P. Le Cadre / Information Fusion 7 (2006) 285–303 297
v̂2argmin
v

DbY1;2ðvÞTC�1ðvÞDbY1;2ðvÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F ðvÞ

þ lnð2pdetðCðvÞÞ

264
375:

ð5:4Þ

Let us consider the random variable F ðv̂Þ. Practically,

the matrix C(v) is unknown, so that it is replaced by

an estimated matrix ĈðvÞ ¼ Ĵ 1;2ðvÞĈ1Ĵ
T

1;2ðvÞ þ Ĉ2, with

Ĵ 1;2ðvÞ ¼
1 � d

v cosðĥÞ 0

0 1 0

0 � d
v sinðĥÞ 1

0B@
1CA;

ĥf ¼
1

r2
h1
þ r2

h2

ðr2
h2

ĥ1 þ r2
h1

ĥ2Þ: ð5:5Þ

Now, it can be shown that the random variable F ðv̂Þ is

asymptotically Chi-square distributed, with 3 degrees

of freedom. Then, the decision (track association) is

made on the basis of comparing F ðv̂Þ with a threshold

so as the probability to associate 2 tracks generated by

a unique target be equal to a fixed level (e.g. 0.9), yield-

ing the following test.

Test. The two tracks correspond to a unique target—

with probability b—if F ðv̂Þ < g, with g defined byR g
0

v2
3ðxÞdx ¼ b.

Before evaluating the performance of the method, it

is worth noting that our system is passive and that some

characters required in the calculation of the covariance

matrix have to be estimated (namely: ĥ and Ĉ1, Ĉ2).
The following formula [9] is particularly useful for

approximating the probability of correct association, de-

noted PCAS:

Pr½v2
3 6 x� ¼ 2ð1=2xÞ3=2

Cð3=2Þ
X1
j¼0

ð�1Þj xj

ð3þ 2jÞ2jj!
: ð5:6Þ

Note that the series above converges for all x > 0

and, for sufficiently large m, the true value lies

between
Pm

j¼0 and
Pmþ1

j¼0 (alternate series). Practically,

these two bounds can be used for fitting the value of
the g parameter so as to have an appropriate value of

PCAS.

However, the main problem remains the calculation

of the probability of false association (PFAS); i.e. the

probability that two tracks be falsely associated. Follow-

ing the above guideline, the problem is ‘‘classically’’

treated in the literature [7,21] by considering a non-cen-

tral v2
3ðmÞ for the density of Prð~F ðv̂Þ, where the non-cen-

trality parameter m corresponds to the difference

DbY1;2ðvÞ. Approximations of Prðv2
3ðmÞ < gÞ are summa-

rized and conveniently referenced in the statistical litera-

ture (see [9]). Unfortunately, this modelling of the false

association is highly criticable.
First, the equality C ¼ J 1;2ðvÞC1J T
1;2ðvÞ þ C2 has no

real statistical meaning if the unique target assumption

is no longer valid. Second and more importantly, the

estimated v̂ (see (5.4)) no longer corresponds to the

hypothesis of a common track and the above develop-

ment is simply irrelevant.

5.2. Validity of the unique target assumption

The previous section gives a quite satisfactory frame-

work for testing the tracklet association and calculate its

performance under the assumption that both tracklets

belong to the same target track. The question we deal

with here is to test the validity of this assumption. It is
for that reason that we turn now toward the track asso-

ciation rule. The following test will then be considered

(see Eq. (4.23)):

dðŶ1; Ŷ2Þ ¼ maxfj ĥf � ĥ2 j; j ĥf � ĥ1 jg7g;

tanðĥf Þ ¼
ðâ1 � â2Þ
ð̂tcpa2

� t̂cpa1
Þ :

ð5:7Þ

It remains to approximate the density of dðŶ1; Ŷ2Þ. A
first way is to consider that the difference ĥf � ĥ1 is

asymptotically Gaussian. Under this assumption, previ-

ous calculations yield

ðĥf � ĥ1Þ !N ðhf � h1Þ; 4
v
d


 �2

sin2ðhÞ
� 	

;

hf ¼ arctan
a1 � a2

tcpa2
� tcpa1

� 	
:

ð5:8Þ

The scalar 1

4ðvdÞ
2 sin2ðhÞ ðĥf � ĥ1Þ2 is then asymptotically dis-

tributed as a v2ððhf � h1Þ; 1ÞÞ.
However, this approximation makes sense only under

the valid association assumption. If not, the problem

can be considered in the two following ways. A first

one is based on simulation methods; e.g. bootstrapping

this density. For the sake of brevity, this approach will

not be detailed here. Another approach is more explicit.

From the definition of tanðĥf Þ (see Eq. (5.7)) we note

that it is the ratio of two normal quantities, it is precisely
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Fig. 9. Simulations results.Theoretical PDF (right) and histogram (left) of v̂ (see (5.4)).
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the aim of Appendix F to provide a convenient expres-

sion of the distribution of tanðĥf Þ, given by Eq. (5.7).
Even if calculations seem rather complicated, calculat-

ing the PFAS is quite feasible by this way.

Let us now consider a more intuitive meaning of

tanðĥf Þ (see Eq. (5.7)). Denoting a1 (respectively, a2)

the ð~x1
0;~v1Þ angle (resp. ð~x2

0;~v
2Þ angle), the angle hf has

the following interpretation (see Appendix A and Fig.

8):

tanðhf Þ ¼

r1
0 sin a1 v1

r2
0 sin a2 v2

���� ����
r1

0 cos a1 v1

r2
0 cos a2 v2

���� ���� ¼
j~x1

0;~v1 j h~v1;~v1i
j~x2

0;~v2 j h~v2;~v2i

�����
�����

h~x1
0;~v1i h~v1;~v1i
h~x2

0;~v2i h~v2;~v2i

�����
�����
: ð5:9Þ

Practically, a distance between two tracks can be defined

by

dðX1;X2Þ ¼
1

T þ 1

XT

t¼0

kx1
0 � x2

0 þ tðv1 � v2Þk2 ð5:10Þ

and for which a value of tanðhf Þ is given by (5.9).

The whole algorithm for tracklet association then

takes the following form:

Tracklet association algorithm
1. Check the validity of the unique target

assumption (see Section 5.2),

2. Unique target ! perform the tracklet

association test (see Section 5.1).
5.3. Simulation results

We present on Fig. 9 the signatures collected on each

sensor for a target going across the array, at a distance

of 400 m from each sensor and having the characteristics

of the target simulated in the previous chapter. Using

500 runs of this scenario, the velocity histogram has

been computed and compared with the corresponding

theoretical PDF given by the centralized processing.
On these 500 trials, the empirical estimate of the

probability of association has been found equal to
0.907, which is very close to the theoretical values

(0.9). The same agreement holds for the velocity estima-
tor. Its performance seems even better than the theoret-

ical performance of the (optimal) centralized processing.

Small differences may be due to: the trial number (here

500); the exact values of missing parameters (here the

target heading and the sensor covariance matrix) are re-

placed by their estimates, the errors incoming from these

estimates can partially compensate errors inherent to the

fusion method [13].
6. Conclusion

This paper deals with detection/motion analysis of a

target crossing an array of sensors. Since the motion

parameters are only partially estimated at the sensor le-

vel, various fusion rules have been considered and their
performance analyzed in a general framework based on

multilinear algebra. Then the track-to-track association

problem is examined, as well as the associated testing

and their performance. In particular, it is shown that

decentralized processing is close to optimality while

being intrinsically robust, a definite advantage. More-

over, performance analysis allows to quantify the effects

of the various components of the detection system at a
fusion level.
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Appendix A. From Cartesian to CPA coordinates

The sensor is located at the origin O. The target starts

from the M0 point and follows a rectilinear and uniform

motion (~v). Then, the CPA point Mcpa is characterized by:



CPA

Target

M 0

M

tcpa

cpa

v

O

O'

x0

Mt

β

→

θ

t

Fig. 10. From Cartesian to CPA coordinates.
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the vectors OMcpa
���!ðOM 0

��! ¼~x0Þ and M0Mcpa
����!

are orthogo-

nal, so that we have (see Fig. 10)

ðx0 þ tcpavxÞvx þ ðy0 þ tcpavyÞvy ¼ 0 ðtcpa 6¼ 0Þ;
so that

tcpa ¼ �
h~x0;~vi
k~vk2

¼ � r0

v
cosð~x0;~vÞ:

ðA:1Þ

Similarly, we obtain the following expression of

cpa , kOMcpa
���!k:

kOMcpa
���!k ¼ ½ðx0 þ tcpavxÞ2 þ ðy0 þ tcpavyÞ2�1=2

;

¼ k~x0k2 � h~x0;~vi2

k~vk2

" #1=2

;

¼ k~x0k j sinð~x0;~vÞ j¼
j detð~x0;~vÞ j

v
:

ðA:2Þ

The 1:1 correspondence between Cartesian and CPA

coordinates reads as follows:

~x0

~v

� 	
!

j detð~x0;~vÞ j
h~x0;~vi

h

v

0BBB@
1CCCA!

j detð~x0;~vÞ j
v

¼ cpa

v

h

�h~x0;~vi
k~vk2

¼ tcpa

0BBBBBB@

1CCCCCCA:

ðA:3Þ
Showing that it is a 1:1 transform is straightforward.

Moreover, the following formulas are easily inferred

from Eqs. (A.1) and (A.2)10 and used throughout this

text:
10 For the second one we assume that detð~x0;~vÞ and detðO0O
��!

;~vÞ have

the same sign.
tcpa2
¼ hOO0
��!

;~vi
v2

þ tcpa1
;

cpa2 ¼ �
detðOO0

��!
;~vÞ

v
þ cpa1:

ðA:4Þ

More generally and with the notations of Fig. 10 (bt

being the target azimuth), we have

OMt
��! ¼ OMcpa

���!þMcpaMt
����!

with

Mcpa ¼
�cpa sin h

cpa cos h

���� ; McpaMt
����! ¼ ðt � tcpaÞ~v;

so that

sinðbtÞ ¼
�a sin hþ ðt � tcpaÞ cos h
a cos hþ ðt � tcpaÞ sin h

:

ðA:5Þ

As an illustration, let us consider the temporal evolution

of the frequency ft of the received signal at the instant t,

emitted by a moving target, which is given by

f ðtÞ ¼ f0 1� vx

c
sinðbtÞ �

vy

c
cosðbtÞ


 �
; ðA:6Þ

vx ¼ v cosðhÞ; vy ¼ v sinðhÞ; ðA:7Þ
where f0 is the initial target frequency, c is the wave

celerity, and sinðbtÞ is given by Eq. (A.5). Again, from

Eq. (A.5), it is clear that the observable parameters are

fcpa
v ; tcpa; hg. Actually, it can be shown the observability

of all the passive systems is related to the analysis of

(bt) and its temporal derivatives [12].
Appendix B. Performance of the CPA fusion rule

The aim of this Appendix is to give a proof of Prop-

erty 1. The matrix C being positive definite, it may be

factored in triangular factor (i.e. C ¼TTT), so that

we have

M1CMT
1 þM2CMT

2 ¼M1M
T
1 þM2M

T
2 ðB:1Þ

¼ M2M1ð Þ MT
2M

T
1

� �
; ðB:2Þ

where Mi ,MiT (i = 1,2). The matrices Mi are rectan-
gular, here 4 · 3. To calculate the previous determinant

(last row of Eq. (B.1)), the Binet–Cauchy formula [6]

will be instrumental. Let us introduce the notation Mi

for the ith row of the rectangular concatenated matrix

M2 M1ð Þ (here 4 · 6).

Of course, a brute force calculation of this 4 · 4

determinant calculation would be to first calculate the

M2 M1ð Þ M2

M1

� 	
matrix and then its determinant.

But, no geometric insight is obtained by this way, which

is furthermore quite limited. Indeed, the Binet formula is

the natural framework for performing such calculation

since it involves only calculation of elementary determi-

nants and uses basically multilinear algebra. Using it

and the previous notations, we obtain



300 R. Donati, J.-P. Le Cadre / Information Fusion 7 (2006) 285–303
detðM1CMT
1 þM2CMT

2 Þ
¼

X
16i1<i2<i3<i466

½detðMi1 ;Mi2 ;Mi3 ;Mi4Þ�2;

where the vector Mij is a column of M1 or M2:

ðB:3Þ

Assume for a while that C is the identity matrix and let

us consider the structure of M2 and M1, we have from

(4.8)

M2 ¼ ðM1
2;M

2
2; 0Þ; M1 ¼ ðvE1 �M1

2;M
2
2;E4Þ; ðB:4Þ

where Mi
2 denotes the ith column of the M2 ðM3

2 ¼ 0Þ,
and E1 and E4 are the first and fourth vectors of the

canonical basis of R4. Thus, we have

ðM2;M1Þ ¼ ðM1
2;M

2
2; 0; vE1 �M1

2;M
2
2;E4Þ: ðB:5Þ

Now, starting from the left of the M2;M1Þ array and

using the Binet [6] formula (see (B.3)), we obtainX
16i1<i2<i3<i466

½detðMi1 ;Mi2 ;Mi3 ;Mi4Þ�2

¼ ½detðM1
2;M

2
2; vE1;E4Þ�2: ðB:6Þ

This is simply due to the fact that all the terms

detðMi1 ;Mi2 ;Mi3 ;Mi4Þ are zero but one

ðdetðM1
2;M

2
2; vE1;E4ÞÞ. Thus, we have

detðM1M
T
1 þM2M

T
2 Þ ¼ v2½detðE1;M

1
2;M

2
2;E4Þ�2; ðB:7Þ

¼ 1

4

v4

ða1 � a2Þ2
: ðB:8Þ

Extending the previous calculation to the case where

C = diag(a,b,c) is now rather easy. Indeed, we have

C ¼TTT, with T ¼ diagða; b; cÞ ða2 ¼ a; b2 ¼ b;
c2 ¼ cÞ, so that

ðM2T;M1TÞ¼ðaM1
2;bM2

2;0;avE1�aM1
2;bM2

2;cE4Þ;

and finally

detðM1M
T
1 þM2M

T
2 Þ

¼ða2bcÞ2v2 �½detðE1;M
1
2;M

2
2;E4Þ�2¼

1

4
ða2bcÞ v4

ða1�a2Þ2
:

ðB:9Þ

If the C1 and C2 matrices are still diagonal but dissimi-

lar, the matrix ðM2T;M1TÞ is replaced by

ðM2T2;M1T1ÞðT2
2 ¼ diagða0; b0; c0Þ;T2

1 ¼ diagða; b; cÞÞ:
ðM2T2;M1T1Þ¼ ða0M1

2;b
0M2

2;0;avE1�aM1
2;bM2

2;cE4Þ;
and finally

detðM1M
T
1 þM2M

T
2 Þ

¼ 2 aa0
ðbþb0Þ

2
c

� 	2

v2 detðE1;M
1
2;M

2
2;E4Þ

� 
2
:

ðB:10Þ
Consider now a more general form of the Gamma ma-

trix, i.e. C ¼T TT, with

T ¼
a 0 0

b a 0

c b a

0B@
1CA; ðB:11Þ

then

ðM2T;M1TÞ ¼ ðaM1
2 þ bM2

2; aM2
2; 0; avE1 � aM1

2

þ bM2
2 þ cE4; aM2

2 þ bE4; aE4Þ

and only the following subdeterminants are not zeroed:

detðaM1
2 þ bM2

2; aM2
2; avE1; bE4Þ;

detðaM1
2 þ bM2

2; aM2
2; avE1; aE4Þ

and again

detðM1M
T
1 þM2M

T
2 Þ

¼ v2½a8 þ a6b2�½detðE1;M
1
2;M

2
2;E4Þ�2: ðB:12Þ

Obviously, this calculation is valid for any factorization

of the Gamma matrix. Extension to the case of dissimi-
lar C1 and C2 matrices is also straightforward. More pre-

cisely, only the following subdeterminants have to be

considered (see Eq. (B.12)):

detða0M1
2 þ b0M2

2; a
0M2

2; avE1; bE4Þ;

detða0M1
2 þ b0M2

2; a
0M2

2; avE1; aE4Þ;
and again

detðM1M
T
1 þM2M

T
2 Þ

¼ v2½a4a04 þ a04a2b2�½detðE1;M
1
2;M

2
2;E4Þ�2: ðB:13Þ

The general case of a Toeplitz C matrix is treated in the
same way.
Appendix C. On the performance of the optimal fusion

rule

With the notations of Section 4.4 and the guidelines

of the previous Appendix, we have to consider the fol-
lowing concatenated matrix:

½J X Y1ðXÞ; J X Y2ðXÞ�

¼ ½M1;E3;E4 ; M1þM2;E3;E4þN2�;

where

M1¼

1

v

�cpa1

v2

0

0

0BBBBBBB@

1CCCCCCCA; M2¼

0

d sinh
v2

�d cosh
v

0

0BBBBBBB@

1CCCCCCCA; N2¼

0

�d cosh
v2

�d sinh
v

0

0BBBBBBB@

1CCCCCCCA;

ðC:1Þ
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We note in passing that the vectors M2 and N2

are orthogonal. Using again the Binet formula, the

calculation of detð
P2

i¼1J XYiðXÞJ X YiðXÞTÞ simply re-

duces to the calculation of the following (sub)

determinants:

detðM1;E3;E4;M2Þ ¼ ðd=v3Þ sinðhÞ;

detðM1;E3;E4;N2Þ ¼ ðd=v3Þ cosðhÞ;

detðM1;M2;N2;E4Þ ¼ d2=ðv4Þ:

ðC:2Þ

Collecting the previous calculations, we obtain

det
X2

i¼1

J XYiðXÞJ X YiðXÞT
 !
¼ ½detðM1; ;M2;N2;E4Þ�2

þ 4½detðM1;E3;E4;M2Þ�2

þ 4½detðM1;E3;E4;N2Þ�2

¼ d4

v8
þ 4

d2

v6
: ðC:3Þ

Considering all the preceding results, we note that from
a performance analysis perspective, the effect of the opti-

mal fusion versus the cpa or tcpa fusion is

1. combine both optimally,

2. add the term [det(M1,M2,N2,E4)]2.

Consider now that we have n sensors on the same line

(see Fig. 2), then

J XYiðXÞ ¼ ðM1 þ ði� 1ÞM2;E3;E4 þ ði� 1ÞN2Þ;

2 6 i 6 n: ðC:4Þ

The interest of this calculation then becomes clearer

since the general case (n) is treated exactly in the same

way than the n = 2 one. More precisely, it only

involves the elementary (sub)-determinants det(M1,M2,

N2,E4), det(M1,E3,E4,N2) and det(M1,E3,E4,M2) thus

yielding

det
Xn

i¼1

J XYiðXÞJ XYiðXÞT
 !

¼ P ðnÞ d
4

v8
þ QðnÞ d

2

v6
:

ðC:5Þ
The case of a triangle network is treated in the same

way. More precisely, we have
½J XY1ðXÞ; J XY2ðXÞ; J XY3ðXÞ�

¼ ½M1;E3;E4 : M1 þ d1;2M2;E3;E4

þ d1;2N2; M1 þ d1;3M3;E3;E4 þ d1;3N3�;
where

ðd1;2 ¼ d1;2=v2Þ :

M2 ¼

0

sinðh� a1;2Þ

� cosðh� a1;2Þ

0

0BBBBB@

1CCCCCA; N2 ¼

0

� cosðh� a1;2Þ

� sinðh� a1;2Þ

0

0BBBBB@

1CCCCCA:

ðC:6Þ

For the sake of brevity, vectors M3 and N3 are not de-

tailed. They are identical to M2 and N2, a1,2 being re-

placed by a1,3. The rest of the calculation of det(FIM)

is quite similar to the previous one, again the Binet for-

mula [6] is the workhorse.
Appendix D. On the convergence of iterative methods

The aim of this appendix is to investigate the conver-

gence of an iterative algorithm for global fusion (see

Section 4.4). For this Appendix we consider that X

and ~X are generic (target state) vectors. Consider the

functional J 1ðXÞ , kY1ð~X� Y1ðXÞk2
. We denote ~X,

the exact vector of target trajectory parameters. Elemen-
tary calculations yield

ðX� ~XÞT rJ 1ðXÞ

¼ 1

v
ðgcpa1 � cpa1Þð~a1 � a1Þ �

cpa1

v2
ð~v� vÞð~a1 � a1Þ

þ ð~h1 � h1Þ2 þ ðgtcpa1
� tcpa1

Þ2

¼ ~v
v

� 	
ð~a1 � a1Þ2 þ ð~h1 � h1Þ2 þ ðgtcpa1

� tcpa1
Þ2: ðD:1Þ

The above equality is important since it proves that the

following inequality holds whatever the X vector is:

8X ðX� ~XÞTrJ 1ðXÞP 0: ðD:2Þ
Note that ðX� X̂ÞTrJ 1ðXÞ can be zero only if the fol-

lowing equalities hold fĥ1 ¼ h1; â1 ¼ a1; t̂cpa1
¼ tcpa1

g.
Similarly, define J 2ðXÞ , k~Y2 � Y2ðXÞk2

, then

rJ 2ðXÞ¼

1

v
ð~a2�a2Þ

�a2

v
ð~a2�a2Þ�

d
v2

cosðhÞðgtcpa2
� tcpa2

Þ

�d
v

cosðhÞð~a2�a2Þ�
d
v

sinðhÞðgtcpa2
� tcpa2

Þ

ðgtcpa2
� tcpa2

Þ

0BBBBBBBB@

1CCCCCCCCA
:

ðD:3Þ
From Eqs. (D.2) and (D.3), we deduce that $J1(X) and

$J2(X) can be simultaneously zeroed only if X ¼ X̂,

which ends the proof. Thus, it has been shown that
under the valid association assumption an iterative
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algorithm has a unique stationarity point, which will be

asymptotically the exact vector of parameters.
Appendix E. On the asymptotic distribution of Fðv̂Þ

Let F ðv̂Þ be (implicitly) defined by

F ðv̂Þ , DbY1;2ðv̂ÞTC�1ðv̂ÞDbY1;2ðv̂Þ;
where v̂ 2 arg min

v
½F ðvÞ þ lnð2p detðCðvÞÞ�: ðE:1Þ

Now, since DbY1;2ðv̂Þ is a maximum likelihood estimator,

it converges in probability toward the zero vector. Sim-

ilarly, the matrix bCðv̂Þ converges in probability toward
the matrix C(v). Thanks to Slutsky�s theorems [10], we

infer that F ðv̂Þ is asymptotically Chi-square distributed.
Appendix F. On the distribution of tanðĥf Þ

In (4.24), it has been shown that the track association

fusion rule is based upon the following estimate of the
(fused) target heading:

tanðĥf Þ ¼
â1 � â2

t̂cpa2
� t̂cpa1

� �
: ðF:1Þ

Now, since the fâig and f̂tcpa2
; t̂cpa1

g can be reasonably

assumed as normal, we are interested by the calculation
of the density of the ratio of two normal random vari-

ables x1 and x2, i.e. q ¼ x1

x2
. When both random variables

x1, x2 are centered this is a classical calculation, the den-

sity of q is a Cauchy density. If not, this is less classical

and we shall present the main steps of the calculation

essentially excerpted from [8]. In a first time, assume that

x1 and x2 are independent, and xi �Nðmi; riÞ (i = 1,2).

We then denote a1 ,
m1

r1
; a2 ,

m2

r2
. The density fv of the

v , (x1,x2)T vector is thus

fvðx1; x2Þ

¼ 1

2pr1r2

exp � 1

2

ðx1 � m1Þ
r1

� 	2

þ ðx2 � m2Þ
r2

� 	2
" #

:

Naturally, the following change of variable is

considered11:

x1 ¼ uv

x2 ¼ v

�
whose Jacobian is : j J j¼

v u

0 1

���� ���� ¼j v j :
ðF:2Þ

Thus, the density of the w , (u,v)T vector is simply

fwðu; vÞ

¼ j v j
2pr1r2

exp � 1

2

ðuv� m1Þ
r1

� 	2

þ ðv� m2Þ
r2

� 	2
" #

:

11 Note that with this change u is the ratio x1

x2
.

Marginalizing, we obtain

fuðuÞ ¼
Z

R

fwðu; vÞdv

¼ 1

2pr1r2

Z
R

j v j exp �1

2
ða2ðuÞv2� 2bðuÞvþ cÞ

� �
dv

with a2ðuÞ ¼ u2

r2
1

þ 1

r2
2

; bðuÞ ¼ m1u
r2

1

þm2

r2
2

; c¼ a2
1þ a2

2;

so that; finally

fuðuÞ ¼
e�c=2

pr1r2a2

Z 1

0

te�t2=2 ch
bðuÞ
aðuÞ t
� 	

dt:

ðF:3Þ
Integrating by parts fu(u), we obtain

fuðuÞ ¼
e�c=2

pr1r2 a2ðuÞ 1þ kðuÞe�kðuÞ2=2

Z kðuÞ

0

e�t2=2 dt
� 	

with kðuÞ ¼ a1r2uþ a2r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2

2u2 þ r2
1Þ

p : ðF:4Þ
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