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Abstract - This paper is concerned with performance
prediction ofmultiple target tracking system and especially
with the analysis of track purity. Effects of misassociation
is considered so as to provide closed-form expressions of
the probability ofcorrect association. The linear regression
framework is used throughout and provide powerful tools.

1 Introduction
One important problem in multiple-target tracking is to

evaluate the performance of a multiple-target tracking sys-
tem, in which we would like to relate system environment
parameters to key performance measures. In particular,
two performance measures are relevant: track purity (i.e.
percentage of data originating form the track to be tracked),
and track accuracy. In this area, seminal contributions
certainly include those of K.C. Chang, C.Y. Chong and
S. Mori [2], [3], [4]. Following the general guidelines of
these works, our general aim is to use the linear regression
[1] framework for calculating the probability of correctly
associating a measure to a given track in a multi-target
environment.

Using basic results of linear regression [1], a general
expression of the probability of correct association is
provided. This expression is valid in a general N-scan
environment and involve only elementary parameters like
the inter-track distance and the variance of measurement.
Actually, it is simply the integral of a non-linear function
( erfc) of the quotient of two quadratic forms. For easing
interpretations, approximations of the integrand are con-
sidered and provide meaningful results. This approach can
be extended to a variety of situations (multiple outliers,
crossing tracks, etc.).

The linear regression framework is used throughout and
provide a simple and feasible way for analyzing the effect
of misassociation. In the non-linear case, having a simi-
lar comfort is certainly hopeless but our approach is still
relevant via local linear approximations. Practically, linear
regression is relevant for completely (or almost completely)
observed systems, like for radar applications.
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2 Problem formulation
A target is moving with rectilinear and uni-

form motion. Noisy measurements consisting
of Cartesian positions represented by the points
Pl = (xi,yl),P2 = (X2,y2),I.. ,PN = (XN,YN) are
observed by an observer at time periods t1, t2, -*,tN and
called the "scans". The position measurements are the exact
Cartesian positions P1* (x*, y*),.* * Pk - (Xx,Y*)
corrupted by a sequence of independent and identically
normally distributed noises.

When a target is (sufficiently) isolated from others, there
is no ambiguity about the measurement origin. It is not
true any more if it happens that a second target comes
to stand in the vicinity of the first target. In this case, it
becomes possible to make a mistake about the origin of
an observation by associating it to the wrong target; thus
corrupting target trajectory estimation. But the question is
to give a more precise meaning to the term "sufficiently
isolated".

Thus, the aim of this article is to give a closed-form ex-
pression for the probability of correct association of a mea-
surement to a target track as a function of the number of
scans and the distance of the outlier observation. In order
to simplify the scenario, we consider that one outlier mea-
surement PE = (XE, YE) is located close to the true last
target position Pk = (xN7 yN) at time tN with a distance
of A. The general problem setting and definitions are de-
picted in fig. 1.

Let us denote5i = ti+1 -ti , = 1 * N-1 the
duration between the times ti+1 and ti, and:

v= (vXIV)

the two components of the constant target velocity on the
Cartesian axis. The target trajectory is then exactly defined
by the true parameters state vector (x1, yI, v, v*). For the
rest of the paper, an uppercase * will correspond to the
exact (or ideal) model.
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Figure 1: correct association (P1, P2, P3) and wrong asso-

ciation (P1, P2, P6).

3 Problem analysis
Under the assumption of correct association, the mea-

surements depicted in fig. 1 can be written:

Xi

Yi
X2

Y2

XN

YN

= 1 + El I

* 6

* *+E
- * +e*

-N XN '
=YN + 6YN -

where ( X1 v E X Y2'**XNXEYN )T is the vector of

true1 noise measurements, normally distributed ,i.e. E ,

AV (0, oxi ) and *-' JV Yi). To simplify the problem,

we assume that 0oxi = =yi= 1.

Taking into account the uniform rectilinear target motion,
the correct association model is:

Xi = X+

111 = Y1 +V*
X2 =Xi X2

Y2 = Y Y2

X3 -X + V* (Jl + 62) +
|Y3 =Y1 + VY* (Jl + 62) +Y2

|XN =X1 +VX* (61 + J2+ +6N-1)
+X

=X

YN =Y* + VY* (61 + 62 + ***+ AN-1) + ,YN~ Y
(1)

Denotingr 61 + 62±*-±+ , i- 1N-N-1, eq.
1 has the equivalent matrix formulation:

/ X1
Yi
X2
Y2
X3
Y3

XN
YN

I2 T1I2 X1

72012 i

-12T212
~*

I2 TN-1I2

x

/ *

X1
*

6Yi
*

EX2
*Y2
*x3
*

6Y3

E*XN
E*YN

(2)

Thus, let us denote:
Y* -(X X T12 2 NvY

the vector made of the exact positions, while Yc -
(xi, Yl, X2, y2, , XN,YN)T stands for the vector of the
(complete) observations associated with a correct associa-
tion hypothesis. To ease further calculations, the following
notations are defined:

12
I2

. X- I2

12

02
TlI2
T2 I2

TN-1I2

I, a (2N) x 4 matrix,

* /* =(x1, y*, v*, v*)T the true state vector,

* 6* (EY1Xe17E*27E2'** *7eXNETYN) , measure-

ment noise vector under the correct association as-

sumption.

With these definitions and under the correct association hy-
pothesis, the model simply stands as follows:

Yc = Y* +6*

3.1 The regression model
Consider the following general regression model:

Y =X + , (3)

where Y are the data, X are the regressors and is the
vector of parameters, to be estimated. Under the perfect
assumption hypothesis (denoted by * uppercases), we thus
have:

Y =XX3* + E* . (4)

The observed value of random vector Y is then the sum of
a deterministic component X - and a random component
6* which represents observation noise. From this model, d
is to be estimated by minimizing the norm of the residual
vector E = Y -X 3. Generally, the estimation of 3 is made
by using the quadratic loss function:

EC2(0) = (Y -XOM: (-XM = ily _X 0112 .(5)ITrue means here correct association.
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If the matrix XTX is non-singular, then £2 (/) is minimum
for the unique value / of 3 such that:

d = (X X) X Y . (6)

From the estimation : of /, let be Y the estimator of the
mean X /3 of the random vector Y defined by:

(7)
- X(XTX)- XT y,

with - X(XTX)-1 XT.
The vector of the residuals? Y - X /3 is given by:

£ = Y-YI
- y-7-Y

(8)

- (I-AC Y,
lMY

with M I - H, where I is the identity matrix.
It is easy to check that M is a projection matrix, i.e:

{ MT -M
IM2 M.

We also recall the following classical identities, which will
be used subsequently:

MX (I-XH) X,

=X-X(XTX) l XTX,
- 0,

and:

the vector of erroneous association. So that we have:

Yc-Y* +E

{ and:
YF = Y* + E7

with:

*E
6*cut
E*
6X2

EC = *Y2

E*YXN
6YN) /

and E*;=

/ E*\E~X1
*
Yi
*
X2
e*6Y2

0
-A

In eq. 11, F* is the vector made of differences between the
true positions P1k, P2 X, Pk and "correct" observations
Pl, P2,... ,P, whereas E* is the vector of differences
between the true positions PI*, P*,.**, Pk and "incorrect"
observations P1, P2, ., PN-1, PE (erroneous association
on scan N).

The vectors of residuals c = Y*- Yc and 6* Y*-
YF being unknown are estimated from a linear regression
on the available observations vectors Yc and YF, leading to
ec and eF, defined as:

ec = Yc-Yc,
{ and:

tE = YF-YF

The costs of correct (CC) and erroneous (CF) associa-
tions are defined by the square residuals norms and devel-
oped by using the relation 9:

E = MY,
= M(X/3* +±*),
= ME*. (9)

3.2 Evaluation of the correct association
probability

Assume that the outlier measurement PE = (XE, YE) is
located at the point (see fig. 1):

In the same way, we have also:

|XE
YE

CF (6F)TM (EF)
x*XN
YN- A.

The correct association is then defined by the points
P1, P2, --- ,PN-1, PN whereas the wrong association is
defined by P1, P2, *. , PN- 1, PE (the lowercase E stands
for erroneous association).

Now, let us define:

YF = (Xl,Yl,X2,Y2, , XE,YE)T , (10)

68!

(12)

Let us define now A, the difference between the correct
and wrong costs, i.e.:

AC-=CC -CF. (13)

Then, the probability of correct association is defined by the
probability that A, > 0. The aim of this article is to give
closed-form expressions for this probability.

Let be £COM the vector of components, that vectors 6*

5

Cc = (yy-C)T(yy)
=- 6C C

- (M £C)T(M EC)
(6_)T MTM (EC)

= (_c*)TM (EC)_

(11)
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For the same reasons, we have also:

* =;COM-

/ *

XI
*

*Y
c*

6X2
E*
NY2

*XN-1

E*YN-1
0
0

and define 6* and L as the complementary vectors:

/ 0
0
0
0

4'
YNT

and

/ 0
0
0
0

0
-A /

then:

EC - ECOM+ EP , EF ECOM + L

With these notations, the difference between the correct
and wrong costs A, (see eq. 13) can be written:

CMA -CBA
- (E*)TME- (6* )TME*X
(6COM + L)TM(ECOM + L),

-(E OM + E* )TM(ECOM + E*)
LTML -(-)TME-2(E -L)TMEcOM.

Since the components of the vector ECOM are normally dis-
tributed and supposed independent, this vector is Gaussian
and distributed as:

0
0
0
0

0
0

/ 1
1 (0)

1
1

(0)

Let us define:

ZCOM

/ 1
1 (0)

1

1

(0) 0

0 /

0

o J/

(14)

/ 0
0
0
0

0
0

/ 0
0 (0)

0
0

(0) 1
1 /

Assuming that the vector E4 is set to a fixed value ep,
the law of the difference of costs f(A\cous E* = ep) is
Gaussian with characteristics:

f(A,I E* = ep)
- Ar (LTML - (ep)TMep, 4(ep - L)TM COM M(ep- L))

Defining the 4< projection matrix:

- MZCOM (16)

the precedent density becomes:

f(A,I E* = ep)
- V (LTML - (ep)TMep, 4(ep - L)T4 (ep - L))

(17)
Therefore the conditional probability of correct associa-

tion given E* = ep is:

>) ( (ep)TMep -LTML
P(Ac.>01 E*pep)=erfc k2(ep L)T(-pL)M

(18)
where erfc refers to the complementary function of the nor-
mal cumulative density function.
The probability of correct association is then obtained by

integrating the conditional density relating to the Gaussian
vector E*p

P(Ac > 0)
ff=iP(A/c > 0° E = ep) fep(ep) dep,

- if erfc (ep)TMep-LTML ) fep(ep) dep2(VpeL)T(D(ep-L) /dp

fif erfc (I) fp (ep) dep,
(19)

where we have defined thefinctional T by:

- (epf"Mtp -LTML (20)
2 V(ep-L)T4 (ep-L)

Considering eq. 19, it is not surprising that it is the func-
tional IF as defined by eq. 20 which will play the fundamen-
tal role for analyzing the probability of correct association.

(15) 3.3 Closed-form approximations of the prob-
ability of correct association

Our aim is now to obtain a closed-form approximation
of the probability of correct association. To obtain it, it is
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possible to use a (limited) expansion of the P functional
by considering that ep is very small in regard of L, more
precisely by assuming:

Then let us define the factor p by the following equation:

eTMep p2 (LTML) (22)

In order to express the denominator of I, it is necessary
to compute: eI4? ep, epT L et LDL. Referring to (16)),
we have:

eT4.e = eTM Mep,

e?pP (ZCOM ZOOM) Men

(OOM PMe) (ZCOM Mep)I

ZOCOM Mep . (23)

Now, it is trivially shown that EcOM (see eq. 15) is a
projection matrix, therefore:

ZOOM Me1 2 2

so, that the following inequality holds true ( see eq.22):

2

ZOOM Mep p2. 11M-LI12 (24)

This inequality allows to define ae E [0,1] such that:

eTDep = aIIM . Lll2p2
- a (LTML) p2 (25)

In the same way:

e>1L - (eCMZOOM) (ZOM ML)

K ZO Men,ZO ML)ECOM P COM

(this notation refers to the scalar product).
From the Schwarz inequality, we then have:

eTL < ZOOM Mep OEcOM L

ZcOM being a projection matrix:

OCOM Mep | COMML < IlMeplI |IMLII

by using (22):

IlMeppI ep Mep

= LTML.p

then:

IlMepll JIMLI = ( LTML x LTML
- LTML.p

so:

epTDL < LTML*p
It is then possible to define /3 E [0, 1] by:

eTbLL 0 (LTML) p

The last term is expressed in a similar manner:

LT L

(26)

(LTMZOM) (ZO ML)
2

LJECOMCML
< IIMLII 2

Let 'y E [0, 1] such that:

LT L = -y (LTML) (27)

From the expressions (25), (26) et (27), we have finally:

(ep- L)T<4(ep - L)
T= e eT2eDL + LTOL

= a (LTML) p2 - 20 (LTML) p + -y (LTML)

This formula allows to express the functional P under a
new manner:

eTMe
T - LTML

2
(LTML) p2-2/3 (LTML) p + -y (LTML)

p2 -1

L2L Vy(LTML)xxl±p2-2ap
LTML p2-1
27 V±+ap2-bp'

with:
a

a =- and b--

Considering the classical expansion (u small vs 1):

u1- 3 2 15 3 ±o(u3)

we have:

1

+ a p2- b p
b (a 33 2 2= 1+-p+ --+-b2 p +**
2( 2-8a
+(3b+ 5 3)3+ o(p3) ,

i.e:

1 313&

I+( 2- 2: y 2-y 2 Y2

g+
2

5
-2+6? p3 + o(p3)
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Therefore, by using (28), the functional IQ has the following
expansion:

LTML p2-1
2j ~ 1+ap2-bp

T,VrTM LF/f+a 3 32
- ; [1±+(j)±yP+ -2-+2±-1) p

3 a3 15 03 - /3 (3)2--+--Ip2y26 y3 7y
Taking the 0-th order expansion, I is approximated by:

'f - 2LTM2V/7 '

_-~ LTML
2 VIL-T-4I,LL
LTML

_ LTL
2 LT@L

Then, the 0-th order expansion of the probability of cor-
rect association as given in (19) is simply:

P(A\cofts > 0) JJerfc (IF) f,, (ep) dep

~ JJerfc (- LM)T fep(epM

erfc ( LM ) f,(ep)

= L )

(29)

* If k andl have the same parity: Mk,1 =-

with the following definitions:

f TO 0-,
2 <S = T±+ T2 + * * ±+ TN-1,
+ . and:, S2 - T1 + T22 + ..* + TNk1 .

(31)

Therefore, with the definition of L and 14 given in (14)
and (16):

LT4L M2N,2k1 A

Lk=1 N-1

Since k always differs from N, we have finally:

LT L

E~~~~ 8,N_(SSt) + Tk-1 (-S + Nf TN-1 ) 8 2
k=1 ...N-1 NS2-S

2

To conclude the 0-th order approximation of ', we have
finally obtain:

0

-A N -S2 -(S2 -sN-)-TN-, (-s + NTN-,)

2 E [(S2 -_STN-i) + Tk-i (-s + NTN-1)]2
k=1 N-1

iep (32)

Concerning the probability of correct association, a 0-th or-

d4r approximation is straightforwardly deduced from (30),
yielding:

(30Q

where "erf"
function.

refers to the normal cumulative density

3.4 Expliciting the quadratic forms
We shall now explicit the two quadratic forms LTML

and LT4.L (see eq. 30). More precisely, it can be shown
easily that the M matrix can be expressed by:

Vi=1..N, Vj= 1I.*N:

* If i=j:

M2i-1,2j-1 = M2i,2j;,
= _(S2 S il)+j-1 (-s + N Ti-1 )

N S2-

If i$.j:

M2i21,2j-1 M2i,2j
- (S2 STi-1) + Ti- (-s+ NTi-1)
_- NS2-S

P(A,c) -erf IF,

NS2 _ S2 _ (S2-sTN1
2 | [(S2 TSN_,)+ _

k=1..-N-1
-TN-1 (-S +NTN-1) 2 A
±T+rk-1 (-s + NTN-1)] 2

(33)

3.5 Particular case of regularly spaced times
measurements

Considering the previous calculations, important simpli-
fications can be made. Indeed, it is usual to consider that
the duration 6 between each measurement is constant, i.e.
assuming that:

Ti - 6

T2 26

T3 36

TN-1 (N-1)6
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The expressions of s and S2 simply reduce to:

S T1+ T2 + * +TN-1
N(N-1)

2
and:

S2 = T1 + T2 + +TN
= [12 + 22 + 32 + . . + (N -W12 62
(N-1)N(2N-1) 62

6
Finally, the correct association probability approxima-

tion can be computed and is given by:

P(Acfis>0 erf( (N-2)(N-1) .A)
(34)

It is useful to notice that the probability doesn't depend
of the constant duration 6 between each measurement but
depend just of the number of measurements N and natu-
rally of the distance A from the correct last target position
PN and the outlier observation PE.

4 Results
The following results are given within the framework of

times measurements regularly spaced, as previously seen.
In the figure 2, we represent the N scans problem (here
N 5): the correct target positions (red crosses), the cor-
rect noisy positions (magenta circles) and the outlier mea-
surement (black rhombus) located at a distance A = 5 under
the correct last target position. The target speed is v = 5
and the duration between two consecutive measurements is
fixed to 2.
The left figure presents the estimated positions (blue

cross) belonging to the straight line regression from the cor-

rect noisy measurements, whereas the right one concerns
the regression made from the wrong observations, i.e by re-

placing the right last observation by the outlier one.

On the five following figures is represented the proba-
bility of correct association (red curve) as a function of the
number of scans, obtained by a Monte-Carlo method (5 000
runs) from eq. (19), for different values of A: 1, 2, 3, 5 and
7. The blue dash line represents the approximation of prob-
ability of correct association given by the formula (34).
The fig. 3 below confirms that the hypothesis made to get

the order 0 approximation (eq. (21)) is not valid. Indeed A
is of the same order that the noise assigned to true positions.
The outlier observation PE is too close to the correct obser-
vation P5 for implying a significant difference on the costs.
The approximation formula cannot be used is this case.

However, the four following figures show that the ap-
proximation becomes far better as the outlier observation
departs from the correct position. From A 3, it can be
considered that the 0-th order approximation is useful giv-
ing a realistic value of the true association probability. The
approximation for A 7 is almost perfect.

0X .. .. x

positons vraes
observalons conectes
obseradon etrangere

x positions estmees

C

,,...Xd '.. '~

10 15 20

-; positons vraies
O observabons correctes
0 obseratlon etrangere
x positons esmeeso

5 10 15 20 25

Figure 2: Left: Regression on correct observations (P1, P2,
P3, P4, P5). Right: Regression on wrong observations (P1,
P2, P3, P4, PE).

Figure 3: Right association probability (red) and approxi-
mated (blue dash curve) versus number of scans for A = 1.

5 Conclusion
It has been shown that classical results of linear regres-

sion allow us to derive closed-form expressions of the prob-
ability of correct association, in the general N-scan case
and for one outlier. These results can be easily extended to
more general case studies: arbitrary number of "outliers",
two (crossing) tracks, etc. In the non-linear case, the sit-
uation becomes more difficult, but linear local approxima-
tions are still relevant thus showing the pertinence of this
approach.
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