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IRISA/CNRS

IRISA, Campus de Beaulieu
35042 Rennes Cedex

France
Email: tbrehard@irisa.fr

Jean-Pierre Le Cadre
IRISA/CNRS

IRISA, Campus de Beaulieu
35042 Rennes Cedex

France
Email: lecadre@irisa.fr

Abstract— Nonlinear distributed target tracking for a single
target is addressed in this paper. The problem consists in deriving
fusion rules for local full/partial target state estimates processed
by a number of sensors. We investigate the general ways for the
nonlinear fusion rules with/without feedback implementation via
particle filtering algorithms. In particular, we focuse on practical
application of these ideas for specific multi-sensor architectures
including low/high bandwidth. Then, these new approaches are
applied to the distributed bearings-only tracking problem.

NOTATION��������
:
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����

where
�

is a column vector,

PDF : Probability Density Function,

��	
: denotes the transpose of matrix X.

I. INTRODUCTION

In many applications, multiple sensors are used to collect
noise corrupted observations about target’s trajectory. This
problem of tracking has been of interest for the past thirty
years [1]. A centralized architecture which consists in trans-
mitting measurements directly to a fusion node is theoretically
optimal. However, this approach has some disadvantages. First,
this architecture needs a high bandwidth to collect measure-
ments. Moreover, the fusion node needs high computation abil-
ities. Consequently, along the past fifteen years, the distributed
approach has received a lot of interest. In this approach, each
observer processes its own observation history to obtain a local
conditional Probability Density Function (PDF) of the target
state. Then, each local conditional PDF is sent to the fusion
node. The fusion estimation problem consists in constructing
the global conditional PDF of the target’s trajectory.

The multisensor tracking problem is composed of �����
stochastic equations. The first one represents the temporal
evolution of the target state (position and velocity), called state
equation. The � other ones link the measurement obtained
by the � sensors to the target state at time t (measurement
equations).

The problem of the distributed tracking composed of linear
equations with Gaussian noises has been widely addressed in
the literature. In this case, each sensor transmits a sufficient

statistic which is provided by the local conditional mean
and covariance via a Kalman filter. Moreover it has been
shown that the global conditional mean and covariance can be
obtained via linear operations on local estimates. This is the
BLUE fusion rule proposed in [2]. In 1990, Chong et al. in [3]
proposed a distributed Kalman filtering fusion with feedback.
In the latter, the fusion node sends its latest estimate to local
sensors. In 2001, Zhu et al. showed in [4] that a feedback step
does not improve tracking performance at the fusion node level
but reduces the covariance of each local estimate.

In the nonlinear case, few results have been obtained yet.
At the sensor level, observer maintains its own estimate
using a nonlinear tracking algorithm like a particle filter.
This algorithm based on importance sampling and Monte-
Carlo methods, is quite convenient in nonlinear/non-Gaussian
filtering problems. Arulampalam et al. in [5] gave a good
overview of particle filtering algorithms. At the fusion level,
Nguyen et al. [6] investigated particle filter as a fusion rule in
a distributed tracking problem for a maneuvering target. They
proposed to consider local estimates as measurements which
are fused using a particle filter. However, the authors did not
used the nonlinear fusion equations given by Chong et al. in [3]
and Castanon et al in [7]. As a matter of fact, these equations
do not have analytical formulas such that particle filter is quite
convenient as a fusion rule. We derive here distributed tracking
algorithms with and without a feedback step based on the
nonlinear fusion equations via particle filtering algorithms.

In this paper, an example of distributed target tracking using
bearings-only measurements is presented. This problem has
been studied by Chong et al [3] in 1990 and Anderson and Itlis
[8] in 1993. In the latter, the authors proposed a local tracking
algorithm based on reduced sufficient statistics. This algorithm
is compared with a distributed extended Kalman filter using
the modified polar coordinates system. The underlying idea is
that local conditional mean and covariance are not sufficient
statistics which could be broadcasted to the fusion node in
the bearings-only context. We propose in this paper a local
tracking algorithm based on a particle filter. This algorithm
is quite convenient in bearings-only tracking applications
according to Ristic et al. in [9].

However, the main characteristic of the bearings-only track-



ing problem is the weak observability of range at sensor
level [10] such that tracking algorithms are rather difficult to
initialize [11] and sometimes divergent. Then, we propose to
process only a partial target state at the sensor level with a
robust algorithm. Only partial state estimates are broadcasted
to the fusion node. When fusing partial state estimates, range is
estimated such that the full target state is computed. We derive,
in this paper, distributed tracking algorithms with and without
feedback based on the general fusion equations adapted to
partial local state estimates.

From a practical point of view, sensor architectures include
high or low bandwidth features. If a high bandwidth feature
is available, then each sensor broadcasts the local conditional
PDF given by the particle filtering algorithm. In this case,
the transmitted information is a sum of weighted Dirac delta
functions. If sensor architecture includes only low bandwidth
feature then each sensor transmits only local conditional
mean and covariance estimates. We precise in this paper
the nonlinear fusion equations in the context of bearings-
only tracking when sensors architecture includes a high/low
bandwidth feature.

The distributed target tracking problem is presented in
section II. We focus on the information transmitted by each
sensor whether sensor architectures include a feedback step,
or not. In section III, we consider that each sensor broadcasts
a local conditional estimate of the full target state. Distributed
target tracking algorithms based on the general nonlinear
fusion equations via particle filter are derived. In section IV,
we investigate the case where each sensor broadcasts a local
conditional estimate of the partial target state. Distributed
target tracking algorithms are derived. The approach presented
in section III and IV are applied to the distributed bearings-
only tracking in section V. In particular, the nonlinear fusion
equations are precised in the case of low and high bandwidth in
this context. Simulation results illustrate the different sensors
architectures in section VI.

II. PROBLEM

� sensors are used to collect noise corrupted observations
about target’s trajectory. First, let us define:� � � the target state at time

�
composed of target’s relative

velocity and position,� ����� � the trajectory of the target from time � to time
�
,�	��
� the measurement received at time

�
by sensor � ,�	��
� � � the measurements obtained by sensor � , from time

� to time
�
,�	� � � 
� � � the set of measurements obtained, from time � to

time
�
, by all the � sensors.

The target state is related to the measurements through the
following equation:

��� � 
��� � ����� ����� � ��������� ��� � (1)

Moreover, we assume a prior information on target’s diffusion:

��� � �! � � � � �"� (2)

The aim of the distributed target tracking problem is to
estimate, for a known function # :

E �$# � ����� � � � � � � 
� � � � � (3)

To compute the term given by eq.(3), the fusion node can
use the prior information on target i.e. �%� � �! � � � � � and
the information broadcasted by local sensors. These sensors
process their local conditional estimates by applying a tracking
algorithm with eq.(1) as measurement equation, and eq.(2) as
prior information on target’s diffusion. However, transmitted
information is different if architecture includes or not a feed-
back step. As a matter of fact, if there is no feedback step,
each sensor maintains its estimate using its own observation
history such that at time

�
, sensor � sends &�%� � � � �'
� � � � i.e. an

estimate of �%� � � � ��
� � � � . If there is a feedback step, then the
fusion node broadcasts its latest estimates i.e. &��� � � 
 � � � � � 
� � � 
�� �
to local sensors at time t. Consequently, sensor � uses this PDF
and its current measurement �(
� to obtain &�%� � � � � � � 
� � � 
�� � ��
� �
i.e. an estimate of ��� � � � � � � 
� � � 
 � � ��
� � . These ideas, summed
up in tab.I, will be helpful in section III to understand how
nonlinear fusion rules based on particle filtering algorithms
can be derived.

Architecture Sensor
Without feedback )*,+.-"/10 243576 /98

With feedback )*:+;- / 0 2 576 <576 /9= 51> 2 3/ 8
TABLE I

Local information sent by sensor ? to the fusion node.

However, in some applications, sensors can only broadcast
partial information. For example, in the bearings-only context,
range at the sensor level is not always observable (see [10])
such that each sensor transmits only a partial state estimate.
We note @ 
� the partial state for sensor � at time

�
. This

conditional partial state estimate is processed using a tracking
algorithm including both �%� � 
� � @ 
� � as measurement equation
and �%� @ 
�! � � @ 
� � as prior information on partial state. The
estimation of the full state is processed only at the fusion
node level. We assume that there is a known function A such
that we can compute the full state

� � from the set of partial
states @ � � 
� . Moreover, we assume the existence of � known
functions noted ��B 
 � 
DC,E ��FHGHGHG7F 
JI such that the partial target state
of sensor � can be computed from the full state

� � .K � � � A � @ � � 
� �L�
@ 
� � B 
 � � � ���NM �O��� � �������P� �"� � (4)

In this case, the fusion node computes eq.(3) using the prior
information on the target i.e. �%� � �! � � � �7� and the partial
information broadcasted by local sensors. This information is
different whether or not architecture includes a feedback step.
The PDF transmitted by sensor � to the fusion node at time

�
for the different cases is summed up in tab.II. The nonlinear
fusion rules based on particle filtering algorithms are derived
in section IV.



Architecture Sensor
Without feedback )*:+�� 3/ 0 2 3576 / 8

With feedback )*:+�� 3/ 0 2 576 <576 /9= 5 > 2 3/ 8
TABLE II

Local partial information sent by sensor ? to the fusion node.

III. NONLINEAR FUSION RULES FOR LOCAL FULL

ESTIMATES

The aim of this section consists in deriving fusion rules in
the context of nonlinear distributed tracking with and without
feedback when each sensor broadcasts a local estimate of� � at time

�
. These fusion rules must only depend on the

prior information about the target i.e. ��� � �! � � � ��� and the
information broadcasted by local sensors (see tab.I). First, let
us remind that the aim is to estimate, for a known function # :

E �$# � � ��� �7� � � � � 
� � � � ��� # � � � � ��� �%� � ��� � � � � � 
� � � ��� � ��� � � (5)

We can see that eq.(5) is a complex integral which does
not have a closed-form expression. An idea consists in using
particle filtering algorithm. We use the same approach as
in [12] to solve the problem. First, an importance function� � ����� � � � � � 
� � � � is introduced such that eq.(5) can be rewritten:

E � # � � ��� ��� � � � � 
� � � � ��� # � � � � ���
	"� � � � ��� � � � � � 
� � � ��� � � � �
where 	 � � ��� � � � � � � � � 
� � � �� � � ��� � � � � � 
� � � � � (6)

The classical approach consists in sampling � trajectories,
denoted � ��
� � � � 
�� �1FHGHGHG7F � , using the importance function and
computing the weights � 	 
� � 
�� ��FHGHGHG7F � such that:

E � # � � ��� ��� � � � � 
� � � ��� �� 
�� � # � � 
��� � �
	 
� � (7)

The problem is that the � 	 
� � 
�� ��FHGHGHG7F � cannot be computed
because �%� � ��� � � � � � 
� � � � is unknown in eq.(6). We demonstrate in
the two following sections that � 	 
� � 
�� ��FHGHGHG7F � can be computed
recursively using the diffusion equation �%� � �! � � � ��� and the
local conditional PDFs processed by the S sensors. Moreover,
we precise how trajectories � � 
 F 
� � � � 
�� ��FHGHGHG�F � can be sampled
using the importance function. In the first section, sensors
architecture does not include feedback feature, while sensors
architecture in the second one does.

A. Without feedback

We address in this section the particle filtering algorithm
used as a nonlinear fusion rule when sensors architecture
does not include a feedback step. A recursive formula for� 	 � � 
�� �1FHGHGHG7F � is derived and only depends on the information

available at the fusion level. First, we show in appendix A that
a recursive formula for �%� � � � � � � � � 
� � � � is given by:

�%� ��� � � � � � � 
� � � ��� 
�

 � �

K �%� � � � �'
� � � ���� � � � � 
� � � 
�� ���� �%� � � � � � 
 � � �%� ����� � 
 � � � � � 
� � � 
�� ��� (8)

Let us notice that eq.(8) is the classical nonlinear fusion
equation when there is no feedback as given by Chong et
al. in [3]. We classically assume that the importance function
is such that:� � � � � � � � � � 
� � � � � � � � � � � � � � 
�� � � � � 
� � � � � � � ��� � 
 � � � � � 
� � � 
�� ��� (9)

Then, incorporating eq.(8) and eq.(9) in eq.(6), we obtain:

	"��� 
�

 � �

K �%� � � � ��
� � � ���� � � � � 
� � � 
�� ���� �%� � � � � � 
 � �� � � � � ����� � 
 � � � � � 
� � � � 	"� 
 � � (10)

We use the prior information on target �%� � � � � � 
 � � as impor-
tance function:� � � � � � � � � 
 � � � � � 
� � � � � �%� � � � � � 
 � �"� (11)

Consequently, trajectories � � 
��� � � 
�� ��FHGHGHG7F � are sampled using
the prior information on target’s trajectory. Of course, more
accurate strategies can be proposed, like studying the optimal
importance sampling proposed by Doucet in [13] or using
auxiliary particle filter in [14]. Incorporating eq.(11), eq.(10)
becomes:

	 � � 
�

 � �

K �%� � � � �'
� � � �� �%� � � � � � 
 � � �%� � � 
 � � � 
� � � 
 � ��� � � 
�� � 	 � 
�� � (12)

Finally, using the plug-in method which consists in replacing
an unknown PDF by an estimated PDF, eq.(12) becomes:

	 � � 
�

 � �

K &�%� � � � ��
� � � �� �%� � � � � � 
�� � &�%� � � 
�� � � 
� � � 
�� ��� � � 
 � � 	 � 
 � � (13)

Consequently, the particle filtering algorithm is composed of:� a recursive formula for 	"� given by eq.(13)
which depends on �4&�%� � � � ��
� � � � � 
 � ��FHGHGHG7F 
 ,�4&�4� � � 
�� � �'
� � � 
�� � � 
 � ��FHGHGHG7F 
 (i.e. the information
broadcasted by sensor � at time

�
and

��� � ) and��� � � � � � 
�� � (i.e. the prior information on target’s
trajectory).� trajectories � ��
� � � � 
�� ��FHGHGHG7F � sampled using �%� � � � � � 
�� � .

The distributed tracking algorithm is summed up in fig.1.

B. With feedback

We derive in this section the particle filtering algorithm
used as a fusion rule when sensors architecture includes
a feedback step. A recursive formula for � 	 
� � � 
�� �1FHGHGHG7F � is



derived. First, we demonstrate in appendix B that a recursive
formula �%� � ��� � � � � � 
� � � � is given by:

��� � ��� � � � � � 
� � � ��� 
�

 � �

K �%� � � � � � � 
� � � 
 � � ��
� ���� � � � � � � 
� � � 
�� � �� �%� � � � � � 
 � � �%� � � � � 
 � � � � � 
� � � 
 � ��� (14)

This is the classical nonlinear fusion rule when there is a
feedback step as given by Chong et al. in [3]. As in the
previous section, we assume that the importance function is
such that eq.(9) is satisfied. Then, incorporating eq.(14) and
eq.(9) in eq.(6), we obtain:	"� � 
�


 � �
K �%� � � � � � � 
� � � 
 � � � 
� ��%� � � � � � � 
� � � 
�� � �� �%� � � � � � 
 � �� � � � � ��� � � 
 � � � � � 
� � � � 	 � 
 � � (15)

If we use ��� � � � � � 
�� � as importance function (i.e. eq.(11)),
then	 � � 
�


 � �
K ��� � � � � � � 
� � � 
�� � ��
� �� �%� � � � � � 
�� � �%� � � 
�� � � � � 
� � � 
�� ��� � � 
 � � 	 � 
 � � (16)

Finally, using the plug-in method,eq.(16) becomes

	 � � 
�

 � �

K &�%� � � � � � � 
� � � 
 � � ��
� �� ��� � � � � � 
 � � &��� � � 
 � � � � � 
� � � 
�� ��� � � 
 � � 	 � 
 � � (17)

Consequently, the particle filtering algorithm is composed of:� a recursive formula for 	 � given by eq.(17) which de-
pends on �4&�%� � � � � � � 
� � � 
 � � ��
� � � 
 � ��FHGHGHG7F 
 (i.e. information
broadcasted by sensors at time

�
), &��� � � 
 � � � � � 
� � � 
 � � (i.e.

the global conditional estimate processed by the fusion
node at time

� � � ) and ��� � � � � � 
 � � .� trajectories � � 
��� � � 
�� ��FHGHGHG7F � sampled using ��� � � � � � 
 � � .
The distributed tracking algorithm is summed up in fig.3.

IV. NONLINEAR FUSION RULES FOR LOCAL PARTIAL

ESTIMATES

The aim of this section consists in deriving fusion rules in
the context of nonlinear distributed tracking when sensor �
broadcasts a local partial target state estimate. These fusion
rules must depend on the prior information on the target and
the information broadcasted by local sensors given in tab.II.
First, let us remind that the aim is to estimate eq.(3). Using
eq.(4), eq.(3) becomes:

E � # � ��� � � � � � � � 
� � � � �� # � A � @ � � 
� � � � � �%� @ � � 
� � � � � � � 
� � � ��� @ � � 
��� � (18)

Eq.(18) is a complex integral such that, as in the previous
section, a particle filter approach is used to solve the problem.
An importance function noted � � @ � � 
� � � � � � � 
� � � � is introduced
such that eq.(18) can be rewritten:

E �$# � ����� � � � � � � 
� � � � �� # � A � @ � � 
��� � � �
	"� � � @ � � 
� � � � � � � 
� � � ��� @ � � 
��� � (19)

where 	 � � �%� @ � � 
� � � � � � � 
� � � �� � @ � � 
� � � � � � � 
� � � � � (20)

As in the previous section, the problem consists in sampling
N trajectories � @ � � 
 F 
��� � � 
�� ��FHGHGHG�F � using the importance function
and computing the weights � 	 
� � 
�� �1FHGHGHG7F � such that:

E �$# � � � � ��� � � � � 
� � � � � �� 
�� � # � A � @ � � 
 F 
� � � � �
	 
� � (21)

We derive in the two following sections the particle filtering
algorithm used as a fusion rule whether or not sensors archi-
tecture includes a feedback step.

A. Without feedback

We derive in this section the particle filtering algorithm used
as a fusion rule when sensors architecture does not include
feedback. A recursive formula for the weights � 	 
� � 
�� ��FHGHGHG7F �
is derived. We demonstrate in appendix C that:

��� @ � � 
��� � � � � � 
� � � ��� 
�

 � �

K ��� @ 
� � � 
� � � ��%� @ 
� � � 
� � � 
�� ���� ��� @ � � 
� � @ � � 
� 
 � � �%� @ � � 
� 
�� � � � � 
� � � 
�� ��� (22)

We classically assume that the importance function is such
that:� � @ � � 
��� � � � � � 
� � � � � � � @ � � 
� � @ � � 
� � � 
 � � � � � 
� � � � � � @ � � 
� � � 
�� � � � � 
� � � 
 � ��� (23)

Then incorporating eq.(22) and eq.(23) in eq.(20), we obtain:

	"��� 
�

 � �

K �%� @ 
�'� ��
� � � ��%� @ 
� � � 
� � � 
�� ���� �%� @ � � 
� � @ � � 
� 
�� �� � @ � � 
� � @ � � 
� � � 
 � � � � � 
� � � � 	"� 
 � � (24)

We use �%� @ � � 
� � @ � � 
� 
 � � to sample trajectories:� � @ � � 
� � @ � � 
� � � 
 � � � � � 
� � � � � ��� @ � � 
� � @ � � 
� 
 � � (25)

such that eq.(24) becomes:

	 � � 
�

 � �

K ��� @ 
� � ��
� � � �� ��� @ 
� � @ 
� 
 � � �%� @ 
� 
�� � � 
� � � 
 � ��� @ 
� 
 � � 	 � 
 � � (26)

Consequently, using the plug-in method, eq.(26) becomes:

	�� � 
�

 � �

K &�%� @ 
� � ��
� � � �� �%� @ 
� � @ 
� 
 � � &��� @ 
� 
 � � � 
� � � 
 � ��� @ 
� 
�� � 	�� 
�� � (27)

Now, let us precise the sampling of trajectories� @ � � 
 F 
� � � � E 
�� �1FHGHGHG7F � I . We sample � @ � � 
 F 
� � E 
�� �1FHGHGHG7F � I from� @ � � 
 F 
� 
 � � E 
�� �1FHGHGHG7F � I using the following procedure given in
fig.2. We can notice that we only use the prior information
on target diffusion to generate these trajectories. Finally, the
particle filtering algorithm is composed of:� a recursive formula for 	 � given by eq.(27)

which depends on �4&��� @ 
� � ��
� � � 
 � � � 
 � ��FHGHGHG7F 
 ,



�4&�%� @ 
� � � 
� � � 
 � � � 
 � �1FHGHGHG F 
 (i.e. information broadcasted by
sensors at time

�
and

� � � ) and �%� @ 
� � @ 
� 
�� � the prior
information on partial target state diffusion.� trajectories � @ � � 
 F 
� � � � 
�� �1FHGHGHG7F � are sampled using algorithm
presented in fig.2.

The distributed tracking algorithm is summed up in fig.4.

B. With feedback

We derive in this section the particle filtering algorithm
used as a fusion rule when sensors architecture includes a
feedback step. A recursive formula for � 	 
� � � 
�� ��FHGHGHG7F � is de-
rived. We demonstrate in appendix D that a recursive formula�%� @ � � 
� � � � � � � 
� � � � is given by:

��� @ � � 
��� � � � � � 
� � � ��� 
�

 � �

K �%� @ 
� � � � � 
� � � 
�� � ��
� ��%� @ 
� � � � � 
� � � 
 � � �� ��� @ � � 
� � @ � � 
� 
 � � �%� @ � � 
� � � 
�� � � � � 
� � � 
 � ��� (28)

We assume as in the previous section that the importance
function is such that eq.(23) is satisfied. Then incorporating
eq.(23) and eq.(28) in eq.(20), yields:

	"� � 
�

 � �

K ��� @ 
�L� � � � 
� � � 
 � � ��
� ��%� @ 
� � � � � 
� � � 
�� � �� ��� @ � � 
� � @ � � 
� 
 � �� � @ � � 
� � @ � � 
� � � 
�� � � � � 
� � � � 	�� 
�� � (29)

Using eq.(25) as importance function, then eq.(29) becomes
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� �� �%� @ 
� � @ 
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�� � ��� @ 
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� � � 
�� ��� @ 
� 
 � � 	 � 
 � � (30)

Consequently, using the plug-in method, eq.(30) becomes:
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Finally, the particle filtering algorithm is composed of:� a recursive formula for 	 � given by eq.(31) which de-
pends on �4&��� @ 
� � �'
� � � 
�� � �'
� � � 
 � ��FHGHGHG7F 
 (i.e. information
broadcasted by sensors at time

�
), &�4� @ 
�'� � � � 
� � � 
�� � (i.e. the

global conditional estimate processed by the fusion node
at time

� � � ) and �%� @ 
� � @ 
� 
 � � the prior information on
partial target state diffusion.� trajectories � @ � � 
 F 
� � � � 
�� �1FHGHGHG7F � are sampled using algorithm
presented in fig.2.

The distributed tracking algorithm is summed up in fig.5.

V. APPLICATION TO THE BEARINGS-ONLY TRACKING

PROBLEM

We present in this section the distributed bearings-only
tracking problem and precise the nonlinear fusion equations
derived in section III and IV.

A. The bearings-only tracking problem

We consider the problem of tracking a target using bearings
measurements in the � ��� plane using S sensors . We note� � the target state and � 
� the state of sensor � such that:K � � �����	� � � � �	
 � � ��� � � � �
� 
 � � ��� 	 �� 
� ����� 
� � � � � 

 � � ��� 
� � � ��� 

 � � � � 	 � (32)

At each step of time, each sensor receives a bearing measure-
ment. We note �(
� , the bearing measurement received at time

�
by sensors � . The target state is related to these measurements
through the following equation:

� 
� ��������������� � � � � � � �! � � � ��"
 � � � � �  
 � � �$# �&% 
� � M �O� � � ��������� ��� (33)

where % 
�('*) � � �,+ �- � and + �- is known. Moreover, it is
assumed that the target follows a nearly constant-velocity
model. The discretized state equation1 is given by:

� �! � �/. � � � +10 � �
where: 22222222222

0 � '3) � � � � ���. �54 �76 �� �98;:3< � �>= � �
� �@?�ACBDE AGFD�ACFD� 6 �IH :3< � �>= � � (34)

6 � is the elementary time period. The state covariance + is
known.

Considering a distributed tracking algorithm, each sensor
sends a local conditional estimate of the full target state. The
full target state estimate can be processed using a particle
filtering algorithm using eq.(33) as measurement equation and
eq.(34) as prior information on target diffusion. In this case,
nonlinear fusion rules are given in section III. These formulas
are precised in the following section. However, it is frequently
argued that this algorithm is sometimes divergent and rather
difficult to initialize [11] as the range is not always observable
[10]. Another approach consists in processing only a partial
state estimate at the sensor level given by:

@ 
� � �KJ 
� LJ 
� MJ 
� � 	 �
where:J 
� ���������,�N�O� �	� � � � � � 
� � � �� � � � � � � 
� � � � # M � � � � �,P � � (35)LJ 
� and MJ 
� are the time derivatives of

J 
� . To perform tracking
at the sensor level, we use the following measurement and
diffusion equations:K ��
� � J 
� �3% 
� �

@ 
�! � �RQ @ 
� �TS0 � � M �O� � � ��P �
1For a general review of dynamic models for target tracking see [15].



where: 2222222222
% � '3) � � �C+ �- �"�S0 � '3) � � ���"���Q�� �� � 6 � 6 ��� � 6 �� � �

��
� (36)

+ - is the measurement noise. � is a parameter which must
be fixed. We can see that the stochastic system at the sensor
level is a Gaussian linear one. Consequently, the Kalman filter
is the optimal tracking algorithm. Local conditional mean
and covariance estimates are sufficient statistics. In this case,
nonlinear fusion rules given in section IV will be precised in
subsection C.

B. Full state estimates are broadcasted by sensors

We have seen in the previous section that each sensor
processes its local estimate using a particle filtering algorithm
such that the PDF estimate is a sum of weighted Dirac delta
functions noted: ��� � � 	 
 F �� � ���  
	 �D � � � � (37)

where
� 
 F �� is the particle � of sensor � at time

�
and 	 
 F ��

is the associated weight. However, in the case of bandwidth
limitations, sensor � broadcasts only conditional mean and
covariance estimates noted:

&� 
� and &+ 
� � (38)

The aim of this section is to precise nonlinear fusion rules
presented in the section III in case whether the only estimated
PDF is broadcasted or the only mean and covariance estimates
are transmitted.

1) Low bandwidth, without feedback: If sensor � broadcasts
conditional mean and covariance estimates i.e. &� 
� and &+ 
� ,
then:


&��� � � � �'
� � � � ��� 
��F�� � D 
���  D �
����  D�� F �&��� � � � �'
� � � 
�� � ��� 
 �F�� � D 
�����  D � � �"!#�$��  D � F !&%�'#( � (39)

Now incorporating eq.(39) in eq.(13), we obtain:
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2) Low bandwidth, with feedback: If sensor � broadcasts
mean and covariance estimates then

&�%� � � � � � � 
� � � 
�� � � 
� � �+� 
,�F�� � D 
-��  D � ����  D � F � (41)

Moreover, the global estimated PDF at time
� � � is given by:
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�� 
�� � 	 
� 
 � � � �,.D � � � � � 
 � �"� (42)

Now incorporating eq.(41) and eq.(42) in eq.(17), we obtain:
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3) High bandwidth, without feedback: In this case, sensor� broadcasts the conditional PDF estimate:

&�%� � � � � 
� � � � �
��� � � 	 
 F �� � �0�  "	 �D � � � ��� (44)

Moreover, the local estimated PDF processed by sensor � at
time

� � � is given by:

&��� � � 
 � � � 
� � � 
�� � �
��� � � 	 
 F �� 
�� � � �  
	 �D1� � � � � 
�� �"� (45)

Now incorporating eq.(44) and eq.(45) in eq.(13), we obtain:
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 F �� 
 � * 	�� 
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4) High bandwidth, with feedback: In this case, sensor �
broadcasts the local conditional PDF estimate:

&�%� � � � � � � 
� � � 
�� � � 
� � �
��� � � 	 
 F �� � � �  "	 �D � � � ��� (47)

Moreover, the global estimated PDF at time
� � � is given by:
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Now incorporating eq.(47) and eq.(48)in eq.(17), we obtain:
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C. Partial target state estimates are broadcasted by sensors

In this case, we do not distinguish high and low bandwidth
because the local conditional mean and covariance estimates
noted:

&@ 
� and &+ 
� (50)

are sufficient statistics. However, we precise the recursive
formulas whether or sensors architecture includes a feedback
step.

1) Without feedback: If sensor � broadcasts conditional
mean and covariance estimates i.e. &@ 
� and &+ 
� , then
 ��� @ 
�'� ��
� � � � �2� 
��F��"3  D 
4�3  D � �$��  D � F ���� @ 
� � ��
� � � 
�� � �2� 
 �F��"3  D 
�56�3  D � � �"78����  D � F 7 % '�9 � (51)

Now incorporating eq.(51) in eq.(27), we obtain:
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2) With feedback: If sensor � broadcasts mean and covari-
ance estimates then��� @ 
� � � � � 
� � � 
 � � � 
� � ��� 
 �F&�"3  D 
4�3  D �
����  D � F � (53)

Moreover the global estimated PDF is given by:

&�%� @ � � 
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 � ��� (54)

so, that:
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Now, incorporating eq.(53) and eq.(55) in eq.(31), we obtain:
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VI. SIMULATIONS RESULTS

Simulation results which illustrate distributed target track-
ing algorithms for the bearings-only tracking problem,
as derived in the previous sections are presented in
ftp://ftp.irisa.fr/techreports/2005/PI-1701.pdf.

VII. CONCLUSION

Nonlinear distributed target tracking for a single target has
been addressed in this paper. We have investigated the case
where sensors process local full/partial target state estimates.
We have shown that the nonlinear fusion rules with/without
feedback given by Chong et al. in [3] can be computed using
particle filtering algorithms. Moreover, sensors architectures
including low/high bandwidth have been discussed for the
distributed for the bearings-only tracking setting.

Appendix A : proof of eq.(8)

This result is obtained applying Bayes formula, the Marko-
vian property of the process � � � � � C N ' and the independence
of measurements given the target state. First, using Bayes
formula, we have:�%� � � � � � � � � 
� � � � � ��� � � � 
� � � � � ��� ����� � � � � � 
� � � 
�� ��� (57)

Now using the Markovian property of the process � � � � � C N ' ,
eq.(57) can be rewritten:��� ����� � � � � � 
� � � ��� �%� � � � 
� � � � �� �%� � � � � � 
 � � �%� � � � � 
 � � � � � 
� � � 
 � ��� (58)

Then, using measurements’ independence given the target
state, eq.(58) becomes:
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Now, let us remark, using one more time Bayes formula that:

�%� � 
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Finally, incorporating eq.(60) in eq.(59), we obtain eq.(8).

Appendix B : proof of eq.(14)

Eq.(14) is obtained using the same ideas as in appendix A.
First let us remark using Bayes formula that:

�%� � 
� � � � � � �%� � � � � � � 
� � � 
 � � ��
� ��%� � � � � � � 
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 � �"� (61)

Incorporating eq.(61) in eq.(59), we obtain eq.(14).

Appendix C : proof of eq.(22)

The set of partial target states @ � � 
� and the full target state� � contain the same information. Then we can assume that� @ � � 
� � � C N ' is a Markovian process and the independence of
measurements given the set of partial target states. We use
these two assumptions and Bayes formula to proove eq.(22).
First, using Bayes formula, we have:

��� @ � � 
��� � � � � � 
� � � � � ��� � � � 
� � @ � � 
� � �%� @ � � 
� � � � � � � 
� � � 
�� ��� (62)

Now using the Markovian property of the process � @ � � 
� � � C N ' ,
eq.(62) can be rewritten:��� @ � � 
��� � � � � � 
� � � ��� ��� � � � 
� � @ � � 
� �� ��� @ � � 
� � @ � � 
� 
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� � � 
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� � � 
 � � (63)

Then, using measurements’ independence given the target
state, eq.(63) becomes:
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Now let us remark, using one more time Bayes formula that:

�%� � 
� � @ 
� � � �%� @ 
� � ��
� � � ���� @ 
�L� � 
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 � � �%� � 
� � � 
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 � � (65)

Finally, incorporating eq.(65) in eq.(64), we obtain eq.(22).

Appendix D : proof of eq.(28)

Eq.(14) is obtained using the same ideas as in appendix C.
First, let us remark using Bayes formula that:

�%� � 
� � @ 
� � � �%� @ 
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� � � 
 � � � 
� ��%� @ 
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� � � 
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� � � 
 � �L� (66)

Incorporating eq.(66) in eq.(64), we obtain eq.(28).
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3) Feedback

Fig. 3. Distributed tracking with local full target state estimates with feedback
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2) At the fusion level: Computation of &�%� @ � � 
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using a particle filter:� For

� � � �������P� � , sample @ � � 
 F 
� using fig.2 ,� Evaluate the weights using eq.(27),� Resampling step,

Fig. 4. Distributed tracking with local partial target state estimates without
feedback

For t = 1 to T

1) At the sensor level: Computation of&�%� @ 
� � � � � 
� � � 
�� � ��
� � using a tracking algorithm
with:� measurement equation: �%� �(
� � @ 
� � .� prior information: �%� @ 
�! � � @ 
� � .

2) At the fusion level: Computation of &�%� @ � � 
� � � � � 
� � � �
using a particle filter:� For

� � � �������P� � , sample @ � � 
 F 
� using fig.2 ,� Evaluate the weights using eq.(31),� Resampling step,
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Fig. 5. Distributed tracking with local partial target state estimates with
feedback


