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Abstract - This article deals with theoretical bounds
and observability in ballistic re-entry vehicle tracking;
theoretical and simulation results are presented.
One essential characteristic of this trajectory is the

deceleration of the vehicle when it reaches dense at-
mospheric layers. The intensity of the phenomenon is
proportional to a scalar, called the ballistic coefficient.
This leads to highly non-linear dynamics.
We have compared tracking data processing tech-

niques like Extended Kalman Filter (EKF) and Parti-
cle Filter to the Posterior Cramer-Rao Bound (PCRB)
in order to confirm the exactness of this very bound and
to evaluate at the same time the filters' performance.
The observability problem of the trajectory is mostly
the observability of the ballistic coefficient during the
re-entry phase. Thus we have gradually studied its ob-
servability using a simple a priori random walk model,
from a constant to a complex Allen oscillatory ballistic
profile for the trajectory simulation. The accuracy of
the particle filter and the exactness of the bound have
been confirmed.

In order to understand the important parameters of
the bound, we explain the evolution of the observability
during the re-entry phase using the Fisher Information
Matrix, the inverse of the Cramer-Rao Bound (CRB).
We give an analytical expression of the CRB versus
time for simple observation cases, using Cauchy-Binet
formula for matrix determinants.

1 Introduction
Anti-Ballistic defenses are confronted with the chal-

lenge of detecting, in a few seconds, swift non-
cooperative targets aiming at locating them precisely
and to allowing interception. With Anti-Ballistic Mis-
sile (ABM) or Anti-Tactical-Ballistic (ATBM) goals,
those defenses use adapted sensors, such as the mil-
limeter wave (MMW) radar located at Kwajalein
(Marshall Islands) [1] , to track re-entry vehicles (RV)
with large aerodynamics loads and a sudden decelera-
tion, leaving a quiet exo-atmospheric phase. The mo-
tion is obviously non-linear and furthermore both the
extent and the evolution of the drag are impossible to
predict. They both have to be estimated dynamically
and may be used to differentiate hostile re-entry bod-

ies from benign decoys. This is a non-linear filtering
problem.
Non-linear filtering can be solved by linear approxima-
tions like EKF [2] , but although its complexity is very
low, one must not forget that its performance can be
weakened by instabilities and divergence. Sequential
Monte-Carlo methods are efficient algorithms and suit-
able for global non-linear filtering, albeit subject to de-
generacy and being a more time consuming algorithm
architecture [3]. The existence of a point of perfor-
mance reference like the PCRB [4] is essential. Some
authors already did the comparison within a mono-
dimensional ballistic model like Farina et al. [5]. As
far as we know, there is no analytical explanation for
the observability evolution during the re-entry phase,
where the violent speed decrease renders possible the
estimation of the ballistic coefficient. The purpose of
this article is the performance analysis of RV track-
ing with complex ballistic profile, and the explanation
of the essential parameters in the system observabil-
ity. The study progresses along the steps proposed in
reference [3].
We study the system's observability using the inverse

of the Cramer-rao Bound, the Fisher Information Ma-
trix, or FIM. As a matter of fact, tools like formal
calculus exist for the FIM, allowing the knowledge of
locally important parameters around an initial condi-
tion. We show in this article that acceleration is the
essential parameters for the system observability. We
also give an analytical approximation of the Cramer-
Rao Bound of the ballistic coefficient.
We evaluate the performance of filtering algorithms

applied to the RV tracking problem. We chose two fil-
tering algorithms for this study: the extended Kalman
filter (EKF) and the particle filter. The choice of the
particle filter is justified by the high non-linearity of
the problem, while the EKF is a natural point of ref-
erence and furthermore has a lower complexity.

In order to evaluate the filters' performance, we have
to evaluate the best possible performance of an estima-
tion algorithm. The a posteriori Cramer-Rao bound
[4] gives the best possible performance. At each step
of time we evaluate a recursive equation whose terms
are computed as a mean over a flow of trajectories.
The flow is computed over all possible trajectories with
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different initial conditions. The ballistic coefficient is
variable, using the Allen oscillatory model which de-
scribes the oscillations of the incidence angle. The es-
timation is made using a random walk model. One
particular difficulty was the correct dimensioning of
the dynamic noise of this very random walk. We show
that we can take it as the upper envelope of the deriva-
tive of the ballistic coefficient 3 versus time. Then we
study the filters robustness versus the knowledge level
of the true dynamic noise.

This article has a two part structure. In the first part
we study the FIM in a two dimensional simplification
of dynamics with a constant 3. In the second part, we
compare in a general case of dynamics and 3 parameter
the performance ofEKF and particle filter with PCRB.
We give a robustness analysis of the algorithms.

2 Local study of the PCRB by
the Fisher Information Matrix

In this section, we will show that the observability
is proportional to the object's acceleration. We start
with the description of a 2D model that will be used
to find analytical bounds.

2.1 Two dimension model
2.1.1 Notations and definitions

Let A be the object cross-section, C its drag coeffi-
cient and m its mass. We note 3 the ballistic coeffi-
cient. The ballistic coefficient is the product CA and is
expressed in m2.kg-'. We note go =-9.8m.s-2, the
gravitational acceleration. We note alt the altitude;
alt = y in the coordinate system of figure 1. The at-
mospheric density is given by:
p(alt) = poexp{ (a"t) }kg.m3 with cp = 7000 andcp
po= 1.2kg.m-3.
2.1.2 The two-dimensional reduction

Let us deal with a classical two-dimensional reduc-
tion of the ballistic dynamics. We have represented
on figure 1 a two dimension reduction of the problem.
Let y be the constant re-entry angle, and vx, vy the two
components of the speed. The differential equations of
the reduction of dimension two are the following:

Vly = go + sin(,y)-1.p(y)v2, - cos(-y)-3.p(y)v2 (1)2 2

Note that ifgo is neglected compared to dynamic pres-
sure 13pv2, as suggested in Allen's article [9], then

1 2 (2)2

2.1.3 Expression of the speed versus altitude
Allen finds the following solution of (1) in [9], by

considering a constant -y angle and neglecting gravity
forces compared to drag forces:

v(y) =v[y(to)]exp(- 2sin(Y) pocpe Cp).

Figure 1: Two dimension reduction.

Let r(t) be the range versus time. Using this expres-
sion 3 versus altitude, it is possible to obtain an exact
formula versus time, e.g. v[y(t)] by substituting

y(t) = sin(Oo)r(to) - v[y(r)]sin(-y)dr (4)

in equation (3). Then ft' v[y(r)]dr is a solution of a
differential equation. It is also possible to obtain - close
to the initial condition - an approximation using the
Taylor development of altitude as a function of time
given in equation (5),

y(t) - sin(Oo)r(to) - sin(-y)(t - to)v[y(to)]) (5)
2.1.4 Expression of range

In the system we have two angles, -y (the re-entry
angle) and ( (the angle between the re-entry path and
the initial line of sight 0(0).) We want to evaluate the
FIM for a radar observing range information and esti-
mating r, v, 1 (It is possible to obtain the FIM if the
radar estimates also 0, but here we suppose that 0,-y
are estimated separately using bearing information).
Let us note v[y(t)] the speed along the re-entry axis,
and ( = 7r- .
v[y(t)] is decomposed into two parts: The projection
along the initial line of sight and the angular or or-
thogonal part:

v,(t) =v[y(t)] cos(() v,(t) =v[y(t)] sin(() (6)

C is used to have a negative cosinus for the radial part
of the speed vector.
We note r,(t) the projection of the radius along the
initial line of sight, ra(t) its orthogonal part.
We suppose rr(t) >> rX,(t) . If we use the rela-
tion VA2 + B2 A + , valid for real numbers
such as A >> B, the range versus time r(t)
VFrr(t)2 + ra(t)2 is given by:

r(t)

(3)
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2.2 FIM determinant calculation
Let us suppose a range-only observation function.

2.2.1 Definition of the FIM
Let M be the observation function gradient along

the trajectory:

Mt=_ ( ar(t) Or(t) 7r(t)N'Or(to)' Ov[y(to)}' '(9 )(7

and let Nt Mt, with ar the range measurement
standard deviation. In a range-only measurement sys-
tem, the Fisher Information Matrix (FIM) is:

S=tk I

FIM(to,tk) - MsIM
s=to r

tz

S=tk

E NsN'8
s=to

with Z = [Nto0 Nt, I... INtk ] the matrix whose each
column is the vector Nt from t = to to t = tk.
2.2.2 The Cauchy-Binet formula

If we want
det(FIM(tO,tk))
ing exact formula

det(FIMito ,tk ) ) =

to compute the determinant
= det(ZZ'), we have the follow-
(see [10]):

, det(Ntp , Ntq I Nt)2
O<p<q<r<k_

2.2.3 Exterior Calculus and consequences
Let us define the 3 x 3 square matrix

[1(t [M,dM d2MQ(t)~~ ~~ -[M t) t4() M,(l) M(2)](9)
Expansion of the FIM around to.
Let P(a, b, c) be:
P(a, b, c) =-b + ab + a2c b2c ac2 a2b2 2 +2 2 2
Let us note ti t - to. Let us suppose valid the Taylor
expansion (see [10]):

Mti = Mto + t M 'Pi+ 2 2) (10)

For (x,y,z) E R3, letw(x,y,z) = x/AyAz be a multi-
linear antisymmetric 3-form, an element of A3(R3).
Then

det(Mtp,Mt Mt M)P(tp, tq tr).det(i(to)).
Indeed, we have

det(Mtp , Mtq I Mt,) = Mt A Mtq A Mt,.
Let us note ti t - to. By equation 10 we obtain:

The consequence is the simple expression of the FIM
determinant:

det(FIM(t.,t,))= a6 det(MtP,Mt,,Mtr)2
r O<p.q<r<k

= R(k)det(f2(to)). with

R(k)- > P(tp-to, tq-to, tr- to)2
p<q<r<k

Expansion of the FIM around successive step
of time.

The highly non-linear dynamics are leading to a
growing error in the Taylor approximation of formula
10, if all terms are computed based on the matrix
det(M, dM, d2M)(to) , at the initial instant to.
Then we can decompose the determinant to compute
it based on Taylor expansions (10) evaluated around
different intants to,- ,tk. The decomposition is as
follows:

1det(FIM(to,tk -= (6 z
O<p<qKr<k

=1E6 det(Mtq+(tp-tq), Mtq, Mtq+(t,-tq))
r O<q<kp.q<r<k_
1 ~~~~~~)2= S(q).det(f7(tq)) with

r O<q<kL

S(q) = E P(tp - tq,0,tr -tq)2
p<q<r<k

2.2.4 Computation of the matrix Q
To compute the matrix Ql we will need some approx-

imations. Using the system of exact equations (3) and
(4), we show in the lemma 1, given in appendix, the fol-
lowing approximations of equations (11,12,13,14,15).

av[y(t)]
ar(to)

av[y(t)]
av[y(to)I
d av[y](t)
dt 9r(to)
d av[y](t)
dt 9v[y(to)]
d 9v[y](t)
dt 03(to)

(t sin(Oo) O
sin(a)

v[y(t)]
v[y(to)]

I. t)sin(Oo) ,

sin(ay)
I e(t) 0O

1
2p(t)v22

with dt) = - d3nffily v1ff

(11)

(12)

(13)

(14)

(15)

(16)
Mtp A Mtq A Mtr -

tq-r Mto 'A M(2
r A

M2
A

These approximations are valid if e(t) is small w.r.t. 1,
2

qr Mto A Mtol) A Mto2) + 2 r to to a reasonable hypothesis. Indeed in our application v

+tPr (1) AMt0 + Mp) c.103M.s-1,3 1.10-4m2.kg1, and ( (t) We+.2rM('A)A Mt MA (+ l) A ) A Mto also suppose that y is "big enough" too avoid singular2 to 0 to 2 to sigua+pt~AMt +values. To have an idea of p values, p = 1.10-4 at
+.2 M2)AMto AAM(1) + '2M A2)AM1) A Mt 65 km of altitude, p 2.10-3 at 45 km of altitude2 to to2 to to 0and p = 1.2 at altitude zero. We have the following

P(tp, tq tr)Mto A MA(l) AM2 property:to0 to
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Property 1 Let us suppose valid the approximations
of equation (11,12,13,14,15), and rr(t) >> ra(t).
Then Q(t) is triangular and
1) det(Q(t)) ll1, (t)Q 2,2] (t) l[3,3] (t) -

2) If the dynamic has no orthogonal part (E,0),

Vr 1 2det(&Z(t)) Vr- -p(t)v2v[y(to)1 2
vr[(t) (t)

v[y(to)] 0
Proof: Let us set X - r(to) + ftq v,dT, Y = oVadr.
1) Q[1,2] By lemma 2 equation (34) and approxima-
tions of equation (11), we have

d Or IOY Va

dt ar(to) ar(to) X

But Or(to)(t) = f Qr(torT)dr fftoE(-r)dr and
9Y vX ~0 hence Q[1,2J

I 0-&r(to) X
2) Q[1,3] By the lemma 2 equation (35) and approxi-
mations of equation (13), we have

d2 ar aY ia
R1X3 Wdt2 ar(to) ar(to) X

hence f[1,3] .°
3) Q[2,31 By the lemma 2 equation (35) and approxi-
mations of equation (14), we have

d2 ar aY va
0[2,3] dt2 aV[y(to)] OV[y(to)] X

Bt ay ,_t) - ft ava ()But av[y(to)] () fto v[Y(to)](T)dT
sin(() g0 d-r < sin ).(t -to) because v(to) > v(t)
and 9vYvo)IX 0 henceQ[2,31 0-
4) Let us now compute the diagonal terms. By the
lemma 2 equation (33) and approximation of equation
(11) we obtain

O =(t0) 1 + E(T)cos(C)dT
*t y

+ I c(T)sin(()X dr. (17)

By the lemma 2 equation (34) and approximation of
equation (12) we obtain

d Or Vr Y Va

dtOv[y(to)] v[y(to)I Xv1t18)
By the lemma 2 equation (35) and approximation of
equation (15) we obtain

d2 Or O9vr YOia Ova Va OY iaQrl[33 = +- 2 -
] dt2 49,3 4,3 XO,3 fiX '/03X

'+ (O- o)V + 2 [Va(t) - Va(tO)]I

+ [Y(t) - Y(to)] -(t-to)Va(to) (19)0~~ (9

The first part of the term is the division of the accel-
eration by 3, and the second part can be understood

if we remark that x 8, x 0, x 0 (becausex Ix x
X is supposed much bigger than Y). Hence the infor-
mation about non-radial component is proportional to
the variation of 0, multiplied by the first (a8o-) and
second (a3(o) ) integral of 'a

2.3 Computation of the CRB of coeffi-
cient d

Let us compute the CRB for the coefficient /3 in
range only case. With a dynamic with no orthogonal
part ((= 0). Other cases can be derived easily.
We suppose the time divided into periods
[to, t2, ... , tkj. We suppose the existence of a
first period t-1. The matrix FO = FIM(t-1,t 1)
represents a priori information. Let us note
(orr ioa, ug) the a priori errors on r, v, /3. We
can suppose the matrix FO diagonal with

~ ~ 1 1

FO[l,l] , FO[2,2] ,(a)2 FO[3,31 (_)2
The FIM expression is then:

FIM(t,tk) = FO + FIM(totk)

The CRBQ of the coefficient 3 is the term (3,3) in the
inverse matrix FIM(t_ ,tk). Let A be the (2,2) matrix
extracted from FIM(t_1 )k), excluding the last column
and last line. Using the well known property of inverse
matrix we obtain:

CRBfl 1 .e()det(FIM(t_l,tk))
The matrix A can easily be obtained from the defi-
nition of the FIM (equation (8)) and from the value
off2 1 ar(ti) 9rand gi 1 &a(ti)
tf Vr(8) ds = X(ti)-Xto) from equation (17) and

(18). Using the determinant multi-linearity we obtain:

det(A) = det (
1 k f2,a)7 + ES=OJ
Es=o fsgs

Er1to fsgs
1+ Ek=O 9s )

(a*a r~(~)2 + (*)2)
('J v O<p<q<k s=O0 (UV)

To finish the computation, we just divide the two
determinants, and take into account the initial knowl-
edge. And because
det(FIM(/31 tk)). (det(FO)1/3 + det(FIM(tO,tk))1/3)3
We obtain:

ICRBf(tk)I <

det(A)
(-)+ (~ ZS<q<k S(q).(( ; 1P2p(tq)V2)2)1/3)1

This function obtained has initial value cr,g and is bru-
tally decreasing as soon as the quotient = (t).V2
becomes impossible to neglect. This happens around
an altitude of 65 km, giving p(t).V2 c.100 if v -

c.103m.s-1 We give an example in figure 2, where al-
titude 65 km is related to the period 9 of the graph.
We trace in blue the function CMR/B and in red the
real CRB.
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Figure 2: The error graph
the periods

V/CRB(/3) in function of

3 PCRB of the general model
In RV tracking, the aim is to be able to estimate the

object's position, speed and ballistic coefficient, using
on one hand a priori dynamic and measurement model,
on the other hand radar observations.
Finding a good simulation model reveals high complex-
ity, for two reasons: the first reason is the very high
level of dynamic non-linearity. The second reason is
the existence of non-deterministic parameters like the
ballistic coefficient, which is the product of the object
cross-section by the drag divided by the mass. The
evolution versus time of the drag coefficient depends
on the incidence angle. Allen [6] proved the very high
variability of the incidence angle for a RV, inducing the
same level of variability for the ballistic coefficient. In
the simulations, we will use either a constant ballistic
profile as a simplification and a reference, or a complex
Allen profile.
Finding a good a priori dynamical model is a complex
task too. Like in [3] and [5] , it is possible to suppose
only a random walk model for the ballistic coefficient.
First we describe the simulation models in subsection
3.1.1, then we give the a priori model used in the track-
ing and PCRB algorithms in subsection 3.1.2.

3.1 Modeling
3.1.1 Dynamic model for trajectory simula-

tions

We suppose now an earth-centered coordinate
system (ECF, see [3]) . We note Re the earth radius.
We note alt the altitude; alt _ Vx2 + y2 + z2 Re in
ECF. We note Q the earth rotation speed, expressed
in rad.s-1. We describe the deterministic dynamical
models that we use to generate the trajectories of our
simulations.

The deterministic trajectory of the object with a
constant / follows the differential equations given by:

Dynamic X = V(X), X = (X,Y,z,vx,vy,vz, 3)':

x

vx

vz

d;3

vx
Vy
Vz

vz~~~Gx + 2x+2fQvy-q3
Gy +Q2y _2QVX q/3y

Gz - q/3
0 i

(20)

with q = 1pllvllj, p = poexp{- } and gravity

field Gx - XigR Xi X,Y'aZ

The coefficient q = pIIvIl2 is the dynamic pressure.
Note that this model restricted to the equator, with
z = vz = 0 is of dimension two, hence the analysis of
the previous section is valid. The discretization of this
model is used in the PCRB algorithm, in the particle
filter and in the EKF. We give this discretization in
subsection 3.1.3.

In our study the ballistic coefficient depends on alti-
tude. To equation (20), we thus put out =3 0, and we
use the 3(alt) profile versus altitude, given on figure 3
(details are given in [6]).
3.1.2 A priori dynamic model

In this section, we describe the dynamic model
the estimator supposes. It is called an a priori
model. In the model, the differences observed between
measurements and the a priori model will be modeled
by an additive dynamic noise on the coefficient / after
discretization. If the continuous a priori model of /3 is
/ = 0, its discretization gives, by adding an additive
dynamic noise vuf: ,B(k + 1) /3(k) + v (k).(The noise
sequence v/(k) is supposed white and gaussian). This
is a random walk model.

3.1.3 Dynamical model discretization
Let At be the step of the filtering algorithm.

We suppose discrete time instants, indexed by k,
(tl, t2, * , tk), such as tk+1 = tk + At.
We will use the notation x(k) = X(tk),x(k + 1) =
X(tk + At) for each state coordinate x.
The most direct discretization consists in a finite
difference. If we write equation (20) as:
X V(X) we obtain:

X(tk + At) f(X(tk)) X(tk) + AtV(X(tk))
For our estimation algorithms, we should add a
dynamic noise. Thus we write a model with noise:
X(tk + At) f(X(tk)) + V(tk) V(tk) Q(tk) We may
write the model more simply, as follows:

X(k + 1) = f(X(k)) + v(k) v(k) , Q(k)
Q(k) is the Gaussian dynamic noise covariance matrix.
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3.1.4 Measurement models
Our radar model gives measurement in range d and

angular measurement - the direct cosines (a, p, 77).
Using a coordinate transformation matrix Mr, and
with a radar located on earth with coordinates
(xr, Yr, Zr), we obtain the measurements vector h(X)

h(X) = (ju, q, d)' with
(a' 8)' - d*(x(kMl - xr, y(k) - yr, z(k) - Zr)

+ (v;(k), vr,(k), vd(k))'
The measurement noise sequence (v,"(k), v,,(k), vd(k))'
is supposed white and gaussian and has a standard
deviation for each coordinate, such as o-,= a,1 =

3.5 10-5, and ad = 1 m, like in [3]. The radar is
placed on the equator at longitude zero.

3.2 Comparison between PCRB and
filters, Robustness of the filters

We will study the performance of the EKF and of
particle filters. These filters are compared with an al-
gorithm establishing the maximum performance that
can be reached by any filter. This is equivalent to
find the lower bound of the empirical state covariance.
The lower bound is called the a posteriori Cramer Rao
Bound [4].

In this section, we compare the PCRB with particle
filter and EKF. The particle filter is the same as the fil-
ter described in [7] and [3], with 10000 particles. We
start with a constant /, then we use a variable 3, fol-
lowing the Allen oscillatory model. The initial vector
(x, y, z, vx, vs, v.) is set to (6485921.9; -256897.4; 1.2 x
lo5; -2627.6; 6271.8; 0). The initial altitude is 120km,
the period is dt = 0.5s, and the intense braking phase
starts at 60km, i.e. 45.

3.2.1 Comparisons between PCRB and filters
During the experiences realized on PCRB and EKF

filters, we observed the necessity of a correct dimen-
sioning on the coefficient ,3. Let us show how it can be
done.
The ,3 dynamic can be described by

/3(tk + At) =/3(k) + v(k), v(k) - N(0, a^)
The finite variation theorem gives:

1/3(tk +At) - 3(k)l < max dO(c)At (21)
EE[tk,tk+at1 dt

Hence

-2= EI/3(tk + At) -:(k)|12 < mee[taxtt] dt

Let us note r the altitude, and e* the value of c which
realizes the maximum of (21). It appears clearly that
we can choose: aV = dlt3(e*)At Because /3 is expressed
with altitude, we will take a>,, helped by the chain
rule, equals to : a,, d (E*)dOAt If we suppose

Figure 3:
derivative

the coefficient : versus altitude and its

known d, ddr - dr
On figure 3, we show on the left the derivative d:
computed with the ballistic coefficient model we have
used.
One should notice that we took a big enough envelope,
then overestimated the dynamic noise. This will
imply an over-evaluation of the PCRB during the
simulations. In order to solve the problem, we will
show in the simulations the evaluation of the PCRB
with the exact envelope of the oscillations.

Comparison between particle filter and EKF,
Robustness
We present the results obtained with a well known
dynamic noise on figure 4. If the dynamic noise is
under-evaluated, we obtain the figure 5.
Interpretation of the results

a) Perfectly evaluated dynamic noise.
On figure 4, we show the comparisons between particle
and EKF filter, RMS error and PCRB.
The dynamic noise for the black, blue and red graphs
is the dynamic noise given by the large envelope of
figure 3.
The dynamic noise for the green graph is the exact
envelope of the graph of figure 3.
The best estimation of the bound is done when the
dynamic noise is evaluated with the exact envelope.
The behaviour of the EKF is exactly the same as
the case of a set /3, the EKF remains stuck on the
initial value until the gain becomes big enough. This
explains why the EKF error is getting through PCRB
in the first part of the trajectory. More precisely, let
us refer to figure 3. The first estimate of 3 is the value
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Figure 5: Error on the coefficient /

on the very right on the graph, added to a noise. This
particular evolution of the coefficient produces the
following event: if the estimate remains blocked, the
error increases and then becomes exactly the same as
the beginning around the altitude of 75 km.
On figure 4, the PCRB graphs obtained with large
and exact envelopes are the same.
Eventually, we may say that when the dynamic noise
is well evaluated, the particle and EKF filters are
equivalent.

b) Under-evaluated dynamic noise.
By under-evaluated dynamic noise, we mean a dynamic
noise on /3 equal to the dynamic noise given by the large
envelope of the 3 oscillations, divided by ten. Given
the simulation results of figure 4, it is clear that the
particle filter's robustness is higher than the EKF's.
When the dynamic noise is not well evaluated, Kalman
gains are very far from the optimal gains. The particle
filter estimates the value of 3 earlier than EKF.

4 Conclusion
The FIM, the CRB inverse, says that in the observ-

ability is proportional to the object's acceleration. Us-
ing the Allen solution, we gave an analytical approxi-
mation of the CRB of the ballistic coefficient /. This
analytical function gives a two-step evolution and thus
a two-step observability, these steps are related to the
dynamical pressure brutal evolution versus time .

The PCRB shows that the ballistic coefficient is not
immediatly observable. The evolution of the estima-
tion error unfolds in two steps. First, periods where
the re-entry is not really started, and where the error is
increasing. Second, the RV reaches dense atmospheric
layer, leading to a fast decrease of the error. This de-
crease was announced by the analytic FIM study.
During the comparison study between PCRB and

tracking algorithm, it appeared that the knowledge of
the variations of 3 is fundamental to obtain the correct
dynamic noise dimension. This knowledge is ideal if we
know the object, its initial incidence angle and the drag
dependancy on the initial angle. If this knowledge is
imperfect, the particle filter gives a better robustness
than the EKF. If the knowledge is perfect, the EKF has
excellent performance. The PCRB shows precisely the
instants of the estimation algorithm optimality, and
the instants of possible improvement.

Lemma 1 The approximations given in equations
(11,12,12,14,15) are valid.

a) Equations (11) and (12)
Let us recall the dynamical system:

1 Y
v[y(t)] = v(to)exp(-2 i(Y)pocpee cP ). (22)

rt
y(t) = sin(Oo)r(to) - v[y(r)]sin(-y)dr(23)

Let us differentiate equation (22), we obtain

O3v[y(t)] _ p(t)/v[y(t)] Oy(t) e(t) Oy(t)
Or(to) 2sin(-y) Or(to) sin(y) ar(to)

Ov[y(t)] p(t)/v[y(t)] ay(t) + v[y(t)]
a3v[y(to)] 2sin('y) Ov[y(tO)] V[y(to)]

e(t) Oy(t) + v[y(t)]
sin(-y) av[y(tO)] v[y(to)]

If we differentiate equations (23), we obtain

6y(t)
ar(to)

t9y(t)
&v[y(to)]

(24)

(25)

sin(Oo)- t v(-() sin(-y)dr (26)
ito r(to)

It av (r)
-08t,v[y(to )]sinlQy)dT (27)

If we substitute equation (26) in (24) and equation (27)
in (25), we obtain:

Ov[y(t)]
afr(to)

av[y(t)]
av[y(to)]

e(t)in(o e(t) ft v[y(T)]
sitn(y) sin()s ) to 23r(to)

_ (t) ft av[y(r)] v[y(t)]_sin(a J si-y)dr ± v[y(t)IsinQy)~ v [y(to)] si( V[IVO]
or, by setting S = t ov[y(o)] dr and Tft. Or(to) ft 9v[5(T)] dr.Jto v[y(to)]

S' = E() sin(O) -e(t)Ssin Q.Y)

T' = -e(t)T + v[IY(to)]
S(0) = 0, T(0) = 0

(28)

(29)

(30)
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This can be solved to give (just differentiate to verify):

_e t E(s)dsI t 'E(w)dw c(s) ( (31)

et E(s)ds t E(w)dw V[y(S)]T=e- eftso v[(tO)ds (32)
Now we substitute equation (31) and (32) in (28) and
(29):

av[y(t)]I_Iar(to)

av[y(
av[y(

S'.E(t)sin(GO) +etft e(s)sin(Oo) d)s]l < v+[ (t) i ds

Ito)] V [Y(to)] + c(t). 0 [^[[(t ))] ds

This proves formula (11) and (12).

b) Equations (13) and (14)
To prove formula (13), and (14), one should notice that
v= p(t)/3v2 and then

-d Ov[y(t)] &MOI) 2ct)3v[y(t) I
dt Or(to) ar(to) C ar(to)
d O3v[y(t)] ai4[y(t)] 2 Ov[y(t)]
dt Ov[y(to)] av[y(to)] 2tVO[y(to)]

and the approximations of equations (11) and (12)
give the result.

c) Equation (15)
Using equation (22), one can obtain:

Ov 1
X (-2.n pcp)

hence
d Ov
dt (9,

a 1p 1212PX-oi,3 2 2 vsinpcp

But cp and v are of the same order. cp = 7000 and
v = c x lOOOm.s-1. This proves the formula (15)
Lemma 2 Let p be a real parameter, like r(to),v[y(to)]
or,3.
Let r = X +

1 y2Letr~~~~~~~~~~~~~~
such as X = r(to) +tfj Vrdr,Y f=ft.Vadr. then

Or OX OYY 1(Y)2 X
ap ap ±OpX 22 X a(p

and
d ar
dtap

O3Vr 9Y d(-) Y aVa 1 av Yavr x +- -~~1O-=(Y)2Tp +ap dt X ap 2 ap X
Y d(X) AX

- dt ap
ifX >> Y then

d Or Ovr + OY Va + Y ava 1 avr(.Y)2 (34)
dtAp Etp dp X X -p 2Op X

and
d2 ar 9i)r + Ova Va OY ia Va O9va Y O9i)a

Op pX OpXXOpXOp

Proof: For the first part, it is a simple application of
differential calculus. For the second part, we just have
to remark that:

d(d ) a Y d(d)
dt x2- X3 dt

1 dQy) V V,

X dt X2 X

Va Vr Va

X X2 x
d( t )
dt

Vr
-
°
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