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Abstract

This paper is concerned with the tracking of multiple moving objects in an image sequence and the reconstruction of the entire trajectories

of these objects all over the sequence. More specifically, we address the joint issue of trajectory estimation and measurement-to-trajectory

associations, which is the key problem in that context due to the occurrence of object occlusions or crossings. An original and efficient

scheme is proposed, that adapts the probabilistic multiple hypothesis tracking (PMHT) technique to the case of tracking of regions in video,

for which geometry and motion models can be introduced. Moreover, reliable partial associations can be obtained as an initialization. Data

association and trajectory estimation are conducted within a probabilistic framework. The latter relies on Kalman filtering, while the former

is solved with an EM algorithm for which a suitable initial configuration can be defined. The proposed tracking method is validated by

experiments carried out on real image sequences depicting complex situations.

q 2004 Elsevier B.V. All rights reserved.
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1. Problem statement

This paper is concerned with the tracking of multiple

moving objects in an image sequence and the reconstruction

of the entire trajectories of these objects all over the

sequence. More specifically, we address the joint issue of

trajectory estimation and measurement-to-trajectory associ-

ations. This is the key problem in that context due to the

occurrence of object occlusions or crossings.

In video content analysis, whether for interpretation,

indexing or coding, trajectories of objects—manipulated as

regions in images—are of much importance. For instance

for surveillance purposes, trajectories of mobile objects are

generally of key interest. It may occur, however, events
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(temporary misdetection, occlusions, crossings) from which

important ambiguities in the association of successive

measurements to a track can arise.

We specify the addressed problem by describing here-

under the input data to the algorithm designed in this paper.

We are provided with a batch of motion segmentation maps

using an approach presented in Ref. [20], of which Fig. 1

shows an example. This technique supplies a motion-based

partition of images, in which the motion region homogen-

eity criterion is expressed by a 2D parametric motion model.

Motion estimation is supplied by a multiresolution, robust

estimator and the segmentation problem is expressed and

solved as the statistical estimation of a pixel label map,

within a Markov Random Field framework. The set of

measurements (at each time instant), includes:
†
 the 2D spatial supports of the extracted moving regions;
†
 the estimates of motion of these regions, i.e. the 2D

parametric motion models estimated between the current

frame and the next one associated to these regions;
†
 the regions labels, i.e. their numbers (symbolic information).
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Fig. 1. Original images (a) and resulting motion segmentation maps (b) at time tZ0, tZ6, tZ11, tZ24, tZ26 and tZ31. In this lab sequence, two moving

boxes cross behind a third (static) one.
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The motion segmentation algorithm employed has the

property that if the same region (object) is continuously

extracted in successive frames, the region label is

maintained. This provides a short-term temporal link

which we will assume reliable (e.g. as shown in Fig. 1,

identity of the two labels is relevant over images b0 to b6).

However, since an object may temporarily be static or

totally occluded, there may be lacks of detections that break

that temporal link. This introduces the concept of partial

trajectory. When the region reappears and is segmented

again, it then bears a new label, provided by the motion

segmentation algorithm (as illustrated in Fig. 1 from images

b24) Our focus is on determining and associating partial

trajectories of regions and jointly estimating the complete

trajectories of these regions, while dealing with occlusion or

crossing situations.

Besides, the silhouette of the extracted region is often

affected by perturbations compared to the true projection of

the object in the image. Moving shadows may enlarge the

expected support, while partial occlusion may cause some

pixels to miss. For instance, in the sequence displayed in

Fig. 1a, the total occlusion (images 14–23) is preceded and

followed by partial occlusions of the two moving elements.

As illustrated in Fig. 1b, this has an obvious effect on the

supplied motion segmentation maps.
The desired output of the algorithm is two-fold:
†
 the correct association of the segmented regions over

time, i.e. grouping of partial tracks;
†
 the complete trajectory of all the moving objects over the

entire processed sequence, i.e. an estimated position of

the object projections at each time instant (including at

those when no measurement was initially available).

A core difficulty is that these two problems are tightly

intricate. We briefly review below existing approaches for

tracking, focusing on the issue of temporal data association.
2. State-of-the-art

Important research efforts in computer vision have been

devoted to tracking objects in image sequence. In the case

of region tracking, techniques based on active contours [2]

or level-sets [21] have been employed, difficulties related to

initialization and changes in topology being better handled

by the latter approaches. It is insightful to distinguish

between techniques that use a prediction and adjustment

mechanism to track the image primitives, hence establish-

ing a natural link between successive measurements
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and estimating model-based trajectories [14,16,26,29],

from those that determine merely correspondence between

primitives, and thus need to address an explicit data

association problem [18].

Data association refers to the task of identifying, for

each measurement, from which physical source (moving

object, in our computer vision context) it arises. Potential

association ambiguities and difficulties naturally appear

when a scene contains several such physical elements. A

similar issue is also encountered in general unsupervised

classification tasks, but data association is the coined term

when facing specific issues pertaining sequential data

processing.

Explicit handling of the data association problem has

received much attention, for a long time in the context of

radar and sonar [7], more recently in computer vision. In the

latter field, it has been applied to corners [4], segments [32],

and regions [16,22]. Trajectory estimation and data

association problems are known to be two tightly inter-

woven problems. Indeed, the association between obser-

vations and objects depends on the estimated trajectories,

which in turn should be computed from the whole set of

measurements corresponding to a single physical element.

The point is that this intricate issue is an NP combinatorial

one.

A survey of data association techniques may be found in

[3]. The measurement-to-trajectory model assignment can

be hard, as in multiple hypothesis tracking (MHT)

algorithms [1,24,25]. Overall, MHT techniques consist in

enumerating possible assignments and evaluating the

pertinence of the trajectories formed, while introducing

criteria to prune the assignment hypothesis tree, which

otherwise would exponentially grow. An-other classical tool

for trajectory estimation/data association is the joint

probabilistic data association filter (JPDAF) [1], used for

instance in Ref. [22] for region tracking. It is rooted in the

probabilistic data association filter (PDAF) which, in e.g.

Kalman filtering, updates the states using a combination of

several competing measurements. The JPDAF is an

enhanced version which, when there exists several such

tracking processes, enforces some mutual exclusion in

associations to prevent several trackers from fitting the same

data. However, the JPDAF is rather a track updating

technique.

In this paper, we propose an original approach relying on

the probabilistic multiple hypothesis tracking technique

(PMHT), which offers an attractive alternative to these

classical techniques. Initially proposed in Ref. [28], a

collection of works pertaining to the PMHT technique, and

presenting variations thereof, may be found in Ref. [27].

They have been primarily explored in the radar and sonar

domains. The statistical PMHT method consists in perform-

ing a MAP (Maximum A Posteriori) estimation of the models

using Kalman filtering in the case of linear measurements and

the EM algorithm for assigning, in a probabilistic manner,

measurements to trajectory models. A key point is that doing
so, it avoids the NP-hard combinatorial issue, in particular

inherent in MHT techniques. We refer the reader to [8,27,28]

for in-depth coverage.

In Ref. [17], the authors propose a recursive scheme

closely related to PMHT in which the association variables

form a Markov random field. The method we have designed

remains, as in Ref. [28], with a batch approach, and a

preliminary version was described in Ref. [9]. In Ref. [10], a

modification was introduced to the PMHT, with a similar

viewpoint to ours, so as to exploit the prior knowledge given

by the existence of partial tracks, by constraining certain

sets of measurements to be assigned to a single track.

A major aspect of target tracking with trajectory

reconstruction is the modelling, of the state temporal

evolution and of the relation between state and measure-

ments. In many naval surveillance scenarios, piecewise

linear trajectories are assumed, while airborne applications

usually require more flexible manoeuvering models. A

classical solution is to employ Kalman filtering with

dynamic and measurement models that are fixed in their

form and parametrization [16]. We shall also take this

approach. Recently, Hue et al. [12] have proposed a

promising improvement on PMHT on this latter aspect, by

introducing particle filtering (also known as Condensation

or bootstrap filter [13]) which, compared to the above-

mentioned model, makes weaker assumptions on the form

of the dynamic and observation processes. Flexibility in the

dynamic process modelling has also recently been intro-

duced in Ref. [31].

Applications of PMHT can so far be found in radar and

sonar [8] and high-energy particle physics [26]. Still, to our

knowledge, point-wise measurements are generally con-

sidered. Important contributions of the present work consist,

besides demonstrating the effectiveness of PMHT for a

common computer vision problem, in proposing the

following adaptations:
†
 spatial extent (2D region support) and velocity infor-

mation are properly incorporated into the PMHT scheme,
†
 a dedicated and efficient initialization is provided.

The remainder of the paper first presents the manner in

which we model the problem, fitting in the PMHT

framework (Section 3). We then recall how this category

of problems may be solved using the Expectation–

Maximization algorithm (Section 4). Section 5 presents

the extension of the PMHT approach we have designed to

handle tracking in video (in particular, initialization of the

EM algorithm). Section 6 provides experimental results, and

in Section 7 we draw some concluding remarks.
3. Modelling of the problem

A measurement in our problem is a set of elements

describing a segmented region at a given image instant,
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as listed in Section 1. They will be more formally defined

here-after. We shall call partial track a set of successive

measurements linked over time by identity of the label

attached to their corresponding regions. The goal is to

recover entire tracks over the whole image sequence, each

entire track being issued from the set of measurements

corresponding to the same single physical moving object.

To each partial track is associated a 2D trajectory model of

the mobile element, to be estimated from the measurements.

Let us denote ( the set of observed measurements Z(t) in

the batch [tZ0,.,tZT] corresponding to the processed

image sequence. At each time instant t, Z(t) is composed of a

set of st measurements zj(t). They will be instanciated

hereafter. We have:

Z Z ½Zð1Þ;.;ZðTÞ� (1)

ZðtÞ Z fz1ðtÞ;.; zst
ðtÞg (2)

We assume that measurements originate from M

moving objects in the scene. As M is unknown (and to

be determined), the algorithm works throughout consider-

ing M trajectory models, where M is the number of partial

tracks (MOM). In a second stage, M will be determined

by identifying redundant trajectory models among the M

ones.

Each of the M trajectory models is described by a time-

dependent state vector, and an evolution model of this state

vector. Let us denote xm(t) the state vector of trajectory

model m at time t. We also define the set X(t) of state

vectors at a given time t and their set c over the batch as

follows:

c Z ½Xð1Þ;.;XðTÞ� (3)

XðtÞ Z fx1ðtÞ;.; xMðtÞg (4)

Each region is represented by two elements:
†
 a geometric (polygonal) model of its contour. The

polygonal approximation employs the technique

described in Ref. [30];
†
 its kinematics, described by a 2D affine inter-frame

motion model. Let us recall that a 2D affine motion

model is defined as follows:

uqðpÞ Z ½a1 Ca2x Ca3y; a4 Ca5x Ca6y�T (5)

where p(x,y) is an image point, qZ[a1,a2,a3,a4,a5,a6]T and

uq(p) is the velocity vector given by the considered motion

model at point p.

The state vector xm(t) and the measurement vector zj(t)

are hence made up of two components:

xmðtÞ ¼ ½GmðtÞ;QmðtÞ�
T m ¼ 1;.;M (6)

zjðtÞ Z ½ ~GjðtÞ; ~QjðtÞ�
T j Z 1;.; st (7)
where
†
 GmðtÞZ fPm
1 ðtÞ;.;Pm

nðtÞðtÞg and QmðtÞZ ½am
1 ðtÞ;.; am

6 ðtÞ

�T are, respectively, the geometric (i.e. the n(t) vertices of

the polygonal shape representing the region) and

kinematic component of the state. vector (i.e. the six

parameters of the affine motion model);
†
 ~GjðtÞZ f ~P
1
j ðtÞ;.; ~P

~nðtÞ
j ðtÞg is an ordered set of ~nðtÞ

vertices resulting from the polygonal approximation of

the segmented region j at time instant t;
†
 ~QjðtÞZ ½ ~a1
j ðtÞ;.; ~a6

j ðtÞ�
T is the estimated parameter

vector of the affine motion model computed over region

j, obtained with the multiresolution robust estimation

method described in Ref. [19].

We assume that the temporal evolution of each

component of the state vector xm(t) can be appropriately

represented by a first order model, with additive Gaussian

white noise. Besides, we consider that the measurements are

corrupted by an additive Gaussian white noise, which

covariance matrix is denoted Rm.
3.1. Kinematic component

The parameters of the motion model Qm are considered

decorrelated and are estimated independently. A classical

first order evolution model is selected for these parameters.

It is expressed by relation (8) for any rth parameter

(rZ1,.,6)

am
r ðt C1Þ

_am
r ðt C1Þ

" #
Z

1 1

0 1

" #
am

r ðtÞ

_am
r ðtÞ

" #
C

em
1;rðtÞ

em
2;rðtÞ

" #
(8)

where ½em
1;r; e

m
2;r�

T is a Gaussian random vector, which

covariance matrix Qe is expressed as:

Qe Z s2
e

1

3

1

2
1

2
1

2
64

3
75 (9)

The measurement equation is defined by stating that an

additive Gaussian measurement noise hr
mðtÞ of variance s2

h

affects each motion parameter

~am
r ðtÞ ¼ am

r ðtÞ þ hm
r ðtÞ : ðr ¼ 1;.6Þ (10)

Considering we have no prior knowledge on the

kinematics of the moving object, no training set, and that

no reliable estimation of the measurement uncertainty is

available, s2
e and s2

h are empirically user-set parameters.
3.2. Geometric component

The geometric model is formed by the set of vertices of

the polygon approximating the region boundary. The

temporal evolution of each of these vertices is designed

by involving the affine motion model Q̂mðtÞ estimated on
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the region m and filtered over time. We have, for any vertex q:

Pm
q ðtÞ; q Z 1;.; nðtÞ : Pm

q ðt C1Þ Z Pm
q ðtÞCuq̂mðtÞ

ðPm
q ðtÞÞ

(11)

If we denote PmðtÞZ ½um
q ðtÞ; v

m
q ðtÞ�

T the temporal evol-

ution model for the geometric component is specified by

um
q ðtC1Þ

vm
q ðtC1Þ

" #
Z

am
1 ðtÞ

am
2 ðtÞ

" #
C

1Cam
3 ðtÞ am

4 ðtÞ

am
5 ðtÞ 1Cam

6 ðtÞ

" #
um

q ðtÞ

vm
q ðtÞ

" #

C
zm

q;1ðtÞ

zm
q;2ðtÞ

" #
ð12Þ

where the zm
q;1ðtÞ and zm

q;2ðtÞ are drawn from Gaussian

distributions, which covariance matrix Qz is expressed as:

Qz Z s
2
z

1 0

0 1

" #
(13)

The relation between the geometric model and the

geometric measurements is also straightforwardly derived

by assuming an additive Gaussian noise:

~um
q ðtÞ

~vm
q ðtÞ

" #
Z

um
q ðtÞ

vm
q ðtÞ

" #
C

bm
1 ðtÞ

bm
2 ðtÞ

" #
(14)

where measurement noises bm
1 ðtÞ and bm

2 ðtÞ are assumed to be

Gaussian random vectors of variance s2
b:Again, s2

z and s2
b are

set empirically.

We now define notations related to the data association

issue. We call K the set of assignements of measurements to

trajectory models, which can be decomposed over time and

measurements as follows:

K Z ½Kð1Þ;.;KðTÞ� (15)

KðtÞ Z fk1ðtÞ;.; kst
ðtÞg (16)

Each assignement variable kj(t) (jZs,.,st) takes values

in [1,.,M], thereby indicating to which trajectory model

the measurement j is assigned at time instant t.

Let us also introduce P, the probability of trajectory

models, which can also be decomposed over time as follows:

P Z ½Pð1Þ;.;PðTÞ� (17)

PðtÞ Z fp1ðtÞ;.;pMðtÞg (18)

Given a measurement at time t, pm(t) represents the

probability that a measurement originates from model m,

regardless of which measurement it may be. While K

contains binary assignment random variables, the sets c and

P contain continuous random variables. Classical multi-

track extraction methods (JPDAF,MHT) are based on the two

following assumptions:
†
 the assumption that a measurement is associated to one

and one trajectory model only, from which the following
constraint on assignment variables is inferred

XM

mZ1

pðkjðtÞ Z mÞ Z
XM

mZ1

pmðtÞ Z 1 (19)
†
 the assumption that at most one measurement can

originate from a moving object at a time. This implies a

dependence of assignment variables.

In contrast, the approach we adopt, namely PMHT, relies

only on the first of these two assumptions. Consequently, we

assume independence of the assignment variables, which

allows the factorization of the joint probability of K(t) as

described by

pðKðtÞÞ Z
Yst

jZ1

pðkjðtÞÞ (20)

It is this very formulation which avoids enumeration of

measurement-to-track association hypotheses.
4. Main theoretical aspects of PMHT
4.1. Joint estimation formulation and posterior probability

We recall in this section the main theoretical aspects of

PMHT that are used in our method The search for optimal

assignments and states being two interlocking issues, Streit

[28] proposed to include the data association problem in the

estimation problem; more precisely, to consider the assign-

ment variables as random variables to be estimated along

with the state variables Let us define FZ(c,P). The

{pm}mZ1,.,M represent the laws of the discrete variables

kj(t), and estimating F according to the Maximum A

Posteriori (MAP) criterion amounts to a joint estimation

of assignments and states. The a posteriori distribution can

be expressed by:

pðFjZÞfpðZjc;PÞpðc;PÞ

f
YT

tZ1

pðZðtÞjXðtÞ;PðtÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
measurement likelihood

pðXð1ÞÞ
YT

tZ2

pðXðtÞjXðt K1ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
prior state evolution

(21)

Our goal is to find an estimate of F which maximizes the

posterior probability (21). Gauvrit and Le Cadre [8] have

shown that, in the above expression, the measurement

likelihood term can be expressed as the product of

conditional likelihoods of measurements z(t), which in

turn are defined as a mixture density law, in which the

parameters weighing the respective contributions of the

elementary laws to the mixture are the prior probabilities of
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the trajectory models. This can be written as follows:

YT

tZ1

pðZðtÞjXðtÞ;PðtÞÞ Z (22)

Z
YT

tZ1

Yst

jZ1

XM

mZ1

pðzjðtÞjxmðtÞÞpmðtÞ (23)

An essential point is that, thanks to the independence

assumption between assignment variables, writing (22) as a

product of mixture laws (23) is made possible. Direct

maximization of (21) is however not feasible, since it is

parameterized by the unknown weights pm(t).

Following the work by Redner and Walker [23], the EM

algorithm [6] can be used to estimate the parameters of such

a mixture density, through an iterative procedure. Let us

assume that an initial estimate F0 is available. At the iC1th

iteration of the algorithm, in a first step (‘E, Expectation’

step), an approximation of the a posteriori distribution is

computed, via its expectation, from measurements and

current estimates Fi of F. In a second step (‘M,

Maximization’ step), a new estimate FiC1 is computed

from the approximation that has just been determined. ‘E’

and ‘M’ steps are alternatively iterated until (guaranteed

[6]) convergence. An appropriate and efficient initialization

of the recovery problem of multiple trajectories in an image

sequence is specified in Section 4.2.
4.2. Association between partial tracks

and trajectory models

Spatial proximity or other criteria can supply a short-

term temporal link between measurements but, due to the

possible lack of detections, in case of occlusion or crossing

for instance, this link is sometimes broken. Therefore, our

association problem is not more the assignment of the

measurements to the trajectory models at each time instant,

but the association of available partial tracks to the

trajectory models. To this respect, we adapt the method

proposed by Giannopoulos et al. [10] for radar and sonar

data, and summarize below the main results.

Let us denote P the set of M partial tracks and KP
l the

assignment of partial track Pl. This assignment takes values

in [1,.,M]. P and the set KP of assignments can be

decomposed as follows:

P Z fP1;.;PMg (24)

KP Z fKP
1 ;.;KP

Mg (25)

To apply the EM algorithm, we need to derive the

expectation of the logarithm of the a posteriori distribution

of variables F given an estimate Fi. This can be expressed
as follows, starting from (21) and (23)

QðFjFiÞ ¼
XM
m¼1

X
§l2§

wiþ1
§l;m

ðtÞln½pmðtÞ�

þ
XM

m¼1

X
§l2§

X
zj2§l

ln½pðzjðtÞjxmðtÞÞ�w
iþ1
§l ;m

ðtÞ

þ
XM

m¼1

ln½pðxmð1ÞÞ�

þ
XM

m¼1

XT

t¼2

ln½pðxmðtÞjxmðt K1ÞÞ�

(26)

where wiC1
Pl ;m

is a weighing factor corresponding to the

probability of assigning partial track Pl to model m, and is

defined by:

wiC1
Pl;m

Z
Y

zj2Pl

pi
mpðzjjxmðtÞÞPM

mZ1 pi
mpðzjjxmðtÞÞ

 !
(27)

The maximization of Q(FjFi) can be decomposed into

two independent maximizations, first with respect to the

parameters of the mixture, the pm(t)’s, and second w.r.t. to

the states (i.e. the trajectory models), the xm(t)’s. Through

these maximizations, one updates the estimate FiZ(Pi,Xi)

at iteration iC1 to get FiC1Z(PiC1,XiC1).

The first maximization problem has a simple analytic

solution. For every t and m, we get:

piC1
m ðtÞ Z

1

st

Xst

jZ1

wiC1
j;m ðtÞ (28)

The second problem consists of the state estimation:

ðxmð0Þ;.; xmðTÞÞ

2argmax
Xm

X
Pl2P

X
zj2Pl

lnðpðzjðtÞjxmðtÞÞÞw
iC1
j;m ðtÞ

8<
:
Cln½pðxmð1ÞÞ�C

XT

tZ2

ln½pðxmðtÞjxmðt K1ÞÞ�

)

(29)

In the case of a Markovian process, it is more relevant to

maximize the exponential of the expression included in

relation (29), that is:

pðxmð1ÞÞ
YT
tZ2

pðxmðtÞjxmðt K1ÞÞ
Yst

jZ1

pðzjðtÞjxmðtÞÞw
iC1
j;m ðtÞ

( )

(30)

Taking advantage of the Gaussian nature of the

measurement noise, this expression can be simplified by

introducing a fictitious ‘synthetic’ measurement ~zmðtÞ;
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and its covariance matrix ~Rm; defined below (relations (32)

and (33)). N½~zmðtÞ; xmðtÞ; ~Rm� denotes the Gaussian prob-

ability distribution of variable ~zmðtÞ; parameterized by

its mean xm(t) and covariance matrix ~Rm: At each instant t,

we have:

Yst

jZ1

pðzjðtÞjxmðtÞÞ
wiC1

j;m ðtÞf
Yst

jZ1

N½zjðtÞ; xmðtÞ; ðw
iC1
j;m ðtÞÞK1Rm�

fN½~zmðtÞ; xmðtÞ; ~Rm� ð31Þ

with

~zmðtÞ Z
1

stp
iC1
m ðtÞ

Xst

jZ1

wiC1
j;m ðtÞzjðtÞ (32)

~R Z
Rm

stp
iC1
m ðtÞ

(33)

This transform leads to the classical expression (34) of

the a posteriori distribution of the state for a single track:

pðxmð1ÞÞ
YT

tZ2

fpðxmðtÞjxmðt K1ÞÞpð~zmðtÞjxmðtÞÞg (34)

The practical resulting algorithm is particularly simple,

since the optimal estimation of c amounts to M independent

estimations using Kalman filtering with smoothing.
5. Initialization stage and tracking algorithm

Let us stress that, in general, the result of the EM

algorithm is strongly dependent on the initialization

provided for the parameters to be estimated For our

problem, this means that care should be taken to provide

the best possible initial guesses for each trajectory model. It

is the main purpose of this section to describe the solution

we propose to this issue. We expose below how, by utilizing

rich information about geometry and velocity of the regions,

a meaningful and robust initialization can be elaborated,

leading to an original and effective PMHT multiple-object

tracking scheme.

Fig. 2 includes an overview of the proposed scheme.

Since the true number of moving objects, and consequently

of trajectories to recover in the image sequence is

unknown, we initially set it to M as stated in Section 3,

where M is the number of partial tracks found within the

batch, i.e. in the processed image sequence. The PMHT

algorithm requires initializing states and prior probabilities

of trajectory models. For the latter, we initially set them in

a uniform way, for every instant t and for every model m:

p0
mðtÞZ1=M: Then, the objective is to determine the

number of actual trajectories by grouping the partial tracks

through the joint trajectory estimation process introduced

in Section 4.
We exploit the partial tracks to build the M initial

trajectories (initial states). Each trajectory model is initially

assigned the measurements forming a partial track. We

then estimate independently the M models over the whole

sequence. Fig. 3 illustrates this operation in an example

involving three models. A prediction-only estimation mode

is used in the Kalman filtering step at time instants when

measurements are not available (dashed polygons in

Fig. 3).

5.1. Handling of the geometric component

Tracking of the geometric models by Kalman filters

cannot be directly applied by considering that the vertices of

the polygonal approximation of the segmentation mask

form the measurements of the geometric component. As

illustrated in Fig. 4, since polygonal approximations are

carried out independently over time, even slightly time-

varying segmentation masks may generate significantly

different sets of polygonal approximation vertices (regard-

ing the location and the number of these vertices). To solve

this issue and supply correct vertices ~P
j
r for correspondence,

we operate as follows (Fig. 4):(1) the predicted polygon and

the extracted one are spatially registered with a translation,

minimizing the inter-polygon distance defined in [5] with

local gradient-descent; (2) for each vertex of the predicted

geometric component, the nearest point on the polygon

extracted from the image is chosen to be the corresponding

measurement.

Let us point out that the prediction/update principle

applied to the geometric component by Kalman filtering

enables some (limited) degree of non-rigidity in the motion

(in addition to the sequence of affine transforms). More

precisely, the affine transform assumption is used for the

prediction step (use of the global affine motion for all the

vertices of a given region), but the adjustement step is

carried out locally at each vertex, hence handling, to some

extent, articulation and deformation.

5.2. Discarding perturbed measurements

We noticed that the reliability in the ‘prediction-only’

mode of the state is strongly dependent on the accuracy of

the last few measurements before the filter switches to this

mode. Typically, these last few measurements can corre-

spond to a progressive occlusion phase (Fig. 1). Such an

issue arises both for progressive appearance and disappear-

ance of a region. The geometric component is particularly

affected, since the extracted region and its measured

silhouette reveal only the visible part of the object.

Therefore, we decided to discard such ‘uncertain’ measure-

ments. We carry out detection of occlusion and disocclusion

phases according to the criterion introduced in Ref. [15],

since it has proved effective enough. In short, it consists in

detecting unexpected strong temporal variation of the area

of the tracked region support. We predict the area of this



Fig. 2. Overview of the proposed scheme.

Fig. 3. Building initial states, in the case of three partial trajectories (only

the geometric component is shown here). Dashed lines represent temporal

extensions, when a prediction-only mode is employed.
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region from time t to time tC1, using the divergent

component of the 2D motion field of the region (due to

object motion towards or away from the camera, or camera

motion). It can be straightforwardly computed from the 2D

affine motion model (given by 1=2ðða2Ca5ÞÞ) estimated

over the considered region at time instant t. We then

examine an ‘innovation’ variable, which is the difference

between area of the segmented region at time t, and its

prediction. Temporal upward or downward jumps of this

variable are then detected using Hinkley’s test. Besides its

simplicity, the interest of this test is two-fold. Since it is

cumulative over time, it can detect (dis)occlusion phases

with various speed with the same threshold. It also provides

conveniently the time at which the (dis)occulsion phase

starts (which is by construction a little earlier than the time



Fig. 4. The two polygons, one corresponding to the prediction computed from the current region trajectory model and the other to the extracted region, are first

registered using a translation. Then, for each vertex on the model, the closest point on the measurement polygon is considered, so as to attempt to obtain pairs of

points that approximately correspond to the same physical point. For the sake of figure clarity, the predicted geometric model and the polygonal silhouette of

the extracted region are drawn far apart.
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at which it is detected). Once the (dis)occulsion phases have

been identified, if any, the corresponding measurements are

discarded, and the states of all models are re-estimated over

the batch.
5.3. Iteration and convergence of the EM algorithm

From these initial state estimates and prior model

probabilities, the two steps of the EM algorithm are iterated:

computation of the measurement-to-model assignment

probabilities given the current states, derivation of prior

probabilities of models and of the ‘synthetic’ measurements

~zmðtÞ; estimation of the states over the batch. Convergence is

considered obtained when the following condition is met:

max
j;m;t

jwi
j;mðtÞKwiK1

j;m ðtÞj!dw (35)

The parameter dw is typically set to 0.001.

The key parameters of the algorithm that the user should

set are the process and measurement noises. Automatic

learning of appropriate values from image sequences are

beyond the scope of this paper, notably because their setting

should exploit application-dependent knowledge, or exten-

sive training data.

Convergence of the EM algorithm leads to an optimal (in

the sense defined of relation (21)), stable, assignment of

measurements to trajectory models. A policy to recover the

full tracks, in other words to associate partial tracks, can be

defined on the basis of the values obtained for these

assignments wiC1
Pl;m

: In practical experiments, we observe that

a clear convergence of wiC1
Pl;m

’s to 1 or 0 occurs in most cases,

respectively if two partial tracks should intuitively clearly

be associated or not. Simple thresholding below e.g. 10e-3

or above 1-10e-3 easily identifies such situation. On the

other side, typical ambiguous cases include
†
 two partial tracks which trajectories are not clearly the

continuation of one another, but might be (this may occur

in the presence of temporary occlusions);
†
 two partial tracks overlapping in time, that both are in

plausible continuity of a third partial track, that occurs

earlier or later.

In the first case, weights take intermediate values

between 0 and 1. In the second case, the weights associating

the third partial track to the two trajectory models arising

initially from the two plausible matching partial tracks are

typically close to 0.5, since these weights should sum to 1.

Existence of such configurations may be identified.

A practical rule, in the context of region tracking, is

suggested by our experiments. In Ref. [15], two trajectory

models are to be grouped if, over a sufficient time interval,

they are consistent both in position and velocity in contrast,

we suggest to only demand consistency in position, and

leave more flexibility on the evolution of the kinematics

during occlusion phases. Besides, the influence of kin-

ematics remains via the state Eq. (12). Moreover, we

globally handle the determination of multiple trajectories,

whereas in Ref. [15], the problem is stated by considering

each trajectory individually.

More generally, the probabilistic nature of the results

provided by our technique opens interesting perspectives for

variations in the decision-taking phase. The present paper

proposes a technique for inferring the association prob-

abilities. From there, one may introduce some cost

associated to each type of error, depending on the

application, and apply various decision strategies (Bayesian,

minimax,.) to conclude. Finally, formalisms that penalize

overall complexity in explaining the scene may be

introduced to supply automatically an interpretation of the

scene, by trading trajectory continuity for global scene

simplicity.
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6. Experimental results

We report experimental results for two real image

sequences involving complex situations The first one is the

‘Breakfast’ sequence, acquired in our lab and which was

already described in Section 1 (Fig. 1). The scene comprises

four partial tracks: two per object, as each object undergoes

temporary total occlusion. Then, four trajectory models are

initially created and estimated. At convergence, finally two

global trajectories are retained and estimated. For this

sequence, initial and final estimated trajectory models are

respectively plotted on Fig. 5a and b, with measurements. It

can be noticed that, at convergence of our algorithm, the four

partial tracks are correctly grouped in two pairs, despite the

relatively complex crossing situation. Only the gravity

centers of the geometric models are indicated for clarity sake.

Fig. 6a and b, respectively, show the computed geometric

measurements, and the estimated geometric models at con-

vergence, superimposed over the first image of the sequence.

The algorithm supplies relevant geometric models, including

the whole silhouette of the regions at instants when partial or

total occlusions take place. Convergence is obtained in about

20 iterations for this sequence.

As an example, a result for the kinematic model is

provided in Fig. 7, for the translational parameter a1 of the

motion model. Measurements and estimated values of a1 are

plotted for two trajectory models corresponding to two

partial tracks in the ‘Breakfast’ sequence, that should be

associated. They are provided at initialization (Fig. 7a and b)

and at convergence (Fig. 7c and d) of the EM algorithm. The

(conservative) prediction-only mode employed for estimat-

ing the kinematic model when no measurement is available

consists in keeping the last filtered value available constant.

The need for this switching of evolution model arises from

the following observation: the last few measurements before

switching to prediction-only mode (e.g. corresponding to a

occlusion) are not reliable enough to allow long-term in

prediction-only mode based on a higher-order evolution
Fig. 5. ‘Breakfast’ sequence: measurements and four initially estimated partial tra

(b). Only the gravity centers of the geometric models are displayed.
model on motion parameters, so this simpler model is only

employed in this context. As the two partial tracks are

correctly associated at convergence, it appears that the state

estimation corresponds to Kalman smoothing.

The second sequence depicts an outdoor scene. The

"Van" sequence is a crossroads scene (a few images of the

sequence are displayed in Fig. 8a), in which the white

vehicule (partial track 2) crosses (behind) a van (partial

track 1), and reappears on its left (partial track 3). Fig. 8b

shows the corresponding motion-based segmentation maps.

The dark car closely following the van is not differentiated

by the motion-segmentation scheme from the van it is

following, as their motions are very similar. Due to the

short-term linkage provided by the motion segmentation

algorithm, three partial tracks and associated object

trajectory models are generated for the sequence, two of

which actually correspond to the same white vehicle. Values

of the kinematic measurements and estimated motion

models, exemplified by a1, are provided in Fig. 8c1 and

c2, respectively, at initialization and at convergence of the

EM algorithm. It can be observed that model 2 fits partial

track 3, while model 3 mismatches partial track 2. As

explained in the previous section, we state that a one-

direction fit suffices to associate the two partial tracks at

hand. The evolution of the association weights wPl ;m
over

iterations is supplied, for trajectory models 2 and 3 with

partial track 3, in Fig. 8c3. Hence, our tracking method was

able to correctly decide that there were only two relevant

different entities (i.e. MZ2), and to accurately recover the

corresponding two entire trajectories, despite the first

partial, then total occlusion, and the crossing situation.

The running time of the technique on a 60-image batch is

about 2 s (CCCimplementation) for the data association

part, which is the contribution of this paper. The processing

time required by prior motion segmentation from the image

sequence is about an order of magnitude higher.

The MHT technique is based on the NP-complete

enumeration of association hypotheses, usually requiring
jectories (a) and the two finally estimated global trajectories at convergence



Fig. 6. ‘Breakfast’ sequence: measured polygonal silhouettes (a), estimated geometric models at convergence, superimposed on the original image at tZ0 (b).

For the sake of clarity, only one out of two geometric models (in time) are represented.
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application of pruning techniques to the hypotheses tree. In

the PMHT technique, computational complexity only grows

moderately with the number of partial tracks. The examples

considered here only involve a few regions and compu-

tational cost should be low both for MHT and PMET. In

general, however, PMHT possesses three advantages for the

region-tracking problem:
†

Fig

init
The more computationally-expensive features are added

to the regions (e.g. the geometric features, included in

this paper; color distribution, as a valuable extension),

the greater the computational advantage of PMHT over

hypothesis enumeration. Besides, introduction of pru-

ning/gating techniques for MHT would require ad-hoc

tuning for each feature.
†
 The context chosen was that of a availability of a short-

term link between regions. In situations where this link
. 7. ‘Breakfast’ sequence: estimated (filtered) values (dotted line) of parameter a1

ialization (a,b) and at convergence (c,d) of the EM algorithm.
does not exist, the combinatorial issue is strong even for

sequences such as the ones presented in the paper.
†
 Besides combinatorial issue, there is an intrinsic

advantage in probabilistic modelling of the associations,

in that it takes naturally into account uncertainties on

measurements and models, and also provides confidence

evaluation as an output and hence enabling various

decision-taking policies.
7. Conclusion

We have presented an original and efficient method for

tracking multiple objects in an image sequence. It involves

the association of partial tracks of regions, while jointly

estimating the trajectories of these regions. We have

introduced the modelling of geometric and kinematic

components of regions in the PMHT framework. From an
(kinematic component) for two of the four trajectory models, plotted at



Fig. 8. Column (a): images from the ‘Van’ sequence, at time instants tZ19,31,47,55,61. Column (b): obtained motion segmentation maps for these images.

Column (c): evolution over the sequence of the affine motion parameter a1 for the three models and three partial tracks, at initialization (c1) and at convergence

of the EM algorithm (c2), evolution over the iterations of association weights wi
Pl ;m

; for lZ2, mZ2 and mZ3.
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adequate model initialization scheme, an iterative EM

procedure leads to a stable configuration of trajectory

models from which associations can be inferred and entire

trajectories of the physical moving objects recovered.
The proposed tracking method has been validated by

experiments on real image sequences involving complex

events such as partial occlusion, total (temporary) occlusion

and crossing.
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The practical interest of the proposed method is several

fold. The understanding of the sequence content is improved

and a rich description of the content is provided: region

motions and trajectories with the whole silhouette of objects

are estimated over the whole sequence, including when

measurements are either not available, or not reliable. A

possible major improvement on the performance of the

scheme could be obtained by adding intensity or color

related descriptors to the measurements, and modelling their

temporal evolution, as for instance described in ref. [11].
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